Semantic Flowers for Good-for-Games and Deterministic Automata

Tansholpan Zhanabekova

University of Liverpool

joint work with Daniele Dell'Erba, Sven Schewe, Qiyi Tang

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation

- ω -regular languages describe infinite behaviors
- Automata like parity, Rabin, and Streett are used to define them
- Comparing automata's expressive power is complex
- The paper proposes semantic flowers as a simpler framework

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Understanding ω -regular languages

- Languages over infinite sequences
- Used to model non-terminating systems
- Accepted by Büchi, Parity, Rabin, Streett, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From Syntactic to Semantic Flowers

- Syntactic flowers: structure in automata (states and transitions)
- Semantic flowers: structure in the language itself

Semantic Flowers

A (semantic) flower with petals c, \ldots, d in \mathcal{L} consists of

- a finite word $w_s \in \Sigma^*$, called the stem and
- d c + 1 petals $w_c, \ldots, w_d \in \Sigma^+$ with the following properties: for every infinite word $w = w'_0, w'_1, w'_2, \ldots$ such that

•
$$w_0' = w_s$$
 is the stem word, and

• for all i > 0, $w'_i \in \{w_c, ..., w_d\}$.

Why Semantic Flowers are useful?

- Effective Complexity Representation
- Synergy of Syntax and Semantics
- Natural Conceptual Framework

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Main theorems

- Equivalence of syntactic and semantic flowers for parity automata
- Semantic flowers characterise the expressive limits of:
- Deterministic automata (DPA)
- Good-for-games (GFG) automata
- Rabin, Streett, Muller automata

Finite and Büchi automata

Büchi automata

interpreted over infinite words

here: over $\Sigma = \{a, b\}$

run: start at some initial state

stepwise: read an **input** letter, and traverse the automaton respectively

accepting: is **infinitely often** in a **final state** while processing the complete ω -word

language: words with accepting runs here: ω -words with finitely many a's

Determinisation of Büchi automata

Determinisation of Büchi automata

... are less expressive than nondeterministic Büchi automata.

Example Language: All words with finitely many a's

Construct an input word by repeatedly

- choosing b's until a final state is reached
- choosing an *a* once.

⇒ determinisation requires more involved acceptance condition

Deterministic Büchi Automata

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Deterministic Parity Automata

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Syntactic flowers

Let \mathcal{A} be a deterministic automaton. A syntactic flower with petals c, \ldots, d in \mathcal{A} consists of

- a reachable state q_c , called the centre of the flower and
- d c + 1 petals ρ_c, \ldots, ρ_d with the following properties:
- each petal ρ_i for $c \le i \le d$ is a non-trivial run from q_c to itself;

Question

Can you think of \mathcal{L} recognizable by a deterministic parity automata with colours 1,2,3, but not one with colours 0,1,2?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Flowers

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

What is a Good-for-Games automaton?

- GFG = Good-for-Games
- A nondeterministic automaton with a strategy that resolves choices using only past input
- Behaves deterministically in interaction, despite internal nondeterminism
- The paper uses semantic flowers to simplify reasoning about GFG expressive power

Good-for-Games Automata

Roughly

- $\textcircled{O} \text{ analyse the product Game} \times \mathsf{GFGA}$
- 2 make decisions on-the-fly
- you'll get the correct winner & winning strategy
- essentially the same algorithms as for DPAs

same acceptance complexity

pairs, colours

-
but is rejected.
Spoiler wins iff she can produce a word that should be accepted,
• verifier: chooses a transition
• spoiler: chooses a letter
One way to check GFG-ness letter game

Summary

- Introduced semantic flowers as a simple and purely semantic way to characterise the complexity of ω-regular languages.
- ② Discussed syntactic flowers
- Section 2 Explained how semantic flowers extend to Good-for-Games (GFG) automata

Thank you for your attention!