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Motivation



Modelling Multi-Agent Systems

Dynamic systems of multiple autonomous agents are common.
We want to model multi-agent systems and verify properties we can guarantee in them.

Specifically, what any group of agents can guarantee.
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Modelling Multi-Agent Systems

= pl=el(e A ) [ ()X (Ch Gl (CheUep

Alternating-Time Temporal Logic (ATL) models temporal properties in multi-agent
systems.

Extends CTL with quantifiers indexed by sets of agents.
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Modelling Multi-Agent Systems

= pl=el(e A ) [ ()X (Ch Gl (CheUep

(CHX win
Coalition C has a strategy to win at the next step.

({a, b})G( req; — VF grant;) !
Coalition {a, b} has a strategy s.t. whenever request i is made, it is always granted at
some point in the future.

v shorthand for (0)
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Modelling Multi-Agent Systems

win, winy

(a2, b2 (a1, bz

® 2 has moves {a;, a2}, b has moves {by, by}

® Strategies chosen concurrently:

® a chooses a € {aj, ax} without knowing what b chooses.
* q = ~({a})X win,
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Modelling Multi-Agent Systems

Concurrent games do not entirely describe strategic ability.
Some game theoretic properties require order: a moves after b.
e.g. Stackelberg games.

Want to allow agents to condition their strategy on other agents:
® Express things that are inexpressible in ATL.

® But maintain nice properties of ATL.
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ATLDS



Alternating-Time Temporal Logic with Dependent Strategies

ATLDS extends ATL by augmenting each {C)) with a permutation P of Ag.

@ = pl=pl (e A @)[(C) pXep (C) ppUp

(Chpe
'the agents in C, when selecting moves in the order of P, have a collective strategy to
enforce ¢'.
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Alternating-Time Temporal Logic with Dependent Strategies

Now a strategy is a function from moves of previous agents.
Under permutation (b, c, a):
A strategy for b is just fixing an action.

A strategy for a is a function from actions of b and ¢ to actions of a.
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Matching Pennies

win, winy,

(327b2) (317b2)

qo F —{({a}) Xwin,

bl — a1
. b2 — an
q F {({a}) (p,2)Xwina
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Responding to Strategies

Similarities:
The fixpoint characterisation of temporal formulae still hold, e.g.

(C)pGy = @ A {C)pX(C)pGy

Differences:
The fact of whether a coalition C can force ¢ under P is determined:

(ChpXep 2 ~(ChpXmp

ATLDS is more expressive for |Ag| > 2.
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Characterisation

® So we know ATLDS behaves a lot like ATL, but how exactly can we characterise the
differences?

® |t's hard to construct games with required properties...

® |dea: go from abstract description — game
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Effectivity



Effectivity Functions

E(Ca P) = {XlaX27"'an}

XiCQ

Map from C, P to sets of states C can enforce under P.

{qla q2} € E({a}v (aa b: C))
means a can guarantee either state go or g; under permutation (a, b, ).

We can construct an effectivity function EJ to represent the transition function at a state.
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Effectivity Functions

Can represent transition function at a state as a game:

(a2, b2 (a1, bz
ap | a2
by || o1 | @
by || @2 | o1
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m-Effectivity

For example, take C = {a} and P = (b, a) in the following game:

| b1 | ba | bs |
a|l x| z | z
ally | x| x

A strategy for a is a choice of a; or a, for every move from b.

i.e. set of a's strategies is set of functions from moves of b to moves of a.
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m-Effectivity

For example, take C = {a} and P = (b, a) in the following game:

| b1 | bz | bs |
ai X z z
az Yy X

Let us take the joint strategy where a chooses a; and ¢ chooses the following responses:

b]_r—>82
bzr—>31
b3»—>al

No matter the choice of b, the outcome is x. So {y, z} € EJ({a}, (b, a))
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Neighbourhood Models

So we can have an effectivity function at each state instead of a game:

S = (Ag, Q,(E])qeq)
g F (C)pXe iff [¢] € ET(C,P)

We get a neighbourhood model by calculating E7 at each state...

Much easier to construct models, but how can we get a game back from an effectivity
function?
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a-Effectivity

Already known for ATL -
“Truly playable’:

1. (outcome monotonic) X € E(C) implies Y € E(C) for all Y O X

2. (superadditivity) X € E(C) and Y € E(S) implies XNY € E(CUS) for disjoint
C,S

(N-maximality) X ¢ E(0)) = X € E(N)

(liveness) ) ¢ E(C)

(safety) E(C) # 0

(regularity) X € E(C) = X ¢ E(C)

(crown condition) X € E(N) implies there is some x € X such that {x} € E(N)

N o oA w
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Back and Forth between Games and Effectivity

Existing construction that goes from truly playable effectivity function to a game G.

