A fibration of traces over configurations

Clovis Eberhart ENS Cachan (currently at CWI Amsterdam) <u>Tom Hirschowitz</u> CNRS and Univ. Savoie

Context

Goal in denotational semantics: reconcile

- game semantics (for functional languages) with
- presheaf models (for concurrent languages).

For this to remotely make sense, need to link strategies with presheaves.

Link between strategies and presheaves (thanks Sam)

- Traces \approx Plays.
- From strategies to presheaves:
 - prefix-closed sets of traces;
 - functors Traces $^{op} \rightarrow$ 2, where 2 is the poset 0 \leqslant 1;
 - functors ${\rm Traces}^{\rm op} \to \, {\rm sets}.$
- Intuitively, presheaves may accept a trace in several ways.
- Example on the board if not all comfortable with this.

Innocent presheaves

- Presheaves are thus generalised strategies.
- Crucial in game semantics: innocence.
- Extends to presheaves!
 - Start from presheaves on traces with prefix ordering.
 - Refine traces to a proper category of multi-agent traces.
 - Incorporate game-semantical innocence:

each agent reacts only according to its neighbourhood.

Here maybe I can say it: it's a sheaf semantics...

- For CCS and π : innocent presheaves \rightsquigarrow full abstraction w.r.t. fair testing.

This talk

General goal

Generalise our constructions, by reworking them properly.

This talk: focus on a crucial aspect related to fibrations.

- 1. Give a feel for the category of CCS multi-agent traces and innocent presheaves.
- 2. Construct it from a double category, using the fact that the `vertical codomain' functor is a fibration.
- 3. Show how the latter follows in part from a factorisation system.
- 4. Point out the aspects that we hope to improve.

- • \approx agent.
- \circ \approx channel.
- Edges : `agent knows channel'.

Example (atomic) action: input

Initial and final configurations are the same, e.g.

- But: actions are not a mere binary relation (initial, final configuration).
- Instead: cospans initial \rightarrow stuff \leftarrow final.
- What stuff? A kind of higher-dimensional graph.

Higher-dimensional graph for the input action

- The arrow indicates on which channel the input occurs.
- One such graph for each arity (here 3).
- Cute formal definition as a cat $\widehat{\mathscr{C}}$ of finite presheaves (cf. graphs).

Overview Multi-agent traces Strategies Construction of \mathfrak{T}_X Factorisation Help! Cospan for the input action

Actions: input/output

Using the previous convention:

Channel creation

Tick

Local vs. global actions

- Until now, actions were local: only involved agents were shown.
- Global actions obtained by embedding into larger configurations.

Multi-agent traces

Obtained by piling up global actions:

Concurrent: no particular ordering between remote actions.

Category of traces: T

- Spatial and temporal embedding:
 - new moves after the final configuration,
 - new agents (there from the beginning).
- Possibly several morphisms between two traces.
- Ex: if two agents fork in the codomain.
- Otherwise, close to configuration posets of event structures.

(Non-innocent) presheaves over configuration X

Let us consider presheaves $\mathfrak{T}_X^{\, op} \to \, sets.$

Too general: consider the configuration

and the presheaf

- accepting $x \rightarrow y$,
- accepting outside ightarrow z,
- but refusing $x \to z$.

Agents x and z should not be allowed to choose with whom they synchronise.

Innocent presheaves

Views: let $\mathcal{V}_X \subseteq \mathcal{T}_X$ consist of histories of exactly one agent. Example:

Problem: no obvious inclusion innocent \subseteq non-innocent (not the same base cat).

Innocent → non-innocent

Explicit formula

- General :
$$\overline{S}(T) = \begin{bmatrix} S(V)^{\mathcal{T}_{X}(V,T)} \end{bmatrix}$$

Boolean case; T accepted iff all its views are : $\overline{S}(T) = \bigwedge_{((V \to ST) \in T_{v})} S(V)$. -

General case:

way of accepting T = compatible family of ways of accepting its views.

... the vertical codomain functor $\mathscr{D}_H \to \mathscr{D}_h$ is a fibration!

