
Bifibrational Parametricity

Federico Orsanigo

Strathclyde University

Fibrations in Computation
23–24 June 2014

Joint work with
N. Ghani, P. Johann, F. Nordvall Forsberg and T. Revell

Parametricity

Polymorphic functions are functions depending on type variables:

f : ∀X .T (X).

They can be classified in two classes.

I Ad hoc polymorphisms.
They define different functions for different types. For example
φ : ∀X .X → X → X can define the sum for natural numbers,
concatenetion for lists, . . .

I Parametric polymorphisms.
They define the same function for any type. For example
rev : ∀X .list(X)→ list(X) defines the same function
independently by the type of the list.

Theorems for Free!

I From parametric polymorphisms is possible to extract
properties.
For example any parametric function

h : ∀X .list(X)→ list(X)

satisfies
h(map f (xs)) = map f (h(xs)).

I This is thanks to Reynolds’ relational interpretation.

I Idea: rev(Nat) and rev(Char) come from the same parametric
polymorphism, then they are related.

I Equality relation performs a central role: closed terms are
constant polymorphic functions and related with themselves.

I We generalize Reynolds’ model using bifibrations.

Notation

I Fibration + Opfibration = Bifibration

I Bifibration U : E → B.

I The fiber over X is denoted EX .

I Let f : X → X ′ be a morphism in B
I reindexing functor: f ∗ : EX ′ → EX
I opreindexing functor: Σf : EX → EX ′

I Let f : X → U(B) be a morphism in B, the cartesian morphism
is denoted f § : f ∗(B)→ B.

I Let f : U(A)→ X ′ be a morphism in B, the opcartesian
morphism is denoted f§ : A→ Σf (A).

Setting

Definition

The category Rel is given by

I objects are triples (A,B,R) with A,B sets and R ⊆ A× B

I morphisms (f , g) : (A,B,R)→ (A′,B ′,R ′) with f : A→ A′,
g : B → B ′ and they induce (f × g)|R : R → R ′.

Definition

We define the functor Rel(U) : Rel→ Set× Set

I objects Rel(U)(A,B,R) = (A,B)

I morphisms Rel(U)(f , g) = (f , g)

The functor Rel(U) : Rel→ Set× Set is a bifibration.

Relations Bifibrations

We can generalize the previous setting to

Definition (Relations Bifibration)

Consider a bifibration U : E → B where B has products. The
relations bifibration of E over B is Rel(U) arising via change of base

Rel(E)
q- E

B × B

Rel(U)

?

×
- B

U

?

The category Rel(E) has

I objects: triple (A,B,X) such that U(X) = A× B

I morphisms: triple (f , g , α) such that U(α) = f × g

We can think X as a relation over A and B.
Rel is the relations fibration of Sub(Set) over Set.

Equality Functor

Definition (Truth Functor)

If any fiber EX of the fibration U : E → B has terminal object K (X),
it induces the functor K : B → E which is called truth functor.

Definition (Equality Functor)

The equality functor Eq : B → Rel(E) for a relations fibration
Rel(U) : Rel(E)→ B × B is induced by the action on the objects

Eq(X) = ΣδX KX

where δX : X → X × X is diagonal morphism.

In Rel this definition gives the usual notion of equality

Eq A = {(a, a) | a ∈ A}

Types Judgements

I A type context Γ is a set of type variables X1, . . . ,Xn.

I A type judgement is of the form Γ ` T Type

I Type judgements are defined inductively

Xi ∈ Γ
Γ ` Xi Type

Γ ` T Type Γ ` U Type

Γ ` T → U Type

Γ,X ` T Type

Γ ` ∀X .T Type

We use the more concise notation Γ ` T for type judgements.

Interpretation of Types

Reynolds interprets a type judgement with two functors

JΓ ` T K1 : |Rel|n → Rel

JΓ ` T K0 : |Set|n → Set,

where | | for discrete categories and n is the cardinality of Γ.

The fibrational generalization is with fibred functors

|Rel(E)|n JΓ`T K1 - Rel(E)

|B|n × |B|n

|Rel(U)|n

?

JΓ`T K0×JΓ`T K0

- B × B

Rel(U)

?

Interpretation of Types in Rel

Reynolds’ interpretation:

I Type Variables:

JΓ ` XiK0Ā = Ai and JΓ ` XiK1R̄ = Ri

I Arrow Types: we use exponential objects

JΓ ` T → UK0Ā = JΓ ` T K0Ā→ JΓ ` UK0Ā
JΓ ` T → UK1R̄ = {(f , g) | (a, b) ∈ JΓ ` T K1R̄ ⇒

(fa, gb) ∈ JΓ ` UK1R̄}

Note that they are both equality preserving (IEL later)

JΓ ` T K1(Eqn Ā)→ JΓ ` UK1(Eqn Ā) ∼= Eq(JΓ ` T → UK0Ā)

