On hypergraph colouring variants and inapproximability

Zephyr Verwimp

Department of Computer Science University of Oxford

BCTCS 2025

This talk covers joint work with Tamio-Vesa Nakajima, Marcin Wrochna, and Stanislav Živný

• Warm-up: Graphs

- Graph colouring
- Approximate graph colouring
- Algorithms and hardness results

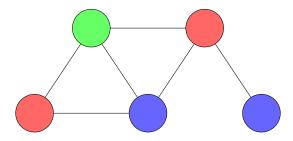
Hypergraphs

- Hypergraph colouring variants
- Approximate hypergraph colouring variants
- Hardness results
- Sketch proof of a hardness result

Definition

A *k*-colouring of a graph (V, E) is an assignment of colours $c(v) \in [k]^1$ to the vertices $v \in V$ such that for every edge $\{u, v\} \in E$ we have

 $c(u) \neq c(v)$



¹For any integer k, we write [k] for the set $\{0, 1, \ldots, k-1\}$.

Fact

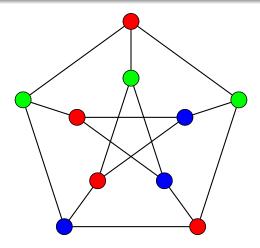
Finding a 2-colouring of a 2-colourable graph can be done in polynomial time (e.g. using breadth-first search)

Theorem (Karp75)

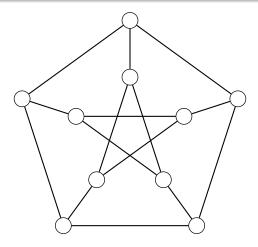
Finding a k-colouring of a k-colourable graph is NP-hard for every $k \ge 3$.

Example: 3vs5-colouring

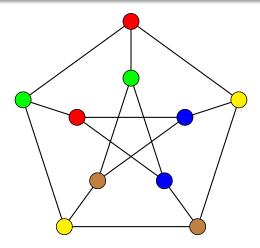
Example: 3vs5-colouring



Example: 3vs5-colouring



Example: 3vs5-colouring



Notation

We write $PCSP(K_k, K_\ell)$ to mean the computational search problem of finding an ℓ -colouring of a *k*-colourable graph.

Notation

We write $PCSP(K_k, K_\ell)$ to mean the computational search problem of finding an ℓ -colouring of a *k*-colourable graph.

Theorem (Karp75)

 $PCSP(K_3, K_3)$ (i.e. 3-colouring) is NP-hard

Notation

We write $PCSP(K_k, K_\ell)$ to mean the computational search problem of finding an ℓ -colouring of a *k*-colourable graph.

Theorem (Karp75)

 $PCSP(K_3, K_3)$ (i.e. 3-colouring) is NP-hard

Theorem (GKS00)

 $PCSP(K_3, K_4)$ (i.e. 3vs4-colouring) is NP-hard

Notation

We write $PCSP(K_k, K_\ell)$ to mean the computational search problem of finding an ℓ -colouring of a *k*-colourable graph.

Theorem (Karp75)

 $PCSP(K_3, K_3)$ (i.e. 3-colouring) is NP-hard

Theorem (GKS00)

 $PCSP(K_3, K_4)$ (i.e. 3vs4-colouring) is NP-hard

Theorem (BBKO21)

 $PCSP(K_3, K_5)$ (i.e. 3vs5-colouring) is NP-hard

Notation

We write $PCSP(K_k, K_\ell)$ to mean the computational search problem of finding an ℓ -colouring of a *k*-colourable graph.

Theorem (Karp75)

 $PCSP(K_3, K_3)$ (i.e. 3-colouring) is NP-hard

Theorem (GKS00)

 $PCSP(K_3, K_4)$ (i.e. 3vs4-colouring) is NP-hard

Theorem (BBKO21)

 $PCSP(K_3, K_5)$ (i.e. 3vs5-colouring) is NP-hard

However, we have no (unconditional) proof of the hardness of $PCSP(K_3, K_6)$.

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with $O(\sqrt{n})$ many colours.

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with $O(\sqrt{n})$ many colours.

Theorem (KTY24)

There exists an algorithm to colour 3-colourable graphs with $O(n^{0.19747})$ many colours.

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with $O(\sqrt{n})$ many colours.

