## A Recipe for the Semantics of Reversible Programming

#### Louis LEMONNIER

Oilthigh Dhùn Èideann



BCTCS'25, Glasgow. 16th April 2025

#### **Reversible Programming**

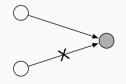
#### Originally –

- Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
- Reversible programs: for a program t, there is  $t^{-1}$  such that  $t; t^{-1} = skip$ .
- Applications to quantum computing.

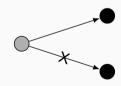
#### \_\_\_\_\_ What we do \_\_\_\_\_

- Reversibility, but not totality.
- Syntax for reversible functions.
- With enough expressivity.
- Through the categorical semantics.

Backward determinism



Forward determinism



[Kaarsgaard&Rennela21]

#### A general framework: dagger categories

Origine: functional analysis where  $\langle fx \mid y \rangle = \langle x \mid f^{\dagger}y \rangle$ .

Category  ${f C}$  equipped with a functor  $(-)^{\dagger}\colon {f C}^{\mathrm{op}} \to {f C},$  such that:

- On objects,  $A^{\dagger} = A$ .
- On morphisms:
  - $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$ ,
  - $f^{\dagger \dagger} = f$ .

Example with partial injective functions between sets, here  $\{0,1\}$ .

A very important class of morphisms: partial  $\dagger$ -isomorphism.  $ff^{\dagger}f = f$ .

Sets and bijections. 
$$0 \longrightarrow 0$$
 1

Sets and partial injections.  $g: \begin{array}{ccc} 0 & 0 & g \text{ is undefined on } 1. \end{array}$ 

Sets and bijections. 
$$0 \longrightarrow 0$$

$${0 \atop 1} > \downarrow {0 \atop 1}$$

Sets and partial injections.  $g: 0 \longrightarrow 0$  g is undefined on 1.

$$g: 0 \longrightarrow 0$$

$$|0\rangle \longrightarrow |+\rangle$$

$$|0
angle = egin{bmatrix} 1 \ 0 \end{bmatrix}$$

$$|1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

$$|+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix} \qquad |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix} \qquad |-\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix}$$

Sets and bijections.  $0 \longrightarrow 0$ 

$${0 \atop 1} \longrightarrow {0 \atop 1}$$

Sets and partial injections.  $g: 0 \longrightarrow 0$  g is undefined on 1.

$$g: \begin{array}{ccc} 0 & & 0 \\ 1 & & 1 \end{array}$$

Hilbert spaces and unitary maps.

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1
angle = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

$$|+\rangle = \begin{vmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{vmatrix}$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \qquad |-\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Hilbert spaces and contractions.

$$h: \begin{array}{ccc} |0\rangle & \longrightarrow & |+\rangle \\ |1\rangle & & |-\rangle \end{array} \qquad h|1\rangle = 0.$$

$$h|1\rangle=0.$$

——— Cartesian closed category ——

——— Cartesian closed category ——

 $\bullet \quad \text{Cartesian product} \ \times.$ 

——— Cartesian closed category ——

- Cartesian product ×.
  - Type  $A \times B$ .

———— Cartesian closed category ———

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - Constructor  $\langle t_1, t_2 \rangle$ .

— Cartesian closed category ———

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .

- Cartesian closed category ——

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- $\bullet \ \ \mathsf{Right\ adjoint\ to\ the\ tensor} \to.$ 
  - Type  $A \rightarrow B$ .

#### - Cartesian closed category ——

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

——— Cartesian closed category ———— Dagger category ————

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - ♦ Constructor  $\lambda x.t$ .

——— Cartesian closed category ———— Dagger category ————

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

Not cartesian, but often monoidal.

——— Cartesian closed category ———— Dagger category ————

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- $\bullet \ \ \mathsf{Right\ adjoint\ to\ the\ tensor} \to.$ 
  - ♦ Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - ♦ Type A ⊗ B.

