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A temporal graph is a pair (G, λ) where G is a graph and λ maps
edges of G to non-empty subsets of N.

Given e ∈ E(G) and t ∈ λ(e), we call (e, t) a time-edge or edge
appearance.
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everything is harder on temporal graphs

StarExp
Input: A temporal graph (Sn, λ), where Sn is a star with n leaves.
Question: Does there exist a temporal walk, starting and ending at
the centre of the star, that visits every vertex?
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so we need parameterised approaches!

How might we parameterise?

∙ Restrict the underlying graph
∙ Restrict the temporal structure
∙ Restrict something else: e.g. solution size

3



restricting the underlying structure

∙ Maximum Temporal Matching is NP-hard even when G is a path
(Mertzios, Molter, Niedermeier, Zamaraev & Zschoche, 2020).

∙ StarExp is solvable in polynomial time if each edge appears at
most 3 times (Akrida, Mertzios & Spirakis, 2019), but NP-complete if
edges are allowed to appear 4 or more times (Bumpus & Meeks,
2021); G is always a tree of vertex-cover number 1.

∙ Temporal Graph Burning is NP-hard even when G is a clique or a
path (Hand, 2024).
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we need to consider temporal structure

Obvious temporal parameters:

∙ latest time an edge can appear
∙ maximum number of times at which any edge appears
∙ maximum number of edges appearing at any one time

Parameters combining times and graph structure:

∙ timed feedback vertex number
∙ temporal feedback edge/connection number
∙ several different temporal interpretations of treewidth
∙ (vertex/edge)-interval-membership-width
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we want parameters for ‘denser’ temporal graphs

To do this, we find temporal analogues of static graph parameters
that can be small for graphs which are dense (but hightly structured).

We introduce:

∙ Temporal neighbourhood diversity
∙ Temporal modular-width
∙ Temporal cliquewidth
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we want parameters for ‘denser’ temporal graphs

Temporal cliquewidth

Temporal modular-width

Temporal neighbourhood diversity
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neighbourhood diversity

The neighbourhood diversity of a graph G = (V, E) is the smallest
integer k such that V can be partitioned into sets V1, . . . , Vk with the
property that, if x, y ∈ Vi for any i then N(x) \ {y} = N(y) \ {x}.
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temporal neighbourhood diversity

The temporal neighbourhood diversity of a temporal graph
(G = (V, E), λ) is the smallest integer k such that V can be partitioned
into sets V1, . . . , Vk with the property that, if x, y ∈ Vi for any i then, for
all times t and all vertices z /∈ {x, y}, t ∈ λ(xz) if and only if t ∈ λ(yz).
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tractability with temporal neighbourhood diversity

Temporal Graph Burning:

1. At time t = 0 a fire is placed at a
chosen vertex. All other vertices
are unburnt.

2. At all times t ≥ 1, the fire spreads,
burning all vertices u adjacent to
an already burning vertex v where
the edge between u and v is active
at time t. Then, another fire is
placed at a chosen vertex.

3. This process ends once all vertices
are burning.
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tractability with temporal neighbourhood diversity

Temporal Graph Burning
Input: A temporal graph (G, λ) and an integer `.
Question: Does there exist a successful burning strategy for (G, λ) of
length less than or equal to `?

Theorem
Temporal Graph Burning admits an FPT algorithm parameterised by
the temporal neighbourhood diversity of the input graph.
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tractability with temporal neighbourhood diversity

1. Each set of vertices in the temporal neighbourhood decomposition
is either an independent set or a clique at any time.

2. Vertices in a set are either burned by being chosen to be set on
fire, burned by a vertex inside the same set, or burned by a vertex
in a different set.

3. If a set is an independent set and not burned by a vertex in a
different set, then each vertex must be burned individually.
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generalisation i: temporal modular-width

Suppose a temporal graph (G, λ) can be constructed by the algebraic
expression A which uses the following operations:
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generalisation i: temporal modular-width

1. Creating an isolated vertex.
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generalisation i: temporal modular-width

2. Taking the disjoint union of two temporal graphs.

2,3 2,3
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generalisation i: temporal modular-width

3. Taking the complete join of two temporal graphs at a set of times T.
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generalisation i: temporal modular-width

4. The substitution of temporal graphs G1, . . . ,Gk into a temporal
graph G′ with vertices v1, . . . , vk.
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G1 G2 G3

G′
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generalisation i: temporal modular-width

The width of an expression A is the maximum number of vertices of a
graph into which we perform a substitution in A.

The temporal modular-width of (G, λ) is this minimum width of an
expression A which constructs (G, λ).
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generalisation i: temporal modular-width

Theorem
Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.
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generalisation i: temporal modular-width

Theorem
Temporal Graph Burning is NP-hard even when restricted to graphs
with constant temporal modular-width.

Theorem
StarExp is solvable in time (kτ)!(kτ)O(1) when the temporal
modular-width of the graph is at most k and every edge appears at
most τ times.

13



generalisation i: temporal modular-width

StarExp(4)

Temporal cliquewidth

Temporal modular-width

Temporal neighbourhood diversity

Temporal
Graph Burning
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generalisation ii: temporal cliquewidth

The temporal cliquewidth of a temporal graph G = (G, λ) is the
number of labels required to construct G using only the following
operations:

14



generalisation ii: temporal cliquewidth

1. Creating a new vertex with label.
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generalisation ii: temporal cliquewidth

2. Taking the disjoint union of two labeled temporal graphs.

1,2 1,2
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generalisation ii: temporal cliquewidth

3. Adding edges to join all vertices labeled i to all vertices labeled j,
where i 6= j, such that all the added edges are active at the same set
of times.
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between

and
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generalisation ii: temporal cliquewidth

4. Renaming label i to label j.

2,3 2,3 2,3 2,3

becomes
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generalisation ii: temporal cliquewidth

Graphs of bounded modular width cannot contain long induced
paths, whereas an n-vertex path has cliquewidth 3 for arbitrarily
large n.
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generalisation ii: temporal cliquewidth

Theorem
StarExp is NP-hard on temporal graphs with temporal cliquewidth 3.

14



generalisation ii: temporal cliquewidth

Temporal ∆ Clique
Input: A temporal graph G = (V, E, λ) and two integers ∆ and h.
Question: Is there a set V′ ⊆ V of at least h vertices such that, for
every u, v ∈ V′ and every window of ∆ consecutive timesteps, the
edge uv appears at least once in the window?

Theorem
Temporal ∆ Clique is in FPT parameterised by the temporal
cliquewidth of the input graph (provided that we are given a
temporal cliquewidth construction of the input graph).
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tractability with dense temporal parameters

StarExp(4)

Temporal cliquewidth

Temporal modular-width

Temporal neighbourhood diversity

Temporal
Graph Burning

Temporal ∆ Clique
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thanks and future directions

∙ Find more problems that are tractable parameterised by these
parameters

∙ Is there a Courcelle-style metatheorem for temporal cliquewidth?

∙ Investigate the values of these parameters on real-world temporal
networks

Figure 1: arxiv.org/abs/2404.19453 16


