
Ensuring Liveness Properties
of Distributed Systems

with Justness

Rob van Glabbeek

University of Edinburgh

April 2025



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.
↑

The assumption that a system will not stop without a reason.



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.

↑
The assumption that a system will not stop without a reason.



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.
↑

The assumption that a system will not stop without a reason.



Transition system of example

insert
quarter



Transition system with success state

insert
quarter

insert
quarter

three
quarters
inserted

insert
quarter

insert
quarter



Progress, Justness, Fairness and Liveness

Fairness

⇓
Justness

⇓
Progress

Liveness properties

a hierarchy of assumptions
somethings one want to obtain,

optionally
when making one such assumption



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.
↑

Even a subsystem will not stop without a reason.



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.

↑
Even a subsystem will not stop without a reason.



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.
↑

Even a subsystem will not stop without a reason.



Transition system of example

insert
quarter

∥ insert
dime



Transition system of example

insert
quarter

∥ insert
dime

=
insert
quarter

insert
dime



Transition system with success states

q

q

three
quarters
inserted

q

q

∥
d

d

d

d



Transition system with success states

= q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

d q

d q

d q



Just paths

q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

The red path is not just, but the green one is.



Concurrency versus competition

Concurrency:

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.



Concurrency versus competition

Concurrency:

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.

In the competition example, all paths are just

and the liveness property is NOT met.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.
In the competition example, all paths are just

and the liveness property is NOT met.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.
In the competition example, all paths are just and the liveness property is NOT met.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems

when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

↑
Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.

▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.

A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.

Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Transition systems with successors

Transition systems inserting a dime
plus a ternary relation does not interfere
between transitions with inserting a quarter

q d

qd

⌣•

⌣•



Formalising Justness

Transition systems inserting a dime
plus a ternary relation does not interfere
between transitions with inserting a quarter

q d

qd

⌣•

⌣•

Justness: The system never follows a →-path
that induces an infinite ⇝-sequence.



Application: Verification of Mutual Exclusion Protocols

Mutual exclusion:
N parallel threads (or processes or computers)
occasionally want to update a shared database or so,
and only one of them should do this at any given time.

The code of the treads has critical sections.
A mutual exclusion protocol aims to assure that:

▶ mutual exclusion: at any given time, at most one thread will
be in its critical section.

▶ deadlock freedom: Whenever at least one thread wants to
enter its critical section, eventually some thread will enter its
critical section.

▶ starvation freedom: Whenever a thread wants to enter its
critical section, eventually it will enter its critical section.



Application: Verification of Mutual Exclusion Protocols

Mutual exclusion:
N parallel threads (or processes or computers)
occasionally want to update a shared database or so,
and only one of them should do this at any given time.

The code of the treads has critical sections.

A mutual exclusion protocol aims to assure that:

▶ mutual exclusion: at any given time, at most one thread will
be in its critical section.

▶ deadlock freedom: Whenever at least one thread wants to
enter its critical section, eventually some thread will enter its
critical section.

▶ starvation freedom: Whenever a thread wants to enter its
critical section, eventually it will enter its critical section.



Application: Verification of Mutual Exclusion Protocols

Mutual exclusion:
N parallel threads (or processes or computers)
occasionally want to update a shared database or so,
and only one of them should do this at any given time.

The code of the treads has critical sections.
A mutual exclusion protocol aims to assure that:

▶ mutual exclusion: at any given time, at most one thread will
be in its critical section.

▶ deadlock freedom: Whenever at least one thread wants to
enter its critical section, eventually some thread will enter its
critical section.

▶ starvation freedom: Whenever a thread wants to enter its
critical section, eventually it will enter its critical section.



Memory model

The threads communicate with each other by writing to and
reading from shared registers.