Theorem (KTY24)

There exists an algorithm to colour 3-colourable graphs with $O(n^{0.19747})$ many colours.

Note that there is a large gap between 5 and $O(n^{0.19747})$.

Hypergraphs

Definition

A hypergraph is a pair (V, \mathcal{E}) , where V is the vertex set and \mathcal{E} is the hyperedge set. Each hyperedge $e \in \mathcal{E}$ is a multiset of vertices (meaning vertices can appear multiple times in a single hyperedge). A hypergraph is *r*-uniform if all the hyperedges have size *r*.



Figure: Example of a 4-uniform hypergraph with 5 vertices and 3 hyperedges

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

a nonmonochromatic colouring if for each hyperedge e ∈ C, the (multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

- a nonmonochromatic colouring if for each hyperedge e ∈ E, the (multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements
- ② a conflict-free colouring if for each hyperedge e ∈ E, some colour in the multiset {c(v) | v ∈ e} appears exactly once.

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

- a nonmonochromatic colouring if for each hyperedge e ∈ C, the (multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements
- ② a conflict-free colouring if for each hyperedge e ∈ E, some colour in the multiset {c(v) | v ∈ e} appears exactly once.
- ③ a linearly ordered colouring if for each hyperedge e ∈ E, the largest colour in the multiset {c(v) | v ∈ e} appears exactly once.

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

- a nonmonochromatic colouring if for each hyperedge e ∈ E, the (multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements
- ② a conflict-free colouring if for each hyperedge e ∈ E, some colour in the multiset {c(v) | v ∈ e} appears exactly once.
- S a linearly ordered colouring if for each hyperedge e ∈ E, the largest colour in the multiset {c(v) | v ∈ e} appears exactly once.

Remark

linearly ordered \implies conflict-free \implies nonmonochromatic

Definition

Given a hypergraph (V, \mathcal{E}) , an assignment of colours c(v) to the vertices $v \in V$ is:

- a nonmonochromatic colouring if for each hyperedge e ∈ E, the (multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements
- ② a conflict-free colouring if for each hyperedge e ∈ E, some colour in the multiset {c(v) | v ∈ e} appears exactly once.
- S a linearly ordered colouring if for each hyperedge e ∈ E, the largest colour in the multiset {c(v) | v ∈ e} appears exactly once.

Remark

linearly ordered \implies conflict-free \implies nonmonochromatic

Arity 2 (graphs): these are all the same. Arity 3: nonmonochromatic and conflict-free are the same. Arity 4 and above: these are different notions.

Hyperedge	nonmonochromatic	conflict-free	linearly ordered
	Yes	Yes	Yes
	Yes	Yes	No
	Yes	No	No

• We can define approximate versions for the problem of finding a nonmonochromatic/conflict-free/linearly ordered hypergraph colouring.

- We can define approximate versions for the problem of finding a nonmonochromatic/conflict-free/linearly ordered hypergraph colouring.
- We can frame these as promise constraint satisfaction problems: e.g. conflict-free kvsℓ-colouring for r-uniform hypergraphs is written as PCSP(CF^r_k, CF^r_ℓ)

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$.

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities r ≥ 3.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.
 - conflict-free $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$, except for when r = 4 and k = 2, in which case it is in P.

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities r ≥ 3.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.
 - conflict-free $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$, except for when r = 4 and k = 2, in which case it is in P.

Note

• The first result was first shown by (DRS05), but we gave a significantly simpler proof.

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities r ≥ 3.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.
 - conflict-free $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$, except for when r = 4 and k = 2, in which case it is in P.

Note

- The first result was first shown by (DRS05), but we gave a significantly simpler proof.
- The second result was shown for $r \ge \ell k + 4$ by (NŽ22).

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities r ≥ 3.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.
 - conflict-free $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$, except for when r = 4 and k = 2, in which case it is in P.

Note

- The first result was first shown by (DRS05), but we gave a significantly simpler proof.
- The second result was shown for $r \ge \ell k + 4$ by (NŽ22).
- The polynomial-time solvable case is due to being able to encode this problem as a system of linear equations mod 2.

- In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:
 - nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities r ≥ 3.
 - linearly ordered $kvs\ell$ -colouring is NP-hard for all $3 \le k \le \ell$ and arities $r \ge 4$.
 - conflict-free $kvs\ell$ -colouring is NP-hard for all $2 \le k \le \ell$ and arities $r \ge 3$, except for when r = 4 and k = 2, in which case it is in P.