And that holds thanks to a factorisation system.

Reminder on (pseudo) double cats

- 1. Objects, vertical / horizontal arrows, (double) cells
- 2. Vertical (•) / horizontal (•) compositions of arrows and cells.
- 3. The interchange law: both ways of parsing

$$Z \xrightarrow{l} Z' \xrightarrow{l'} Z''$$

$$T \xrightarrow{\beta} T' \xrightarrow{\beta'} \beta' T'' \xrightarrow{l'} Y' \xrightarrow{k'} Y''$$

$$Y \xrightarrow{k} Y' \xrightarrow{k'} Y'' \xrightarrow{k'} Y''$$

$$S \xrightarrow{a} S' \xrightarrow{a'} \alpha' S'' \xrightarrow{h'} X''$$

commute, i.e., $(\alpha' \bullet \beta') \circ (\alpha \bullet \beta) = (\alpha' \circ \alpha) \bullet (\beta' \circ \beta).$

- Objects: configurations.
- Horizontal arrows: morphisms $X \to Y$ in \mathscr{D} .
- Vertical arrows: cospans in $\widehat{\mathscr{C}}$.

- Vertical composition of cells by universal property of pushout.

The double category ${\mathscr D}$

Restrict vertical arrows to the subbicategory of $Cospan(\mathscr{C})$ generated by the (global versions of the) given cospans, e.g.,

 $\mathscr{D} \rightsquigarrow \mathfrak{T}_{\mathsf{X}}$

 \mathfrak{T}_{χ} is almost \mathscr{D}_{H} , the category of vertical arrows of \mathscr{D} . It has:

- Objects: vertical morphisms of \mathcal{D} .
- Arrows $T \rightarrow T'$ (up to some boring twist): diagrams

Intuition

- Extend T with some actions (S).
- Embed the result into T'. _

Plan:

- Orange part should be a Cartesian lifting of S' along k.
- In our double cat \mathscr{D} : Cartesian lifting follows from factorisation.
- W should be a trace again, i.e.:

Traces should be stable under restriction in \mathscr{D}^{0} .

Factorisation systems (Mac Lane, 1950; Freyd & Kelly, 1972)

Consider a category C.

Extends to sets of morphisms:

- $\mathcal{E} \perp \mathcal{M}$ iff for all $e \in \mathcal{E}$ and $m \in \mathcal{M}$, $e \perp m$;
- $\mathcal{E}^{\perp} = \{ \mathfrak{m} \mid \forall e \in \mathcal{E} . e \perp \mathfrak{m} \}.$
- $^{\perp}\mathcal{M} = \{ e \mid \forall m \in \mathcal{M} . e \perp m \}.$

Systèmes de factorisation (Freyd et Kelly, 1972)

Definition 3. Factorisation system on ${\mathcal C}$	
$(\mathcal{L}, \mathcal{R})$ s.t.	
- $\mathcal{R} = \mathcal{L}^{\perp}$,	
- $\mathcal{L} = {}^{\perp}\mathcal{R}$,	
- any f factors as $r \circ l$ with $l \in \mathcal{L}$ and $r \in \mathcal{R}$.	

Proposition 1.

- $\ensuremath{\mathcal{L}}$ stable under pushout and composition.
- $\mathcal R$ stable under pullback and composition.

Cofibrant generation (Bousfield, 1977)

Theorem 1.

Consider a set C of morphisms in a locally presentable category. Then

$$\left(\stackrel{\scriptscriptstyle \bot}{} \left(\mathfrak{C}^{\scriptscriptstyle \bot} \right), \, \mathfrak{C}^{\scriptscriptstyle \bot} \right)$$

forms a factorisation system.

- Only the factorisation axiom is hard (small object argument).
- Very well explained on Joyal's Catlab.

http://ncatlab.org/joyalscatlab/show/Factorisation+systems

Let's consider a simpler setting, where the only action looks like

- •
- Possible interpretation of this action: agent jumps (a.k.a. the Pixar game)...
- So we have only one `generating' cospan, in Gph:

 $[0] \xrightarrow{s} [1] \xleftarrow{t} [0],$

where [1] is the graph with one edge $s \rightarrow t$.

