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Graph colourings

Definition

A k-colouring of a graph (V, E) is an assignment of colours c(v) € [k]! to
the vertices v € V such that for every edge {u, v} € E we have

c(u) # c(v)

'For any integer k, we write [k] for the set {0,1,...,k —1}.



Complexity of Graph Colouring

Finding a 2-colouring of a 2-colourable graph can be done in polynomial
time (e.g. using breadth-first search)

Theorem (Karp75)

Finding a k-colouring of a k-colourable graph is NP-hard for every k > 3.




Approximate Graph Colouring

Example: 3vsb-colouring
Given a 3-colourable graph, find a 5-colouring
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Approximate Graph Colouring hardness

We write PCSP (K, K;) to mean the computational search problem of
finding an /-colouring of a k-colourable graph.




Approximate Graph Colouring hardness

We write PCSP (K, K;) to mean the computational search problem of
finding an /-colouring of a k-colourable graph.

Theorem (Karp75)
PCSP(K3, K3) (i.e. 3-colouring) is NP-hard




Approximate Graph Colouring hardness

We write PCSP (K, K;) to mean the computational search problem of
finding an /-colouring of a k-colourable graph.

Theorem (Karp75)

PCSP(K3, K3) (i.e. 3-colouring) is NP-hard

Theorem (GKS00)
PCSP(K3, Ks) (i-e. 3vs4-colouring) is NP-hard

<



Approximate Graph Colouring hardness

We write PCSP (K, K;) to mean the computational search problem of
finding an /-colouring of a k-colourable graph.

Theorem (Karp75)
PCSP(K3, K3) (i.e. 3-colouring) is NP-hard

Theorem (GKS00)
PCSP(K3, Ks) (i-e. 3vs4-colouring) is NP-hard

Theorem (BBKO21)
PCSP(K3, Ks) (i.e. 3vsb-colouring) is NP-hard




Approximate Graph Colouring hardness

We write PCSP (K, K;) to mean the computational search problem of
finding an /-colouring of a k-colourable graph.

Theorem (Karp75)
PCSP(K3, K3) (i.e. 3-colouring) is NP-hard

Theorem (GKS00)
PCSP(K3, Ks) (i-e. 3vs4-colouring) is NP-hard

Theorem (BBKO21)
PCSP(K3, Ks) (i.e. 3vsb-colouring) is NP-hard

However, we have no (unconditional) proof of the hardness of
PCSP(K3, Ks).



Approximate Graph Colouring algorithms

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with O(y/n) many
colours.




Approximate Graph Colouring algorithms

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with O(y/n) many
colours.

Theorem (KTY24)

There exists an algorithm to colour 3-colourable graphs with O(n%19747)

many colours.




Approximate Graph Colouring algorithms

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with O(y/n) many
colours.

Theorem (KTY24)

There exists an algorithm to colour 3-colourable graphs with O(n%19747)
many colours.

Note that there is a large gap between 5 and O(n?19747).



Hypergraphs

Definition

A hypergraph is a pair (V,£), where V is the vertex set and £ is the
hyperedge set. Each hyperedge e € £ is a multiset of vertices (meaning
vertices can appear multiple times in a single hyperedge). A hypergraph is

r-uniform if all the hyperedges have size r.

-

Figure: Example of a 4-uniform hypergraph with 5 vertices and 3 hyperedges
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linearly ordered = conflict-free = nonmonochromatic
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Hypergraph colouring variants

Given a hypergraph (V,£), an assignment of colours c(v) to the vertices
veVis

© a nonmonochromatic colouring if for each hyperedge e € £, the
(multi-)set {c(v) | v € e} contains at least 2 disctinct elements

@ a conflict-free colouring if for each hyperedge e € £, some colour in
the multiset {c(v) | v € e} appears exactly once.

© a linearly ordered colouring if for each hyperedge e € &, the largest
colour in the multiset {c(v) | v € e} appears exactly once.

v

linearly ordered = conflict-free = nonmonochromatic

Arity 2 (graphs): these are all the same.
Arity 3: nonmonochromatic and conflict-free are the same.
Arity 4 and above: these are different notions.
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Hypergraph colouring variants

Hyperedge nonmonochromatic | conflict-free | linearly ordered

()

s
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Approximate hypergraph colourings

@ We can define approximate versions for the problem of finding a
nonmonochromatic/conflict-free/linearly ordered hypergraph
colouring.
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Approximate hypergraph colourings

@ We can define approximate versions for the problem of finding a
nonmonochromatic/conflict-free/linearly ordered hypergraph
colouring.