Note

- The first result was first shown by (DRS05), but we gave a significantly simpler proof.
- The second result was shown for $r \ge \ell k + 4$ by (NŽ22).
- The polynomial-time solvable case is due to being able to encode this problem as a system of linear equations mod 2.
- The rest of this talk will be dedicated to a (sketch) proof of the last result for r = 4 and k = 3.

Polymorphisms

Definition

A polymorphism of arity n of (CF_3^4, CF_ℓ^4) is a function $f : [3]^n \to [\ell]$ such that

whenever every column of
$$\begin{pmatrix} a_1 & \cdots & a_n \\ b_1 & \cdots & b_n \\ c_1 & \cdots & c_n \\ d_1 & \cdots & d_n \end{pmatrix}$$
 has a unique entry,
$$\begin{pmatrix} f(a_1, \cdots, a_n) \\ f(b_1, \cdots, b_n) \\ f(c_1, \cdots, c_n) \\ f(d_1, \cdots, d_n) \end{pmatrix}$$
 has a unique entry.

Example

Any projection is a polymorphism.

Avoiding sets

Definition

Let $f : A^n \to B$ and $T \subseteq B$. A *T*-avoiding set for f is a set $X \subseteq [n]$ such that for for any input $\vec{v} \in \{0,1\}^n$ with $\vec{v}|_X \equiv 1$, we have $f(\vec{v}) \notin T$.

 $\begin{pmatrix} (1, 1, ..., 1, 1, 0, 0, 1, 0, 0, 1, ..., 0, 0, 1) \notin T$

Avoiding sets

Definition

Let $f : A^n \to B$ and $T \subseteq B$. A *T*-avoiding set for f is a set $X \subseteq [n]$ such that for for any input $\vec{v} \in \{0,1\}^n$ with $\vec{v}|_X \equiv 1$, we have $f(\vec{v}) \notin T$.

 $\begin{pmatrix} (1, 1, ..., 1, 1, 0 \text{ or } 1, 0 \text{ or } 1, 0 \text{ or } 1, \dots, 0 \text{ or } 1) \notin T$

Definition

For $t \in \mathbb{N}$, we call a set X t-avoiding for f if it is T-avoiding for f for some subset $T \subseteq B$ of size t.

Avoiding sets

Definition

Let $f : A^n \to B$ and $T \subseteq B$. A *T*-avoiding set for f is a set $X \subseteq [n]$ such that for for any input $\vec{v} \in \{0,1\}^n$ with $\vec{v}|_X \equiv 1$, we have $f(\vec{v}) \notin T$.

 $\begin{pmatrix} (1, 1, ..., 1, 1, 0 \text{ or } 1, 0 \text{ or } 1, 0 \text{ or } 1, \dots, 0 \text{ or } 1) \notin T$

Definition

For $t \in \mathbb{N}$, we call a set X t-avoiding for f if it is T-avoiding for f for some subset $T \subseteq B$ of size t.

Using the algebraic approach to PCSPs, we can find a sufficient condition for NP-hardness in terms of avoiding sets, by reducing from label cover (a known NP-hard problem).

Theorem (NVWŽ25)

Let (\mathbf{A}, \mathbf{B}) be a PCSP template with $\{0, 1\} \subseteq A$ and $\ell = |B|$. Suppose that there exist constants $N, \{\alpha_t\}_{t=1}^{\ell}, \{\beta_t\}_{t=1}^{\ell}$ such that every $f \in \text{Pol}(\mathbf{A}, \mathbf{B})$ has the following properties:

• f has a 1-avoiding set of size $\leq \beta_1$.

If f is of arity ≥ N and has a disjoint family of > α_t many t-avoiding sets, all of size ≤ β_t, then f has a (t + 1)-avoiding set of size ≤ β_{t+1}. Then, PCSP(A, B) is NP-hard.

Theorem (NVWŽ25) (less technical version)

 $PCSP(\mathbf{A}, \mathbf{B})$ is NP-hard if every polymorphism f of (\mathbf{A}, \mathbf{B}) has the following properties (the bounds can not depend on the arity of the polymorphism):

- f has a 1-avoiding set of bounded size.
- 2 If f has many disjoint t-avoiding sets of bounded size, then these can be used to show that f has a (t + 1)-avoiding set of bounded size.