——— Cartesian closed category ————— Dagger category —————

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - ♦ Type  $A \otimes B$ .
  - ♦ Linear type system.

——— Cartesian closed category ————— Dagger category ——————

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - lack Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - ♦ Type  $A \otimes B$ .
  - Linear type system.
- Not monoidal closed.

— Cartesian closed category —— ——— Dagger category –

- Cartesian product ×.
  - ♦ Type  $A \times B$ .
  - lack Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - ♦ Type  $A \rightarrow B$ .
  - $\blacklozenge$  Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - ♦ Type  $A \otimes B$ .
  - Linear type system.
- Not monoidal closed.
  - ♦ No ground function type.

Cartesian closed category — Dagger category –

- Cartesian product ×.
  - lack Type  $A \times B$ .
  - $\blacklozenge$  Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - lacktriangle Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - lack Type  $A \otimes B$ .
  - ♦ Linear type system.
- Not monoidal closed.
  - ♦ No ground function type.
  - ♦ Is there a way to form functions?

Cartesian closed category — Dagger category —

- Cartesian product ×.
  - lack Type  $A \times B$ .
  - $\blacklozenge$  Constructor  $\langle t_1, t_2 \rangle$ .
- Right adjoint to the tensor  $\rightarrow$ .
  - lacktriangle Type  $A \rightarrow B$ .
  - lacktriangle Constructor  $\lambda x.t.$

- Not cartesian, but often monoidal.
  - lack Type  $A \otimes B$ .
  - ♦ Linear type system.
- Not monoidal closed.
  - ♦ No ground function type.
  - ♦ Is there a way to form functions?

Hopefully, there is another way.

We can **cheat** with our partial inverse!

We can cheat with our partial inverse!

$$\begin{bmatrix} \triangle \vdash t \colon A \end{bmatrix} \quad : \quad [\![ \triangle ]\!] \to [\![ A ]\!] \\ [\![ \triangle \vdash t \colon A ]\!]^{\dagger} \quad : \quad [\![ A ]\!] \to [\![ \Delta ]\!]$$

We can cheat with our partial inverse!

$$\begin{bmatrix} \triangle \vdash t \colon A \end{bmatrix} \quad : \quad [\![ \triangle ]\!] \to [\![ A ]\!]$$
$$[\![ \triangle \vdash t \colon A ]\!]^{\dagger} \quad : \quad [\![ A ]\!] \to [\![ \triangle ]\!]$$

What do we do with this?

5

We can cheat with our partial inverse!

What do we do with this?

Given 
$$\Delta \vdash t: A$$
  $\Delta \vdash t': B$ 

We form a function  $t \mapsto t' : A \leftrightarrow B$ , Whose semantics is

We can cheat with our partial inverse!

$$\begin{array}{cccc} \llbracket \Delta \vdash t \colon A \rrbracket & : & \llbracket \Delta \rrbracket \to \llbracket A \rrbracket \\ \llbracket \Delta \vdash t \colon A \rrbracket^\dagger & : & \llbracket A \rrbracket \to \llbracket \Delta \rrbracket \\ \end{array}$$

What do we do with this?

Given 
$$\Delta \vdash t: A$$
  $\Delta \vdash t': B$ 

We form a function  $t \mapsto t' : A \leftrightarrow B$ , Whose semantics is

$$\llbracket A \rrbracket \overset{\llbracket \triangle \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \overset{\llbracket \triangle \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

5

We can cheat with our partial inverse!

What do we do with this?

Given 
$$\Delta \vdash t: A$$
  $\Delta \vdash t': B$ 

We form a function  $t \mapsto t' : A \leftrightarrow B$ , Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

This is a reversible function! We have  $(t \mapsto t')^{-1} = t' \mapsto t$ , whose semantics is:

We can cheat with our partial inverse!

$$\begin{bmatrix} \triangle \vdash t \colon A \end{bmatrix} \quad : \quad [\![ \triangle ]\!] \to [\![ A ]\!]$$
$$[\![ \triangle \vdash t \colon A ]\!]^{\dagger} \quad : \quad [\![ A ]\!] \to [\![ \triangle ]\!]$$

What do we do with this?

