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Graph colourings

Definition

A k-colouring of a graph (V ,E ) is an assignment of colours c(v) ∈ [k]1 to
the vertices v ∈ V such that for every edge {u, v} ∈ E we have

c(u) ̸= c(v)

1For any integer k, we write [k] for the set {0, 1, . . . , k − 1}.
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Complexity of Graph Colouring

Fact

Finding a 2-colouring of a 2-colourable graph can be done in polynomial
time (e.g. using breadth-first search)

Theorem (Karp75)

Finding a k-colouring of a k-colourable graph is NP-hard for every k ≥ 3.
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Approximate Graph Colouring

Example: 3vs5-colouring

Given a 3-colourable graph, find a 5-colouring
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Approximate Graph Colouring hardness

Notation

We write PCSP(Kk ,Kℓ) to mean the computational search problem of
finding an ℓ-colouring of a k-colourable graph.

Theorem (Karp75)

PCSP(K3,K3) (i.e. 3-colouring) is NP-hard

Theorem (GKS00)

PCSP(K3,K4) (i.e. 3vs4-colouring) is NP-hard

Theorem (BBKO21)

PCSP(K3,K5) (i.e. 3vs5-colouring) is NP-hard

However, we have no (unconditional) proof of the hardness of
PCSP(K3,K6).
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Approximate Graph Colouring algorithms

Theorem (Wigderson83)

There exists an algorithm to colour 3-colourable graphs with O(
√
n) many

colours.

Theorem (KTY24)

There exists an algorithm to colour 3-colourable graphs with O(n0.19747)
many colours.

Note that there is a large gap between 5 and O(n0.19747).
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Hypergraphs

Definition

A hypergraph is a pair (V , E), where V is the vertex set and E is the
hyperedge set. Each hyperedge e ∈ E is a multiset of vertices (meaning
vertices can appear multiple times in a single hyperedge). A hypergraph is
r -uniform if all the hyperedges have size r .

Figure: Example of a 4-uniform hypergraph with 5 vertices and 3 hyperedges
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Hypergraph colouring variants

Definition

Given a hypergraph (V , E), an assignment of colours c(v) to the vertices
v ∈ V is:

1 a nonmonochromatic colouring if for each hyperedge e ∈ E , the
(multi-)set {c(v) | v ∈ e} contains at least 2 disctinct elements

2 a conflict-free colouring if for each hyperedge e ∈ E , some colour in
the multiset {c(v) | v ∈ e} appears exactly once.

3 a linearly ordered colouring if for each hyperedge e ∈ E , the largest
colour in the multiset {c(v) | v ∈ e} appears exactly once.

Remark

linearly ordered =⇒ conflict-free =⇒ nonmonochromatic

Arity 2 (graphs): these are all the same.
Arity 3: nonmonochromatic and conflict-free are the same.
Arity 4 and above: these are different notions.
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Hypergraph colouring variants

Hyperedge nonmonochromatic conflict-free linearly ordered
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Approximate hypergraph colourings

We can define approximate versions for the problem of finding a
nonmonochromatic/conflict-free/linearly ordered hypergraph
colouring.

We can frame these as promise constraint satisfaction problems: e.g.
conflict-free kvsℓ-colouring for r -uniform hypergraphs is written as
PCSP(CFr

k ,CF
r
ℓ)
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Hardness results

In a recent preprint (NVWŽ25 to appear in ICALP), we proved that:

nonmonochromatic kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and
arities r ≥ 3.

linearly ordered kvsℓ-colouring is NP-hard for all 3 ≤ k ≤ ℓ and arities
r ≥ 4.
conflict-free kvsℓ-colouring is NP-hard for all 2 ≤ k ≤ ℓ and arities
r ≥ 3, except for when r = 4 and k = 2, in which case it is in P.

Note

The first result was first shown by (DRS05), but we gave a
significantly simpler proof.

The second result was shown for r ≥ ℓ− k + 4 by (NŽ22).

The polynomial-time solvable case is due to being able to encode this
problem as a system of linear equations mod 2.

The rest of this talk will be dedicated to a (sketch) proof of the last
result for r = 4 and k = 3.
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Polymorphisms

Definition

A polymorphism of arity n of (CF 4
3 ,CF

4
ℓ ) is a function f : [3]n → [ℓ] such

that

whenever every column of


a1 · · · an
b1 · · · bn
c1 · · · cn
d1 · · · dn

 has a unique entry,


f (a1, · · · , an)
f (b1, · · · , bn)
f (c1, · · · , cn)
f (d1, · · · , dn)

 has a unique entry.

Example

Any projection is a polymorphism.
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Avoiding sets

Definition

Let f : An → B and T ⊆ B. A T-avoiding set for f is a set X ⊆ [n] such
that for for any input v⃗ ∈ {0, 1}n with v⃗ |X ≡ 1, we have f (v⃗) /∈ T .

Definition

For t ∈ N, we call a set X t-avoiding for f if it is T -avoiding for f for
some subset T ⊆ B of size t.

