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Motivation



Modelling Multi-Agent Systems

Dynamic systems of multiple autonomous agents are common.

We want to model multi-agent systems and verify properties we can guarantee in them.

Specifically, what any group of agents can guarantee.
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Modelling Multi-Agent Systems

φ ::= p|¬φ|(φ ∧ φ)|⟨⟨C ⟩⟩Xφ|⟨⟨C ⟩⟩Gφ|⟨⟨C ⟩⟩φUφ

Alternating-Time Temporal Logic (ATL) models temporal properties in multi-agent
systems.

Extends CTL with quantifiers indexed by sets of agents.
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Modelling Multi-Agent Systems

φ ::= p|¬φ|(φ ∧ φ)|⟨⟨C ⟩⟩Xφ|⟨⟨C ⟩⟩Gφ|⟨⟨C ⟩⟩φUφ

⟨⟨C ⟩⟩X win
Coalition C has a strategy to win at the next step.

⟨⟨{a, b}⟩⟩G( reqi → ∀F granti )
1

Coalition {a, b} has a strategy s.t. whenever request i is made, it is always granted at
some point in the future.

1∀ shorthand for ⟨⟨∅⟩⟩
Motivation ATLDS Effectivity Axiomatisation Model Checking Conclusion

2 / 25



Modelling Multi-Agent Systems

q0q1 q2
(a1, b1)

(a2, b2)

(a2, b1)

(a1, b2)

wina winb

• a has moves {a1, a2}, b has moves {b1, b2}
• Strategies chosen concurrently:

• a chooses α ∈ {a1, a2} without knowing what b chooses.

• q0 ⊨ ¬⟨⟨{a}⟩⟩X wina
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Modelling Multi-Agent Systems

Concurrent games do not entirely describe strategic ability.

Some game theoretic properties require order: a moves after b.

e.g. Stackelberg games.

Want to allow agents to condition their strategy on other agents:

• Express things that are inexpressible in ATL.

• But maintain nice properties of ATL.
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ATLDS



Alternating-Time Temporal Logic with Dependent Strategies

ATLDS extends ATL by augmenting each ⟨⟨C ⟩⟩ with a permutation P of Ag .

φ ::= p|¬φ|(φ ∧ φ)|⟨⟨C ⟩⟩PXφ|⟨⟨C ⟩⟩PφUφ

⟨⟨C ⟩⟩Pφ
’the agents in C , when selecting moves in the order of P, have a collective strategy to
enforce φ’.
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Alternating-Time Temporal Logic with Dependent Strategies

ATLDS extends ATL by augmenting each ⟨⟨C ⟩⟩ with a permutation P of Ag .

φ ::= p|¬φ|(φ ∧ φ)|⟨⟨C ⟩⟩PXφ|⟨⟨C ⟩⟩PφUφ

⟨⟨{a, b}⟩⟩(b,c,a)XGoal
’agent b has a strategy,
such that for all strategies of c ,
agent a has a strategy
that guarantees Goal is achieved at
the next step’
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Alternating-Time Temporal Logic with Dependent Strategies

Now a strategy is a function from moves of previous agents.

Under permutation (b, c , a):

A strategy for b is just fixing an action.

A strategy for a is a function from actions of b and c to actions of a.
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Matching Pennies

q0q1 q2
(a1, b1)

(a2, b2)

(a2, b1)

(a1, b2)

wina winb

q0 ⊨ ¬⟨⟨{a}⟩⟩Xwina

q0 ⊨ ⟨⟨{a}⟩⟩(b,a)Xwina

b1 7→ a1
b2 7→ a2
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Responding to Strategies

Similarities:
The fixpoint characterisation of temporal formulae still hold, e.g.

⟨⟨C ⟩⟩PGφ↔ φ ∧ ⟨⟨C ⟩⟩PX⟨⟨C ⟩⟩PGφ

Differences:
The fact of whether a coalition C can force φ under P is determined:

⟨⟨C ⟩⟩PXφ↔ ¬⟨⟨C ⟩⟩PX¬φ

ATLDS is more expressive for |Ag | > 2.
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Characterisation

• So we know ATLDS behaves a lot like ATL, but how exactly can we characterise the
differences?