Given 
$$\Delta \vdash t: A \qquad \Delta \vdash t': B$$

We form a function  $t \mapsto t' : A \leftrightarrow B$ , Whose semantics is

$$\llbracket A \rrbracket \stackrel{\llbracket \Delta \vdash t \ : \ A \rrbracket^{\dagger}}{\longrightarrow} \llbracket \Delta \rrbracket \stackrel{\llbracket \Delta \vdash t' \ : \ B \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

This is a reversible function! We have  $(t \mapsto t')^{-1} = t' \mapsto t$ , whose semantics is:

$$\llbracket B \rrbracket \overset{\llbracket \Delta \vdash t' \colon B \rrbracket^\dagger}{\longrightarrow} \llbracket \Delta \rrbracket \overset{\llbracket \Delta \vdash t \ \colon A \rrbracket}{\longrightarrow} \llbracket A \rrbracket$$

5

With a sum type  $\oplus$ :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{I} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

With a sum type  $\oplus$ :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \operatorname{inj}_{l} t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \operatorname{inj}_{r} t \colon A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

With a sum type  $\oplus$ :

$$\frac{\Delta \vdash t : A}{\Delta \vdash \mathsf{inj}_{l} \ t : A \oplus B} \qquad \frac{\Delta \vdash t : B}{\Delta \vdash \mathsf{inj}_{r} \ t : A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

$$\frac{t_1 \perp t_2}{\operatorname{inj}_{l} t_1 \perp \operatorname{inj}_{r} t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]} \qquad \text{which gives } \left\{ \begin{array}{l} \llbracket t_1 \rrbracket^\dagger \circ \llbracket t_1 \rrbracket = \operatorname{id} \\ \llbracket t_1 \rrbracket^\dagger \circ \llbracket t_2 \rrbracket = 0 \end{array} \right. \text{ when } t_1 \perp t_2$$

6

With a sum type  $\oplus$ :

$$\frac{\Delta \vdash t \colon A}{\Delta \vdash \mathtt{inj}_{f} \ t \colon A \oplus B} \qquad \frac{\Delta \vdash t \colon B}{\Delta \vdash \mathtt{inj}_{r} \ t \colon A \oplus B}$$

We introduce orthogonality (to ensure reversibility):

$$\frac{t_1 \perp t_2}{\operatorname{inj}_{l} t_1 \perp \operatorname{inj}_{r} t_2} \qquad \frac{t_1 \perp t_2}{C[t_1] \perp C[t_2]} \qquad \text{which gives } \left\{ \begin{array}{l} \llbracket t_1 \rrbracket^{\dagger} \circ \llbracket t_1 \rrbracket = \operatorname{id} \\ \llbracket t_1 \rrbracket^{\dagger} \circ \llbracket t_2 \rrbracket = 0 \end{array} \right. \quad \text{when } t_1 \perp t_2$$

Our functions are then:

$$\left\{\begin{array}{ccc} t_1 & \mapsto & t_1' \\ t_2 & \mapsto & t_2' \\ & \vdots & \\ t_m & \mapsto & t_m' \end{array}\right\} : A \leftrightarrow B$$

whenever  $\Delta_i \vdash t_i$ : A and  $t_j \perp t_k$ ,  $\Delta_i \vdash t_i'$ : B and  $t_j' \perp t_k'$ .

#### **Example**

 $\begin{array}{llll} \bullet & x \colon A \vdash t \colon C \\ \bullet & y \colon A \vdash t' \colon C \\ \bullet & t \perp t' \end{array} & \left\{ \begin{array}{lll} \operatorname{inj}_{I} x & \mapsto & t \\ \operatorname{inj}_{r} y & \mapsto & t' \end{array} \right\} \colon A \oplus B \leftrightarrow C$ 

Denotational semantics:

#### Example

Denotational semantics: behaves like a coproduct.