Theorem (NVWŽ25) (Applied to conflict-free 3vsl-colouring)

Conflict-free $3v_{s\ell}$ -colouring is NP-hard if every polymorphism f of $(\mathbf{CF}_{3}^{4}, \mathbf{CF}_{\ell}^{4})$ has the following properties (the bounds can not depend on the arity of the polymorphism):

- f has a 1-avoiding set of bounded size.
- 2 If f has many disjoint t-avoiding sets of bounded size, then these can be used to show that f has a (t + 1)-avoiding set of bounded size.

Theorem (NVWŽ25) (Applied to conflict-free 3vsl-colouring)

Conflict-free $3v_{s\ell}$ -colouring is NP-hard if every polymorphism f of $(\mathbf{CF}_{3}^{4}, \mathbf{CF}_{\ell}^{4})$ has the following properties (the bounds can not depend on the arity of the polymorphism):

- f has a 1-avoiding set of bounded size.
- 2 If f has many disjoint t-avoiding sets of bounded size, then these can be used to show that f has a (t + 1)-avoiding set of bounded size.

We will show that every polymorphism of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set. The second property can be shown by a similar argument, hence proving hardness of PCSP $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$.

Theorem (NVWŽ25) (Applied to conflict-free 3vsl-colouring)

Conflict-free $3vs\ell$ -colouring is NP-hard if every polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has the following properties (the bounds can not depend on the arity of the polymorphism):

- f has a 1-avoiding set of bounded size.
- 2 If f has many disjoint t-avoiding sets of bounded size, then these can be used to show that f has a (t + 1)-avoiding set of bounded size.

We will show that every polymorphism of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set. The second property can be shown by a similar argument, hence proving hardness of PCSP $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$.

Note

A 1-avoiding set for f an n-ary polymorphism of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ is a subset X of [n], such that there exists some $b \in [\ell]$ such that for every $\vec{v} \in \{0, 1\}^n$ with $\vec{v}|_X \equiv 1$, $f(\vec{v}) \neq b$

Kneser Graphs

Definition

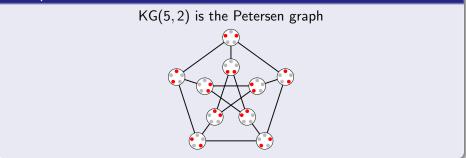
The Kneser graph is defined as $KG(n, h) = ([n]^{(h)}, E)$, where $S \sim_E T$ if and only if $S \cap T = \emptyset$ $([n]^{(h)}$ means the family of subsets of [n] of size h).

Kneser Graphs

Definition

The Kneser graph is defined as $KG(n, h) = ([n]^{(h)}, E)$, where $S \sim_E T$ if and only if $S \cap T = \emptyset$ $([n]^{(h)}$ means the family of subsets of [n] of size h).

Example

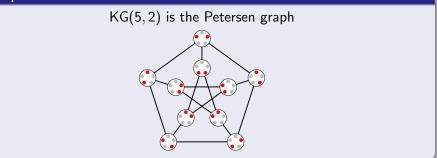


Kneser Graphs

Definition

The Kneser graph is defined as $KG(n, h) = ([n]^{(h)}, E)$, where $S \sim_E T$ if and only if $S \cap T = \emptyset$ $([n]^{(h)}$ means the family of subsets of [n] of size h).

Example



Theorem (Lovász78)