• It’s hard to construct games with required properties...

• Idea: go from abstract description → game
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Effectivity



Effectivity Functions

E (C ,P) = {X1,X2, . . . ,Xk}

Xi ⊆ Q

Map from C , P to sets of states C can enforce under P.

{q1, q2} ∈ E ({a}, (a, b, c))
means a can guarantee either state q0 or q1 under permutation (a, b, c).

We can construct an effectivity function Eπq to represent the transition function at a state.
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Effectivity Functions

Can represent transition function at a state as a game:

q0q1 q2
(a1, b1)

(a2, b2)

(a2, b1)

(a1, b2)

↓

a1 a2

b1 q1 q2
b2 q2 q1

Motivation ATLDS Effectivity Axiomatisation Model Checking Conclusion
11 / 25



π-Effectivity

For example, take C = {a} and P = (b, a) in the following game:

b1 b2 b3

a1 x z z

a2 y x x

A strategy for a is a choice of a1 or a2 for every move from b.

i.e. set of a’s strategies is set of functions from moves of b to moves of a.
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π-Effectivity

For example, take C = {a} and P = (b, a) in the following game:

b1 b2 b3

a1 x z z

a2 y x x

Let us take the joint strategy where a chooses a2 and c chooses the following responses:

b1 7→ a2

b2 7→ a1

b3 7→ a1

No matter the choice of b, the outcome is x . So {y , z} ∈ Eπq ({a}, (b, a))
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Neighbourhood Models

So we can have an effectivity function at each state instead of a game:

S = (Ag ,Q, (Eπq )q∈Q)

q ⊨ ⟨⟨C ⟩⟩PXφ iff JφK ∈ Eπq (C ,P)

We get a neighbourhood model by calculating Eπq at each state...

Much easier to construct models, but how can we get a game back from an effectivity
function?
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α-Effectivity

Already known for ATL -
‘Truly playable’:

1. (outcome monotonic) X ∈ E (C ) implies Y ∈ E (C ) for all Y ⊇ X

2. (superadditivity) X ∈ E (C ) and Y ∈ E (S) implies X ∩ Y ∈ E (C ∪ S) for disjoint
C , S

3. (N-maximality) X /∈ E (∅) =⇒ X ∈ E (N)

4. (liveness) ∅ /∈ E (C )

5. (safety) E (C ) ̸= ∅
6. (regularity) X ∈ E (C ) =⇒ X /∈ E (C )

7. (crown condition) X ∈ E (N) implies there is some x ∈ X such that {x} ∈ E (N)
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Back and Forth between Games and Effectivity

Existing construction that goes from truly playable effectivity function to a game G .

Theorem (Pauly’s Representation Theorem [Goranko et al., 2013])

An effectivity function E is truly playable iff E = EαG for some normal-form game G

E G

Effectivity Game

Motivation ATLDS Effectivity Axiomatisation Model Checking Conclusion
15 / 25



π-Effectivity

Truly playable + maximal + order monotonic:

1. (outcome monotonic) X ∈ E (C ,P) implies Y ∈ E (C ,P) for all Y ⊇ X

2. (superadditivity) X ∈ E (C ,P) and Y ∈ E (S ,P) implies X ∩ Y ∈ E (C ∪ S ,P) for
disjoint C , S

3. (maximality) X /∈ E(C ,P) =⇒ X ∈ E(C ,P)

4. (liveness) ∅ /∈ E (C ,P)

5. (safety) E (C ,P) ̸= ∅
6. (order monotonicity) X ∈ E(C ,P) implies X ∈ E(C ,P ′) for P ≤C P ′

7. (regularity) X ∈ E (C ,P) =⇒ X /∈ E (C ,P)

8. (crown condition) X ∈ E (N,P) implies there is some x ∈ X such that {x} ∈ E (N,P)
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Back and Forth between Games and Effectivity

Theorem

An ordered effectivity function E is order-monotonic, maximal, and truly playable iff
E = EπG for some normal-form game G