Operational semantics:

7

#### Example

• 
$$x: A \vdash t: C$$
  
•  $y: A \vdash t': C$   
•  $t \perp t'$ 

$$\begin{cases} \operatorname{inj}_{t} x \mapsto t \\ \operatorname{inj}_{r} y \mapsto t' \end{cases} : A \oplus B \leftrightarrow C$$

Denotational semantics: behaves like a coproduct.

Operational semantics:

$$\left\{\begin{array}{ccc} \operatorname{inj}_{t} x & \mapsto & t \\ \operatorname{inj}_{r} x & \mapsto & t' \end{array}\right\} \operatorname{inj}_{r} v \rightarrow$$

7

#### Example

$$\begin{array}{llll} \bullet & x \colon A \vdash t \colon C \\ \bullet & y \colon A \vdash t' \colon C \\ \bullet & t \perp t' \end{array} & \left\{ \begin{array}{lll} \operatorname{inj}_{I} x & \mapsto & t \\ \operatorname{inj}_{r} y & \mapsto & t' \end{array} \right\} \colon A \oplus B \leftrightarrow C$$

Denotational semantics: behaves like a coproduct.

Operational semantics:

$$\left\{\begin{array}{ccc} \mathtt{inj}_t x & \mapsto & t \\ \mathtt{inj}_r x & \mapsto & t' \end{array}\right\} \ \mathtt{inj}_r \ v \to t'[v/x]$$

You can also form:

#### **Example**

$$\begin{array}{llll} \bullet & x \colon A \vdash t \colon C \\ \bullet & y \colon A \vdash t' \colon C \\ \bullet & t \perp t' \end{array} & \left\{ \begin{array}{lll} \operatorname{inj}_I x & \mapsto & t \\ \operatorname{inj}_r y & \mapsto & t' \end{array} \right\} \colon A \oplus B \leftrightarrow C$$

Denotational semantics: behaves like a coproduct.

Operational semantics:

$$\left\{\begin{array}{ccc} \mathtt{inj}_I \times & \mapsto & t \\ \mathtt{inj}_r \times & \mapsto & t' \end{array}\right\} \ \mathtt{inj}_r \ v \to t'[v/x]$$

You can also form:

$$\left\{\begin{array}{ccc} t & \mapsto & \operatorname{inj}_{l} X \\ t' & \mapsto & \operatorname{inj}_{r} Y \end{array}\right\} : C \leftrightarrow A \oplus B$$

Our category  ${\bf C}$  such that:

Our category **C** such that:

- Inverse category.
  - lacktriangle Partial inverse  $(-)^{\dagger}$ .

#### Our category **C** such that:

- Inverse category.
  - lacktriangle Partial inverse  $(-)^{\dagger}$ .
  - ♦ Takes care of pattern-matching.

#### Our category ${\bf C}$ such that:

- Inverse category.
  - ightharpoonup Partial inverse  $(-)^{\dagger}$ .
  - ♦ Takes care of pattern-matching.
- Rig structure.
  - lack Usual monoidal product  $\otimes$ .

#### Our category ${\bf C}$ such that:

- Inverse category.
  - lack Partial inverse  $(-)^{\dagger}$ .
  - ♦ Takes care of pattern-matching.
- Rig structure.
  - ♦ Usual monoidal product ⊗.
  - ♦ Disjointness tensor ⊕ with jointly epic injections.

#### Our category **C** such that:

- Inverse category.
  - lacktriangle Partial inverse  $(-)^{\dagger}$ .
  - ♦ Takes care of pattern-matching.
- Rig structure.
  - ♦ Usual monoidal product ⊗.
  - ♦ Disjointness tensor ⊕ with jointly epic injections.
- Join structure.
  - ♦ Compatible morphisms on their domain and codomain admit a join.