@ We can frame these as promise constraint satisfaction problems: e.g.

conflict-free kvsf-colouring for r-uniform hypergraphs is written as
PCSP(CF}, CF})
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Hardness results

In a recent preprint (NVW225 to appear in ICALP), we proved that:
@ nonmonochromatic kvsé-colouring is NP-hard for all 2 < k < ¢ and
arities r > 3.
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Hardness results

In a recent preprint (NVW225 to appear in ICALP), we proved that:
@ nonmonochromatic kvsé-colouring is NP-hard for all 2 < k < ¢ and
arities r > 3.
@ linearly ordered kvsl-colouring is NP-hard for all 3 < k < ¢ and arities
r >4,
o conflict-free kvsf-colouring is NP-hard for all 2 < k < ¢ and arities
r > 3, except for when r = 4 and k = 2, in which case it is in P.

@ The first result was first shown by (DRS05), but we gave a
significantly simpler proof.

@ The second result was shown for r > ¢ — k + 4 by (NZ22).

@ The polynomial-time solvable case is due to being able to encode this
problem as a system of linear equations mod 2.

@ The rest of this talk will be dedicated to a (sketch) proof of the last
result for r =4 and k = 3.




Polymorphisms

that

Definition

A polymorphism of arity n of (CF3, CF}) is a function f : [3]" — [{] such

whenever every column of

a1 dn
1 bn .
has a unique entry,
1 Cn
dp - d,
,an)
b .
» bn) has a unique entry.
) Cn)

Any projection is a polymorphism.
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Definition

Let f: A” - Band T C B. A T-avoiding set for f is a set X C [n] such
that for for any input v € {0,1}" with V|x = 1, we have f(V) ¢ T.

%(7/7/‘.., /4/7/ Dur 1, 0w7/~-»~/ Do 4}%7’
T
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Definition

For t € N, we call a set X t-avoiding for f if it is T-avoiding for f for
some subset T C B of size t.
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Definition

Let f: A” - Band T C B. A T-avoiding set for f is a set X C [n] such
that for for any input v € {0,1}" with V|x = 1, we have f(V) ¢ T.

%(4/7/‘.,,/4// Vor®, 0n1) Int) ¢ T
j{\/

Definition

For t € N, we call a set X t-avoiding for f if it is T-avoiding for f for
some subset T C B of size t.

Using the algebraic approach to PCSPs, we can find a sufficient condition
for NP-hardness in terms of avoiding sets, by reducing from label cover (a
known NP-hard problem).
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Hardness condition

Theorem (NVWZ25)

Let (A, B) be a PCSP template with {0,1} C A and ¢ = |B|. Suppose
that there exist constants N, {a:}¢_;, {B:}i_; such that every
f € Pol(A, B) has the following properties:

© f has a l-avoiding set of size < ;.
@ If f is of arity > N and has a disjoint family of > «; many t-avoiding
sets, all of size < 3, then f has a (t + 1)-avoiding set of size < B¢41.
Then, PCSP(A, B) is NP-hard.




Hardness condition

Theorem (NVWZ25) (less technical version)

PCSP(A, B) is NP-hard if every polymorphism f of (A, B) has the
following properties (the bounds can not depend on the arity of the
polymorphism):

@ f has a l-avoiding set of bounded size.

@ If f has many disjoint t-avoiding sets of bounded size,then these can
be used to show that f has a (t + 1)-avoiding set of bounded size.

v




Hardness condition

Theorem (NVWZ25) (Applied to conflict-free 3vs/-colouring)

Conflict-free 3vs/-colouring is NP-hard if every polymorphism f of

(CF3, CF}) has the following properties (the bounds can not depend on
the arity of the polymorphism):

© f has a l-avoiding set of bounded size.

@ If f has many disjoint t-avoiding sets of bounded size,then these can
be used to show that f has a (t + 1)-avoiding set of bounded size.

v
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v

We will show that every polymorphism of (CF4, CFz') has a 1-avoiding set.
The second property can be shown by a similar argument, hence proving
hardness of PCSP(CF3, CF}).
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Hardness condition

Theorem (NVWZ25) (Applied to conflict-free 3vs/-colouring)

Conflict-free 3vs/-colouring is NP-hard if every polymorphism f of
(CF§, CF?) has the following properties (the bounds can not depend on
the arity of the polymorphism):

© f has a l-avoiding set of bounded size.