E

GP1

GP2

GP3

G

Effectivity

Game
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Axiomatisation



Effectivity Axioms into ATLDS Axioms

• (outcome monotonic) X ∈ E (C ,P) implies Y ∈ E (C ,P) for all Y ⊇ X

• (superadditivity) X ∈ E (C ,P) and Y ∈ E (S ,P) implies X ∩ Y ∈ E (C ∪ S ,P) for
disjoint C , S

• (maximality) X /∈ E (C ,P) =⇒ X ∈ E (C ,P)

• (liveness) ∅ /∈ E (C ,P)

• (safety) E (C ,P) ̸= ∅
• (order monotonicity) X ∈ E (C ,P) implies X ∈ E (C ,P ′) for P ≤C P ′
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Effectivity Axioms into ATLDS Axioms

• (X-Monotonicity) φ =⇒ ψ

⟨⟨C⟩⟩
P
Xφ =⇒ ⟨⟨C⟩⟩

P
Xψ

• (S) ⟨⟨C1⟩⟩PXφ ∧ ⟨⟨C2⟩⟩PXψ =⇒ ⟨⟨C1 ∪ C2⟩⟩PX(φ ∧ ψ) (for disjoint C1,C2)

• (M) ¬⟨⟨C ⟩⟩PXφ =⇒ ⟨⟨C ⟩⟩PX¬φ
• (⊥) ¬⟨⟨C ⟩⟩PX⊥
• (⊤) ⟨⟨C ⟩⟩PX⊤
• (Mon) ⟨⟨C ⟩⟩PXφ =⇒ ⟨⟨C ⟩⟩P′Xφ (for P ≤C P ′)
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• (Mon) ⟨⟨C ⟩⟩PXφ =⇒ ⟨⟨C ⟩⟩P′Xφ (for P ≤C P ′)

+

• (FP) ⟨⟨C ⟩⟩PψUφ ⇐⇒ φ ∨ (ψ ∧ ⟨⟨C ⟩⟩PX⟨⟨C ⟩⟩PψUφ)
• (LFP) ⟨⟨∅⟩⟩G((φ ∨ (ψ ∧ ⟨⟨C ⟩⟩PXχ)) =⇒ χ) =⇒ ⟨⟨∅⟩⟩G(⟨⟨C ⟩⟩PψUφ =⇒ χ)

• (G-Necessitation) φ

⟨⟨C⟩⟩
P
Gφ
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Soundness and Completeness

The ATLDS axioms do not guarantee the property:

(crown condition) X ∈ E (N,P) implies there is some x ∈ X such that {x} ∈ E (N,P)

But on finite models this is guaranteed from the other axioms.
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Finite Model Property

More expressive fragment of Strategy Logic enjoys the finitely-branching tree model
property [Mogavero et al., 2016].

So via a filtration-style process:

Proposition

ATLDS has the finite model property
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Soundness and Completeness

Theorem

The axiomatic system for ATLDS is sound and weakly complete for order-monotonic,
maximal, and (truly) playable effectivity models.

And from the π-effectivity representation theorem, we get:

Corollary

The axiomatic system for ATLDS is sound and weakly complete for CGMs.
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Model Checking



Model Checking

Can adapt algorithm for ATL for PTIME model checking...

...But only when transition functions are listed explicitly (|Q| × |A||Ag |)

We can look at implicit CGMs, where transition function is encoded polynomially.
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Model Checking

When restricted to implicit CGMs:

The model checking problem for ATLDS is PSPACE-complete.

The model checking problem for ATLDS with a fixed no. of agents is in NP ∩ coNP.

The model checking problem for ATLDS restricted to formulae with k quantifier
alternations is in ∆P

k+1.
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Conclusion



Conclusion

• We can add in dependency/order required for certain game-theoretic concepts to
ATL.

• Still behaves like ATL in appropriate ways.

• We incur a small cost for model checking in certain scenarios.
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Future Directions

• More efficient construction from neighbourhood models to games.

• Branching/Independence Friendly Quantifiers

• Where else can effectivity take us?
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