#### Our category **C** such that:

- Inverse category.
  - lacktriangle Partial inverse  $(-)^{\dagger}$ .
  - ♦ Takes care of pattern-matching.
- Rig structure.
  - ♦ Usual monoidal product ⊗.
  - ♦ Disjointness tensor ⊕ with jointly epic injections.
- Join structure.
  - ♦ Compatible morphisms on their domain and codomain admit a join.
  - ♦ Sometimes, provides a nice structure on morphisms.

#### Examples:

- Sets and partial injective functions Plnj.
- Hilbert spaces and contractions **Contr** (sometimes written  $\mathbf{Hilb}_{\leq 1}$ ).

The case of inverse categories (such as Plnj)

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category  ${f C}$ 

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** is parameterised **DCPO**-algebraically  $\omega$ -compact.

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X$$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$\operatorname{map}(\omega) = \operatorname{fix} f. \left\{ \begin{array}{c} [ \ ] & \mapsto [ \ ] \\ h :: t \mapsto (\omega \ h) :: (f \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$map(\omega) = \mathbf{fix} \mathbf{f}. \left\{ \begin{array}{l} [\ ] & \mapsto [\ ] \\ h :: t \mapsto (\omega \ h) :: (\mathbf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in inverse categories thanks to **DCPO**-enrichment:  $g \le f$  defined as  $fg^{\dagger}g = g$ .

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

 $\longrightarrow$  A suitable inverse category **C** can model infinite data types  $\mu X.A$ .

Examples:

$$\mathtt{Nat} = \mu X.1 \oplus X \qquad [A] = \mu X.1 \oplus (A \otimes X)$$

And we want to parse those infinite types:

$$map(\omega) = \mathbf{fix} \ \mathbf{f}. \ \left\{ \begin{array}{l} [\ ] & \mapsto [\ ] \\ h :: t \mapsto (\omega \ h) :: (\ \mathbf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Works in inverse categories thanks to **DCPO**-enrichment:  $g \leq f$  defined as  $fg^{\dagger}g = g$ .

$$\mathsf{fix}(F) = \mathsf{sup}_n\{F^n(\bot)\}$$

## Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I | A \oplus B | A \otimes B |
(Function types) T_1, T_2 ::= A \leftrightarrow B
(Unit term) t, t_1, t_2 ::= *
(Pairing)
                                        t_1 \otimes t_2
(Injections)
                                     | inj_t t | inj_t t
(Function application)
                                     |\omega| t
(Abstraction) \omega ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
```

## Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I \mid A \oplus B \mid A \otimes B \mid X \mid \mu X.A
(Function types) T_1, T_2 ::= A \leftrightarrow B
(Unit term)
                           t, t_1, t_2 ::= *
(Pairing)
                                              t_1 \otimes t_2
(Injections)
                                             | inj_t t | inj_t t
(Function application)
                                             |\omega| t
(Inductive terms)
                                              fold t
                       \omega \qquad ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
(Abstraction)
(Fixed points)
                                              | f | fix f.\omega
```

## Summary of the language (mandatory slide)

```
(Ground types) A, B ::= I | A \oplus B | A \otimes B | X | \mu X.A
(Function types) T_1, T_2 ::= A \leftrightarrow B \mid T_1 \rightarrow T_2
(Unit term)
                            t, t_1, t_2 ::= *
(Pairing)
                                               t_1 \otimes t_2
(Injections)
                                              |\inf_{t} t| \inf_{t} t
(Function application)
                                              \omega t
(Inductive terms)
                                               fold t
(Abstraction) \omega ::= \{t_1 \mapsto t'_1 \mid \cdots \mid t_m \mapsto t'_m\}
(Fixed points)
                                               | f | fix f.\omega
(Higher abstractions)
                                               |\lambda f.\omega|\omega_2\omega_1
```

 $\lambda$ -calculus with fixed points thanks to **DCPO**-enrichment.