The chromatic number of KG(n, h) is n - 2h + 2.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Set $h = \lceil \frac{n-\ell}{2} \rceil$. Consider the Kneser graph KG(*n*, *h*), and colour each vertex *S* by $f(\vec{2}_S)$.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Set $h = \lceil \frac{n-\ell}{2} \rceil$. Consider the Kneser graph KG(n, h), and colour each vertex *S* by $f(\vec{2}_S)$. $\chi(\text{KG}(n, h)) = n - 2h + 2 > \ell$, so there exist disjoint sets $S, T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Set $h = \lceil \frac{n-\ell}{2} \rceil$. Consider the Kneser graph KG(n, h), and colour each vertex *S* by $f(\vec{2}_S)$. $\chi(\text{KG}(n, h)) = n - 2h + 2 > \ell$, so there exist disjoint sets *S*, $T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \le \ell$. So it remains to show that X is 1-avoiding.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Set $h = \lceil \frac{n-\ell}{2} \rceil$. Consider the Kneser graph KG(n, h), and colour each vertex *S* by $f(\vec{2}_S)$. $\chi(\text{KG}(n, h)) = n - 2h + 2 > \ell$, so there exist disjoint sets *S*, $T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \le \ell$. So it remains to show that X is 1-avoiding.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Set $h = \lceil \frac{n-\ell}{2} \rceil$. Consider the Kneser graph KG(*n*, *h*), and colour each vertex *S* by $f(\vec{2}_S)$. $\chi(\text{KG}(n, h)) = n - 2h + 2 > \ell$, so there exist disjoint sets *S*, $T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \le \ell$. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ is a subset X of [n], such that there exists some $b \in [\ell]$ such that for every $\vec{v} \in \{0,1\}^n$ with $\vec{v}|_X \equiv 1$, $f(\vec{v}) \neq b$.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof continued

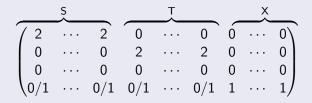
Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Recall there exist disjoint sets $S, T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \le \ell$. So it remains to show that X is 1-avoiding.

Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof continued

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Recall there exist disjoint sets $S, T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \leq \ell$. So it remains to show that X is 1-avoiding. Note that every column in the left matrix contains a unique element, where the rows are $\vec{2}_S, \vec{2}_T, \vec{0}, \vec{v}$ for some $\vec{v} \in \{0, 1\}^n$ with $\vec{v}|_X \equiv 1$:



Theorem

Any polymorphism f of $(\mathbf{CF}_3^4, \mathbf{CF}_\ell^4)$ has a 1-avoiding set of size $\leq \ell$.

Proof continued

Let *n* be the arity of *f*. Note that we may assume $n > \ell$. Recall there exist disjoint sets $S, T \in [n]^{(h)}$ such that $f(\vec{2}_S) = f(\vec{2}_T)$. Let $X := [n] \setminus (S \cup T)$. Note that $|X| = n - 2h \leq \ell$. So it remains to show that X is 1-avoiding. Note that every column in the left matrix contains a unique element, where the rows are $\vec{2}_S, \vec{2}_T, \vec{0}, \vec{v}$ for some $\vec{v} \in \{0, 1\}^n$ with $\vec{v}|_X \equiv 1$:

The proof outlined in this talk can be modified to prove NP-hardness of PCSP(LO^r_k, LO^r_ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only remaining cases are: r = 2, 3, or k = 2.

- The proof outlined in this talk can be modified to prove NP-hardness of PCSP(LO^r_k, LO^r_ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only remaining cases are: r = 2, 3, or k = 2.
- k = 2: (NZ23) showed NP-hardness of PCSP(LO_2^r, LO_ℓ^r) for every $2 \le \ell$ and $r \ge \ell + 2$

- The proof outlined in this talk can be modified to prove NP-hardness of PCSP(LO^r_k, LO^r_ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only remaining cases are: r = 2, 3, or k = 2.
- k = 2: (NZ23) showed NP-hardness of PCSP(LO_2^r, LO_ℓ^r) for every $2 \le \ell$ and $r \ge \ell + 2$
- r = 2: Approximate Graph Colouring

- The proof outlined in this talk can be modified to prove NP-hardness of PCSP(LO^r_k, LO^r_ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only remaining cases are: r = 2, 3, or k = 2.
- k = 2: (NZ23) showed NP-hardness of PCSP(LO_2^r, LO_ℓ^r) for every $2 \le \ell$ and $r \ge \ell + 2$
- r = 2: Approximate Graph Colouring
- r = 3: A recent result (FNOTW24) established NP-hardness of PCSP(LO³₃, LO³₄).

- The proof outlined in this talk can be modified to prove NP-hardness of PCSP(LO^r_k, LO^r_ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only remaining cases are: r = 2, 3, or k = 2.
- k = 2: (NZ23) showed NP-hardness of PCSP(LO_2^r, LO_ℓ^r) for every $2 \le \ell$ and $r \ge \ell + 2$
- r = 2: Approximate Graph Colouring
- r = 3: A recent result (FNOTW24) established NP-hardness of PCSP(LO_3^3, LO_4^3).
- Can we prove hardness of e.g. PCSP(LO₂³, LO₃³)?