Whether a mutex protocol is correct
depends on the way these registers work.

blocking reads and writes
blocking model with concurrent reads
blocking writes and non-blocking reads

non-blocking reads and writes

atomic registers

regular registers

safe registers



Memory model

The threads communicate with each other by writing to and
reading from shared registers. Whether a mutex protocol is correct
depends on the way these registers work.

blocking reads and writes
blocking model with concurrent reads
blocking writes and non-blocking reads

non-blocking reads and writes

atomic registers

regular registers

safe registers



Memory model

The threads communicate with each other by writing to and
reading from shared registers. Whether a mutex protocol is correct
depends on the way these registers work.

blocking reads and writes
blocking model with concurrent reads
blocking writes and non-blocking reads

non-blocking reads and writes

atomic registers

regular registers

safe registers



Memory model

The threads communicate with each other by writing to and
reading from shared registers. Whether a mutex protocol is correct
depends on the way these registers work.

blocking reads and writes
blocking model with concurrent reads
blocking writes and non-blocking reads

non-blocking reads and writes

atomic registers

regular registers

safe registers



Model checking

Traditional verification of mutual exclusion algorithms:
pen-and-paper proofs using behavioural reasoning.

“the behavioral reasoning used in our correctness proofs,
and in most other published correctness proofs of concur-
rent algorithms, is inherently unreliable” [Lamport 1986]

This is especially the case when dealing with non-atomic registers.

Alternatives: interactive theorem proving or model checking.

Model checking: Precise modelling requires great care,
the verification requires a mere button-push and some patience.

But only finite state spaces.
So no bakery protocol
and we can check only for a small number of threads.



Model checking

Traditional verification of mutual exclusion algorithms:
pen-and-paper proofs using behavioural reasoning.

“the behavioral reasoning used in our correctness proofs,
and in most other published correctness proofs of concur-
rent algorithms, is inherently unreliable” [Lamport 1986]

This is especially the case when dealing with non-atomic registers.

Alternatives: interactive theorem proving or model checking.

Model checking: Precise modelling requires great care,
the verification requires a mere button-push and some patience.

But only finite state spaces.
So no bakery protocol
and we can check only for a small number of threads.



Model checking

Traditional verification of mutual exclusion algorithms:
pen-and-paper proofs using behavioural reasoning.

“the behavioral reasoning used in our correctness proofs,
and in most other published correctness proofs of concur-
rent algorithms, is inherently unreliable” [Lamport 1986]

This is especially the case when dealing with non-atomic registers.

Alternatives: interactive theorem proving or model checking.

Model checking: Precise modelling requires great care,
the verification requires a mere button-push and some patience.

But only finite state spaces.
So no bakery protocol
and we can check only for a small number of threads.



Results

Algorithm # threads Safe Regular Atomic
T T T S I A

Anderson 2 S S S S M M

Aravind (BLRU) 3 S S S M M M
Aravind (BLRU, alt.) 3 S S S S M M

Attiya-Welch (orig.) 2 D S S D M M
Attiya-Welch (orig., alt.) 2 S S S D M M
Attiya-Welch (var.) 2 M M S D M M
Attiya-Welch (var., alt.) 2 S S S D M M

Burns-Lynch 3 D D D D M M

Dekker 2 M M S D M M
Dekker (alt.) 2 M M S S M M
Dekker (RW-safe) 2 S S S D M M

Dijkstra 3 M D M M M



Results (continued)

Kessels 2 X X S S M M

Knuth 3 M S S M M M

Lamport 1-bit 3 D D D D M M
Lamport 3-bit 3 S S S S M M

Peterson 2 X X S S M M
Peterson (new sol., int.) 3 D
Peterson (new sol., bit) 3

Szymanski (flag) 3 X X S S M M
Szymanski (flag bit) 3 X X X
Szymanski (3-bit lin. wait) 3 X X X
Szymanski (3-bit lin. wait, alt.) 2 S S S S M M
Szymanski (4-bit robust) 3 X X X
Szymanski (4-bit robust reset) 3 X X