## Expressivity

The language is Turing complete! (even if it is reversible)

#### **Expressivity**

# The language is Turing complete! (even if it is reversible)



ask this guy (Kostia Chardonnet, currently works in Nancy)

#### **Expressivity**

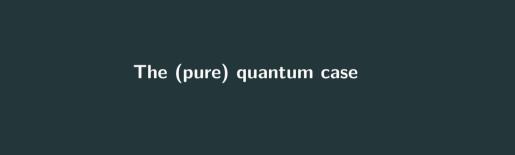
# The language is Turing complete! (even if it is reversible)



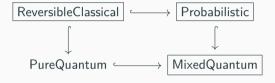
ask this guy (Kostia Chardonnet, currently works in Nancy)

#### Rough summary -

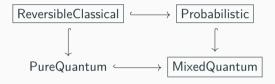
- Reversible Turing Machines [Axelsen&Glück11].
  - ♦ Simulate your favourite Turing machines.
- Encode RTMs in our language:
  - lack Alphabet & states mapped to  $I \oplus \cdots \oplus I$ .
  - ♦ Tape as lists.
  - lacktriangle Functions simulating one-step transition of  $\delta$ .
  - ♦ Iterate until final state.



## The quantum troubles



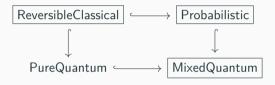
#### The quantum troubles



Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

#### The quantum troubles



Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

A kind of solution with techniques adapted from guarded recursion.

## Computation in the topos of trees

Objects in the topos of trees are cochains in **Set**:

$$X(0) \leftarrow_{r_0} X(1) \leftarrow_{r_1} X(2) \leftarrow \cdots$$

There is a functor  $L \colon \mathbf{Set}^{\mathbb{N}^{\mathrm{op}}} \to \mathbf{Set}^{\mathbb{N}^{\mathrm{op}}}$ , such that LX is:

$$1 \leftarrow X(0) \leftarrow X(1) \leftarrow X(2) \leftarrow \cdots$$

and a natural transformation  $\nu : id \Rightarrow L$ , such that  $\nu_X$  is:

$$X(0) \leftarrow_{r_0} X(1) \leftarrow_{r_1} X(2) \leftarrow_{r_2} X(3) \leftarrow \cdots$$

$$\downarrow ! \qquad \qquad \downarrow^{r_0} \qquad \qquad \downarrow^{r_1} \qquad \qquad \downarrow^{r_2}$$

$$1 \leftarrow_{!} X(0) \leftarrow_{r_0} X(1) \leftarrow_{r_1} X(2) \leftarrow \cdots$$

and a family of morphisms  $fix_X$ :  $[LX \to X] \to X$ .

#### A guarded category

Start with a dagger category C.

Consider the category whose objects are cochains in **C**:

$$X(0) \longleftarrow X(1) \longleftarrow X(2) \longleftarrow \cdots$$

And morphisms are natural transformations in **C**:

$$X(0) \longleftarrow X(1) \longleftarrow X(2) \longleftarrow \cdots$$
 $\downarrow \qquad \qquad \downarrow$ 
 $Y(0) \longleftarrow Y(1) \longleftarrow Y(2) \longleftarrow \cdots$ 

This category is enriched in the topos of trees  $\mathbf{Set}^{\mathbb{N}^{\mathrm{op}}}$  (with its fixed point operator).

Guarded recursion enforces termination.

Guarded recursion enforces termination.

It also enforces to  $\ensuremath{\textit{advance}}$  in the depth of the terms.

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the  $\operatorname{map}$  function.

$$map(\omega) = \mathbf{fix} \ \mathbf{f} . \ \left\{ \begin{array}{l} [\ ] & \mapsto [\ ] \\ h :: t \mapsto (\omega \ h) :: (\mathbf{f} \ t) \end{array} \right\} : [A] \leftrightarrow [B]$$

Take home message: no cartesian closure needed to have

Take home message: no cartesian closure needed to have functions,

Take home message: no cartesian closure needed to have functions, inductive types,

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

# Thank you!