Theorem (Pauly’s Representation Theorem [Goranko et al., 2013])
An effectivity function E is truly playable iff E = E¢ for some normal-form game G

Effectivity Game

E G
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m-Effectivity

Truly playable + maximal + order monotonic:

1. (outcome monotonic) X € E(C, P) implies Y € E(C,P) for all Y O X

N

® N o G kw

Motivation

(superadditivity) X € E(C,P) and Y € E(S,P) impliess XNY € E(CUS, P) for
disjoint C, S

(maximality) X ¢ E(C,P) = X € E(C, P)

(liveness) 0 ¢ E(C, P)

(safety) E(C,P) # 0

(order monotonicity) X € E(C, P) implies X € E(C, P’) for P <c P’
(regularity) X € E(C,P) = X ¢ E(C,P)

(crown condition) X € E(N, P) implies there is some x € X such that {x} € E(N, P)
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Back and Forth between Games and Effectivity

An ordered effectivity function E is order-monotonic, maximal, and truly playable iff
E = E[ for some normal-form game G

Game

Effectivity

Model Checking Conclusion
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Axiomatisation



Effectivity Axioms into ATLDS Axioms

¢ (outcome monotonic) X € E(C, P) implies Y € E(C,P) forall Y O X

e (superadditivity) X € E(C,P) and Y € E(S,P) implies XNY € E(CUS, P) for
disjoint C, S

* (maximality) X ¢ E(C,P) = X € E(C,P)
e (liveness) O ¢ E(C, P)

o (safety) E(C,P) #0
® (order monotonicity) X € E(C, P) implies X € E(C,P’) for P <¢ P’
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Effectivity Axioms into ATLDS Axioms

-Monotonicity) GR x:z z 1<€C>)wa

° (X

(S) (G)pXe A (G pXyp = (G U G} pX( A ¢) (for disjoint Cq, G)
(M) ~(ChpXp = (C)pX-p

(L) ~(ChpXL

(T) (ChpXT

(Mon) (C)pXp == (C)pXp (for P <c P')
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Effectivity Axioms into ATLDS Axioms

C Px:Z z 1<€c>) p Xt
S) (1) pXp A (G2 pXtb = (G U o) pX(ip A ) (for disjoint Gy, Co)

(
“ (

o (M) ~(C)pXp = (ChpXop
o (1) ~(ChpXL

o (T) {C)pXT

* (Mon) (C)pXg = (C)pXep (for P<c P)

* (FP) {(C)pUp = ¢V (¥ A (C)pX(C)pUp)
* (LFP) (0)G((e vV (¥ A (C)pXX)) = x) = (D)G((C)pvUe = X)
® (G-Necessitation) m
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Soundness and Completeness

The ATLDS axioms do not guarantee the property:

(crown condition) X € E(N, P) implies there is some x € X such that {x} € E(N, P)

But on finite models this is guaranteed from the other axioms.
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Finite Model Property

More expressive fragment of Strategy Logic enjoys the finitely-branching tree model
property [Mogavero et al., 2016].

So via a filtration-style process:

Proposition
ATLDS has the finite model property
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Soundness and Completeness

Theorem
The axiomatic system for ATLDS is sound and weakly complete for order-monotonic,
maximal, and (truly) playable effectivity models.

And from the m-effectivity representation theorem, we get:

Corollary
The axiomatic system for ATLDS is sound and weakly complete for CGMs.
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Model Checking



Model Checking

Can adapt algorithm for ATL for PTIME model checking...
...But only when transition functions are listed explicitly (|Q| x |A|A8!)

We can look at implicit CGMs, where transition function is encoded polynomially.
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Model Checking

When restricted to implicit CGMs:
The model checking problem for ATLDS is PSPACE-complete.
The model checking problem for ATLDS with a fixed no. of agents is in NP N CONP.

The model checking problem for ATLDS restricted to formulae with k quantifier
alternations is in Afﬂ.
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Conclusion



Conclusion

® We can add in dependency/order required for certain game-theoretic concepts to
ATL.

e Still behaves like ATL in appropriate ways.

® We incur a small cost for model checking in certain scenarios.
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Future Directions

® More efficient construction from neighbourhood models to games.
® Branching/Independence Friendly Quantifiers

® Where else can effectivity take us?
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