
A Recipe for the Semantics of Reversible Programming

Louis LEMONNIER
Oilthigh Dhùn Èideann

BCTCS’25, Glasgow. 16th April 2025

Reversible Programming

Originally

• Landauer and Bennett, 1961: Reversible Computation and Energy Dissipation.
• Reversible programs: for a program t, there is t−1 such that t; t−1 = skip.
• Applications to quantum computing.

What we do

• Reversibility, but not totality.
• Syntax for reversible functions.
• With enough expressivity.
• Through the categorical semantics.

Backward determinism Forward determinism

[Kaarsgaard&Rennela21]

1

A general framework: dagger categories

Origine: functional analysis where 〈fx | y〉 = 〈x | f†y〉.

Category C equipped with a functor (−)† : Cop → C, such that:

• On objects, A† = A.
• On morphisms:

• (g ◦ f)† = f† ◦ g†,
• f†† = f.

Example with partial injective functions between sets, here {0, 1}.

not : 0 0
1 1

g : 0 0
1 1

g† : 0 0
1 1

A very important class of morphisms: partial †-isomorphism. ff†f = f.

2

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

3

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

3

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

3

Examples of relevant dagger categories

Sets and bijections. 0 0
1 1

Sets and partial injections. g : 0 0
1 1

g is undefined on 1.

Hilbert spaces and unitary maps. |0〉 |+〉

|1〉 |−〉
where

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
|+〉 =

[
1√
2

1√
2

]
|−〉 =

[
1√
2

− 1√
2

]

Hilbert spaces and contractions. h : |0〉 |+〉

|1〉 |−〉
h |1〉 = 0.

3

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.

♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.

♦ Constructor ⟨t1, t2⟩.
• Right adjoint to the tensor →.

♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.

♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.

♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.

♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.

♦ Linear type system.
• Not monoidal closed.

♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.

♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.

♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

How do you extract syntax from dagger categories?

Cartesian closed category

• Cartesian product ×.
♦ Type A × B.
♦ Constructor ⟨t1, t2⟩.

• Right adjoint to the tensor →.
♦ Type A → B.
♦ Constructor λx.t.

Dagger category

• Not cartesian, but often monoidal.
♦ Type A ⊗ B.
♦ Linear type system.

• Not monoidal closed.
♦ No ground function type.
♦ Is there a way to form functions?

Hopefully, there is another way.

4

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K

What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Our new functions

We can cheat with our partial inverse!

J∆ ` t : AK : J∆K → JAKJ∆ ` t : AK† : JAK → J∆K
What do we do with this?

Given ∆ ` t : A ∆ ` t′ : B

We form a function t 7→ t′ : A ↔ B, Whose semantics is

JAK J∆⊢t : AK†

−→ J∆K J∆⊢t′ : BK
−→ JBK

This is a reversible function! We have (t 7→ t′)−1 = t′ 7→ t, whose semantics is:

JBK J∆⊢t′ : BK†

−→ J∆K J∆⊢t : AK
−→ JAK

5

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A ⊕ B
∆ ` t : B

∆ ` injr t : A ⊕ B

We introduce orthogonality (to ensure reversibility):

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2] which gives

{ Jt1K† ◦ Jt1K = idJt1K† ◦ Jt2K = 0 when t1 ⊥ t2

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A ↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A ⊕ B
∆ ` t : B

∆ ` injr t : A ⊕ B

We introduce orthogonality (to ensure reversibility):

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2] which gives

{ Jt1K† ◦ Jt1K = idJt1K† ◦ Jt2K = 0 when t1 ⊥ t2

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A ↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A ⊕ B
∆ ` t : B

∆ ` injr t : A ⊕ B

We introduce orthogonality (to ensure reversibility):

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2] which gives

{ Jt1K† ◦ Jt1K = idJt1K† ◦ Jt2K = 0 when t1 ⊥ t2

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A ↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Together with pattern-matching

With a sum type ⊕:
∆ ` t : A

∆ ` injl t : A ⊕ B
∆ ` t : B

∆ ` injr t : A ⊕ B

We introduce orthogonality (to ensure reversibility):

injl t1 ⊥ injr t2

t1 ⊥ t2
C[t1] ⊥ C[t2] which gives

{ Jt1K† ◦ Jt1K = idJt1K† ◦ Jt2K = 0 when t1 ⊥ t2

Our functions are then: 
t1 7→ t′1
t2 7→ t′2

...
tm 7→ t′m

 : A ↔ B

whenever ∆i ` ti : A and tj ⊥ tk, ∆i ` t′i : B and t′j ⊥ t′k.

6

Example

• x : A ` t : C
• y : A ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

Denotational semantics:

behaves like a coproduct.

Operational semantics: {
injl x 7→ t
injr x 7→ t′

}
injr v → t′[v/x]

You can also form: {
t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

7

Example

• x : A ` t : C
• y : A ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

Denotational semantics: behaves like a coproduct.

Operational semantics:

{
injl x 7→ t
injr x 7→ t′

}
injr v → t′[v/x]

You can also form: {
t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

7

Example

• x : A ` t : C
• y : A ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

Denotational semantics: behaves like a coproduct.

Operational semantics: {
injl x 7→ t
injr x 7→ t′

}
injr v →

t′[v/x]

You can also form: {
t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

7

Example

• x : A ` t : C
• y : A ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

Denotational semantics: behaves like a coproduct.

Operational semantics: {
injl x 7→ t
injr x 7→ t′

}
injr v → t′[v/x]

You can also form:

{
t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

7

Example

• x : A ` t : C
• y : A ` t′ : C
• t ⊥ t′

{
injl x 7→ t
injr y 7→ t′

}
: A ⊕ B ↔ C

Denotational semantics: behaves like a coproduct.