Using the algebraic approach to PCSPs, we can find a sufficient condition
for NP-hardness in terms of avoiding sets, by reducing from label cover (a
known NP-hard problem).
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Hardness condition

Theorem (NVWŽ25)

Let (A,B) be a PCSP template with {0, 1} ⊆ A and ℓ = |B|. Suppose
that there exist constants N, {αt}ℓt=1, {βt}ℓt=1 such that every
f ∈ Pol(A,B) has the following properties:

1 f has a 1-avoiding set of size ≤ β1.

2 If f is of arity ≥ N and has a disjoint family of > αt many t-avoiding
sets, all of size ≤ βt , then f has a (t + 1)-avoiding set of size ≤ βt+1.

Then, PCSP(A,B) is NP-hard.

17



Hardness condition

Theorem (NVWŽ25) (less technical version)

PCSP(A,B) is NP-hard if every polymorphism f of (A,B) has the
following properties (the bounds can not depend on the arity of the
polymorphism):

1 f has a 1-avoiding set of bounded size.

2 If f has many disjoint t-avoiding sets of bounded size,then these can
be used to show that f has a (t + 1)-avoiding set of bounded size.
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Hardness condition

Theorem (NVWŽ25) (Applied to conflict-free 3vsℓ-colouring)

Conflict-free 3vsℓ-colouring is NP-hard if every polymorphism f of
(CF4

3,CF
4
ℓ ) has the following properties (the bounds can not depend on

the arity of the polymorphism):

1 f has a 1-avoiding set of bounded size.

2 If f has many disjoint t-avoiding sets of bounded size,then these can
be used to show that f has a (t + 1)-avoiding set of bounded size.

We will show that every polymorphism of (CF4
3,CF

4
ℓ ) has a 1-avoiding set.

The second property can be shown by a similar argument, hence proving
hardness of PCSP(CF4

3,CF
4
ℓ ).

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b
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Kneser Graphs

Definition

The Kneser graph is defined as KG(n, h) = ([n](h),E ), where S ∼E T if
and only if S ∩ T = ∅ ([n](h) means the family of subsets of [n] of size h).

Example

KG(5, 2) is the Petersen graph

Theorem (Lovász78)

The chromatic number of KG(n, h)) is n − 2h + 2.
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Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.

Set h = ⌈n−ℓ
2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S).

χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).

Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof

Let n be the arity of f . Note that we may assume n > ℓ.
Set h = ⌈n−ℓ

2 ⌉. Consider the Kneser graph KG(n, h), and colour each

vertex S by f (⃗2S). χ(KG(n, h)) = n − 2h + 2 > ℓ, so there exist disjoint
sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let X := [n] \ (S ∪ T ).
Note that |X | = n − 2h ≤ ℓ. So it remains to show that X is 1-avoiding.

Note

A 1-avoiding set for f an n-ary polymorphism of (CF4
3,CF

4
ℓ ) is a subset X

of [n], such that there exists some b ∈ [ℓ] such that for every v⃗ ∈ {0, 1}n
with v⃗ |X ≡ 1, f (v⃗) ̸= b.

21



Polymorphisms of (CF4
3,CF

4
ℓ) have small 1-avoiding sets

Theorem

Any polymorphism f of (CF4
3,CF

4
ℓ ) has a 1-avoiding set of size ≤ ℓ.

Proof continued

Let n be the arity of f . Note that we may assume n > ℓ.
Recall there exist disjoint sets S ,T ∈ [n](h) such that f (⃗2S) = f (⃗2T ). Let
X := [n] \ (S ∪ T ). Note that |X | = n − 2h ≤ ℓ. So it remains to show
that X is 1-avoiding.

Note that every column in the left matrix contains a
unique element, where the rows are 2⃗S , 2⃗T , 0⃗, v⃗ for some v⃗ ∈ {0, 1}n with
v⃗ |X ≡ 1:

S︷ ︸︸ ︷ T︷ ︸︸ ︷ X︷ ︸︸ ︷
2 · · · 2 0 · · · 0 0 · · · 0
0 · · · 0 2 · · · 2 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
0/1 · · · 0/1 0/1 · · · 0/1 1 · · · 1

 f−→


f (⃗2S)

f (⃗2T )

f (⃗0)
f (v⃗)

 .
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Further work: Approximate LO-colouring

The proof outlined in this talk can be modified to prove NP-hardness
of PCSP(LOr

k ,LO
r
ℓ) when 3 ≤ k ≤ ℓ and r ≥ 4. So the only

remaining cases are: r = 2, 3, or k = 2.

k = 2: (NZ23) showed NP-hardness of PCSP(LOr
2,LO

r
ℓ) for every

2 ≤ ℓ and r ≥ ℓ+ 2

r = 2: Approximate Graph Colouring

r = 3: A recent result (FNOTW24) established NP-hardness of
PCSP(LO3

3,LO
3
4).

Can we prove hardness of e.g. PCSP(LO3
2,LO

3
3)?
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