- s is the final configuration.

We take for \mathcal{C} the singleton $\{[0] \xrightarrow{t} [1]\}$, i.e.,

the injection of the initial configuration into the action.

- Bousfield's construction \rightsquigarrow factorisation system (\mathscr{V}, \mathscr{O}) (vertical, other).
- In this case, ${\mathscr V}$ consists of
 - transfinite composites of
 - pushouts of
 - guys in C and their codiagonals.

Overview Multi-agent traces Strategies Construction of \mathfrak{T}_X Factorisation Help! Application

Essentially, ${\mathscr V}$ consists of composites of morphisms of one of the shapes

OverviewMulti-agent tracesStrategiesConstruction of \mathcal{T}_X FactorisationHelp!Lifting cospans

We consider the sub-double category $\mathscr{D}^1 \subseteq \mathscr{D}^0$ consisting of cospans $\begin{array}{c} X' \\ \downarrow \\ T \\ We have <math>\mathscr{D} \subseteq \mathscr{D}^1 \subseteq \mathscr{D}^0. \end{array}$.

Lifting (v, f) along k :

- factor $v \circ o$ as $o' \circ v'$;

- take the pullback of f and o'.

Universal property of lifting

Theorem 2.

Traces are fibred over configurations.

Proof sketch.

- Proved abstractly:

Cospans $X \xrightarrow{\nu} T \xleftarrow{} X'$ are fibred over configurations. Or, the codomain functor $\mathscr{D}^{1}_{H} \to \mathscr{D}^{1}_{h}$ is a fibration.

- For traces: more requirements, proved by hand, case by case for CCS and π .

Would-be proof sketch

We could hope for more: traces \subseteq cospans $X \xrightarrow{\nu} T \xleftarrow{w} X'$, where

- X and X' are configurations,

-
$$\nu \in \mathscr{V}$$
,

-
$$w \in \mathscr{W} = (\mathscr{S}^{\perp})$$
, for $\mathscr{S} = \{[0] \xrightarrow{s} [1]\}.$

Better-looking, false in general

Cospans (v, w) fibred over configurations.

- Traces even more specific than such cospans.
- What makes it work in our cases?

Double factorisation systems (Tholen & Pultr)

Promising direction?

Definition 4.

Two factorisation systems $(\mathcal{V}, \mathcal{O})$ and $(\mathcal{W}, \mathcal{H})$ such that $\mathcal{V} \subseteq \mathcal{W}$.

Let $\overline{X} = (X^{\perp})$.

- Here: $\mathcal{C} \subseteq \mathcal{C} \cup \mathscr{S}$ hence $\mathscr{V} = \overline{\mathcal{C}} \subseteq \overline{\mathcal{C} \cup \mathscr{S}} = \mathscr{W}$.
- Main result: any arrow factors as $A \xrightarrow{\mathscr{V}} B \xrightarrow{\mathscr{W} \setminus \mathscr{V}} C \xrightarrow{\mathscr{H}} D$.

Double factorisation systems

Any arrow factors as $A \xrightarrow{\mathscr{V}} B \xrightarrow{\mathscr{W} \setminus \mathscr{V}} C \xrightarrow{\mathscr{R}} D$.

- Good points:
 - Morphisms of configurations are in \mathscr{H} .
 - \mathscr{H} ; $\mathscr{V} \subseteq \mathscr{V}$; \mathscr{H} .
 - We get useful information on the bottom square.
- Bad points:
 - Unclear what makes the top square work.
 - ${\mathscr S}$ not taken seriously.

Conclusion

- Multi-agent traces \rightsquigarrow innocent presheaf semantics for CCS and π -calculus.
- Construction via a `fibred' double category \mathcal{D} .
- Cartesian lifting by factorisation.
- More to understand, maybe by making double factorisation systems more symmetric.

Longer-term perspectives

- Scale the approach to calculi with passivation, functional languages...
- Tighten our axiomatisation.
- Link with exotic settings like cellular automata.
- Double categories as abstract rewriting systems with space?