Operational semantics: {
injl x 7→ t
injr x 7→ t′

}
injr v → t′[v/x]

You can also form: {
t 7→ injl x
t′ 7→ injr y

}
: C ↔ A ⊕ B

7

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.

♦ Takes care of pattern-matching.
• Rig structure.

♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.

♦ Disjointness tensor ⊕ with jointly epic injections.
• Join structure.

♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.

♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The mathematical recipe /"ôEs.I.pi/

Our category C such that:

• Inverse category.
♦ Partial inverse (−)†.
♦ Takes care of pattern-matching.

• Rig structure.
♦ Usual monoidal product ⊗.
♦ Disjointness tensor ⊕ with jointly epic injections.

• Join structure.
♦ Compatible morphisms on their domain and codomain admit a join.
♦ Sometimes, provides a nice structure on morphisms.

Examples:

• Sets and partial injective functions PInj.
• Hilbert spaces and contractions Contr (sometimes written Hilb≤1).

8

The case of inverse categories (such as PInj)

8

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C

Examples:
Nat = µX.1 ⊕ X

[A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C is parameterised DCPO-algebraically ω-compact.

Examples:
Nat = µX.1 ⊕ X

[A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X

[A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X

[A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X [A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X [A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X [A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

To Infinity and Beyond

Some reading: [Axelsen&Kaarsgaard16] + [Fiore04] + some calculations.

−→ A suitable inverse category C can model infinite data types µX.A.

Examples:
Nat = µX.1 ⊕ X [A] = µX.1 ⊕ (A ⊗ X)

And we want to parse those infinite types:

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

Works in inverse categories thanks to DCPO-enrichment: g ≤ f defined as fg†g = g.

fix(F) = supn{Fn(⊥)}

9

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B |

X | µX.A

(Function types) T1,T2 ::= A ↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t

(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}

(Fixed points) | f | fix f.ω
(Higher abstractions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment.

10

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | X | µX.A
(Function types) T1,T2 ::= A ↔ B |

T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω

(Higher abstractions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment.

10

Summary of the language (mandatory slide)

(Ground types) A,B ::= I | A ⊕ B | A ⊗ B | X | µX.A
(Function types) T1,T2 ::= A ↔ B | T1 → T2

(Unit term) t, t1, t2 ::= ∗
(Pairing) | t1 ⊗ t2
(Injections) | injl t | injr t
(Function application) | ω t
(Inductive terms) | fold t

(Abstraction) ω ::= {t1 7→ t′1 | · · · | tm 7→ t′m}
(Fixed points) | f | fix f.ω
(Higher abstractions) | λf.ω | ω2ω1

λ-calculus with fixed points thanks to DCPO-enrichment.
10

Expressivity

The language is Turing complete! (even if it is reversible)

ask this guy
(Kostia Chardonnet,
currently works in
Nancy)

Rough summary

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

Expressivity

The language is Turing complete! (even if it is reversible)

ask this guy
(Kostia Chardonnet,
currently works in
Nancy)

Rough summary

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

Expressivity

The language is Turing complete! (even if it is reversible)

ask this guy
(Kostia Chardonnet,
currently works in
Nancy)

Rough summary

• Reversible Turing Machines [Axelsen&Glück11].
♦ Simulate your favourite Turing machines.

• Encode RTMs in our language:
♦ Alphabet & states mapped to I ⊕ · · · ⊕ I.
♦ Tape as lists.
♦ Functions simulating one-step transition of δ.
♦ Iterate until final state.

11

The (pure) quantum case

11

The quantum troubles

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

A kind of solution with techniques adapted from guarded recursion.

12

The quantum troubles

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

A kind of solution with techniques adapted from guarded recursion.

12

The quantum troubles

ReversibleClassical Probabilistic

PureQuantum MixedQuantum

Contr (Hilbert spaces and contractive linear maps) is not enriched in an interesting way.

Composition does not preserve any reasonable poset structure.

A kind of solution with techniques adapted from guarded recursion.

12

Computation in the topos of trees

Objects in the topos of trees are cochains in Set:

X(0) X(1) X(2) · · ·r0 r1

There is a functor L : SetN
op

→ SetN
op

, such that LX is:

1 X(0) X(1) X(2) · · ·
! r0 r1

and a natural transformation ν : id ⇒ L, such that νX is:

X(0) X(1) X(2) X(3) · · ·

1 X(0) X(1) X(2) · · ·

r0 r1 r2

! r0 r1

! r0 r1 r2

and a family of morphisms fixX : [LX → X] → X.
13

A guarded category

Start with a dagger category C.

Consider the category whose objects are cochains in C:

X(0) X(1) X(2) · · ·

And morphisms are natural transformations in C:

X(0) X(1) X(2) · · ·

Y(0) Y(1) Y(2) · · ·

This category is enriched in the topos of trees SetN
op

(with its fixed point operator).

14

Some mild conditions for guarded recursion

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

15

Some mild conditions for guarded recursion

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

15

Some mild conditions for guarded recursion

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

15

Some mild conditions for guarded recursion

Guarded recursion enforces termination.

It also enforces to advance in the depth of the terms.

The size of the output cannot be smaller than the size of the input (and vice versa).

It still allows for the map function.

map(ω) = fix f .
{

[] 7→ []

h :: t 7→ (ω h) :: (f t)

}
: [A] ↔ [B]

15

Conclusion

Take home message: no cartesian closure needed to have

functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

Conclusion

Take home message: no cartesian closure needed to have functions,

inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

Conclusion

Take home message: no cartesian closure needed to have functions, inductive types,

recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

Conclusion

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

Conclusion

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

Conclusion

Take home message: no cartesian closure needed to have functions, inductive types, recursion.

The situation is trickier for (pure) quantum computation.

Thank you!

16