@ If f has many disjoint t-avoiding sets of bounded size,then these can
be used to show that f has a (t + 1)-avoiding set of bounded size.

We will show that every polymorphism of (CF4, CFz') has a 1-avoiding set.
The second property can be shown by a similar argument, hence proving
hardness of PCSP(CF3, CF}).

A 1-avoiding set for f an n-ary polymorphism of (CF3, CFZ‘) is a subset X
of [n], such that there exists some b € [¢] such that for every v € {0,1}"
with V|x =1, f(V) # b
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Kneser Graphs

Definition

The Kneser graph is defined as KG(n, h) = ([n]"), E), where S ~¢ T if
and only if SN T = () ([n]") means the family of subsets of [n] of size h).
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Kneser Graphs

The Kneser graph is defined as KG(n, h) = ([n]"), E), where S ~¢ T if
and only if SN T = () ([n]") means the family of subsets of [n] of size h).

Example

KG(5,2) is the Petersen graph
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Kneser Graphs

The Kneser graph is defined as KG(n, h) = ([n](h), E), where S ~g T if
and only if SN T =0 ([n]") means the family of subsets of [n] of size h).

KG(5,2) is the Petersen graph

Theorem (Lovész78)
The chromatic number of KG(n, h)) is n —2h + 2. 2




Polymorphisms of (CF3, CF}) have small 1-avoiding sets

Any polymorphism f of (CF3, CF}) has a I-avoiding set of size < {.
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Polymorphisms of (CF3, CF}) have small 1-avoiding sets

Any polymorphism f of (CF4, CF;’) has a 1-avoiding set of size < /.

Proof continued

Let n be the arity of f. Note that we may assume n > /.
Recall there exist disjoint sets S, T € [n](") such that f(2s) = f(27). Let

X = [n]\ (SUT). Note that |X| =n—2h < £. So it remains to show
that X is 1-avoiding.




Polymorphisms of (CF3, CF}) have small 1-avoiding sets

Any polymorphism f of (CF4, CF?) has a 1-avoiding set of size < /.

Proof continued

Let n be the arity of f. Note that we may assume n > /.

Recall there exist disjoint sets S, T € [n](") such that f(2s) = f(27). Let
X = [n]\ (SUT). Note that |X| =n—2h < £. So it remains to show
that X is 1-avoiding.Note that every column in the left matrix contains a
unique element, where the rows are 2, 27,0, V for some v € {0,1}" with
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s J %
2 2 0 B O oo @
0 0 2 2 0 -+ 0
0 0 0 B 0 e @
0/1 0/1 0/1 0/1 1 -+ 1




Polymorphisms of (CF3, CF}) have small 1-avoiding sets

Any polymorphism f of (CF4, CF?) has a 1-avoiding set of size < /.

Proof continued

Let n be the arity of f. Note that we may assume n > /.

Recall there exist disjoint sets S, T € [n](") such that f(2s) = f(27). Let
=[n] \ (SU T). Note that |X| =n—2h < £. So it remains to show

that X is 1-avoiding.Note that every column in the left matrix contains a

unique element, where the rows are 2, 27,0, V for some v € {0,1}" with

\7’)( =1:

2 ) N
2 2 "0 0 0 0\ . [f()
0 0 2 2 0 ol = [f@7)
0 0 0 0 0 0 f(0)
0/1 0/1 0/1 0/1 1 1 f(V)




Further work: Approximate LO-colouring

@ The proof outlined in this talk can be modified to prove NP-hardness
of PCSP(LO}, LOj) when 3 < k < /¢ and r > 4. So the only
remaining cases are: r = 2,3, or k = 2.
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Further work: Approximate LO-colouring

The proof outlined in this talk can be modified to prove NP-hardness
of PCSP(LO}, LOj) when 3 < k < /¢ and r > 4. So the only
remaining cases are: r = 2,3, or k = 2.

k = 2: (NZ23) showed NP-hardness of PCSP(LO%, LOj) for every
2<fandr>{¢+2

r = 2: Approximate Graph Colouring

r = 3: A recent result (FNOTW?24) established NP-hardness of
PCSP(LO3, LO3).

Can we prove hardness of e.g. PCSP(LO3, L0O3)?
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