Forall Types

I Set

JΓ ` ∀X .T K0Ā =
{f : (S : Set)→ JΓ,X ` T K0(Ā,S) |

(An+1,Bn+1,Rn+1) ∈ Rel⇒
(fAn+1, fBn+1) ∈ JΓ,X ` T K1(Eqn Ā,Rn+1)}

I ad-hoc functions with an uniformity condition

I Rel

JΓ ` ∀X .T K1R̄ =
{(f , g) | (An+1,Bn+1,Rn+1) ∈ Rel⇒

(fAn+1, gBn+1) ∈ JΓ,X ` T K1(R̄,Rn+1)}

I maps are related iff they map related inputs to related outputs

Interpretation of Types Fibrationally

Fibrational interpretation:

I Type Variables:

JΓ ` XiK0Ā = Ai and JΓ ` XiK1R̄ = Ri

I Arrow Types: another time exponential objects

JΓ ` T → UK0Ā = JΓ ` T K0Ā→ JΓ ` UK0Ā
JΓ ` T → UK1R̄ = JΓ ` T K1R̄ → JΓ ` UK1R̄

It’s important that they are equality preserving (IEL later)

JΓ ` T K1(Eqn Ā)→ JΓ ` UK1(Eqn Ā) ∼= Eq(JΓ ` T → UK0Ā)

Forall Types Fibrationally

Usually universal quantifier right adjoint of projection.

It is important the fibred structure: the adjunction is influenced by
the mutually dependence between base and total category.

Define

|Rel(U)|n →Eq Rel(U)

to be the category of equality preserving fibred functors and fibred
natural transformations between them.

We interpret ∀ as the right adjoint of the projection functor

◦ π : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U))

Key Theorems in Reynolds’ Model

Reynolds’ work is based on two important results:

I Identity Extension Lemma, which asserts that equality
commutes with the interpretation of types

I Abstraction Theorem, which asserts that the interpretation
gives maps between relations which preserve relations, i.e.
related elements are sent to related elements.

We generalize these results to the fibrational setting and compare
the statements in Reynolds’ style and in the fibrational one.

Identity Extension Lemma

Lemma (IEL, Reynolds-style)

If Γ ` T , then for every object Ā in Setn

JΓ ` T K1(Eqn Ā) = Eq (JΓ ` T K0Ā)

The formulation of the IEL fibrational is:

Lemma (IEL, Fibrationally)

If Γ ` T then JT K is equality preserving, i.e., the following diagram
commutes:

|Rel(E)|n JΓ`T K1- Rel(E)

|B|n
|Eq|n

6

JΓ`T K0

- B

Eq
6

Term Context

A term context is of the form Γ ` ∆, where

I Γ is a type context

I ∆ is of the form x1 : T1, ..., xm : Tm

I Γ ` Ti Type for any i ∈ {1, . . . ,m}

Reynolds interprets term context as pointwise product of types

JΓ ` ∆K0 = JΓ ` T1K0 × · · · × JΓ ` TnK0

and
JΓ ` ∆K1 = JΓ ` T1K1 × · · · × JΓ ` TnK1.

Given a relations fibration Rel(U) in which both the categories

have products, it is easy to generalize to the fibred functor JΓ ` ∆K.

Reynolds’ Interpretation of Terms

Reynolds’ set-valued semantics of terms uses induction on the
structure of term judgements to give, for each judgement
Γ,∆ ` t : T , a function

JΓ,∆ ` t : T K0 : (Ā : |Set|n)→ JΓ ` ∆K0Ā→ JΓ ` T K0Ā.

It is like we have a map from JΓ ` ∆K0 to JΓ ` T K0 in the
environment Ā.

They can be defined by induction on terms in the expected way.

Terms are Natural Transformations

For every object Ā of Setn, in Set we have a morphism

JΓ ` ∆K0Ā→ JΓ ` T K0Ā

Both JΓ ` ∆K0 and JΓ ` T K0 define functors |Set|n → Set.
We have natural transformation

JΓ,∆ ` t : T K0 : JΓ ` ∆K0 → JΓ ` T K0.

We write J∆K0 for JΓ ` ∆K0, and JtK0 for JΓ,∆ ` t : T K0 and we
can generalize to the fibrational setting as the natural transformation

|B|n
J∆K0

**

JT K0

44
�� ��
�� JtK0 B

Abstraction Theorem

Theorem (Abstraction Theorem, Reynolds-Style)

Let Ā, B̄ ∈ Setn, R̄ ∈ Reln(Ā, B̄), (a, b) ∈ JΓ ` ∆K1R̄ then

(JtK0 Ā a, JtK0 B̄ b) ∈ JΓ ` T K1R̄

Theorem (Abstraction Theorem, Fibrationally)

Every judgement Γ,∆ ` t : T defines a fibred natural
transformation JtK : JΓ ` ∆K→ JΓ ` T K

|Rel(E)|n
J∆K1

,,

JT K1

22
�� ��
�� JtK1

Un

��

Rel(E)

U

��
|B|n × |B|n

J∆K0×J∆K0
,,

JT K0×JT K0

22
�� ��
�� JtK0×JtK0 B × B.

And the Morphisms?

I Some types define mixvariant functor, for this reason we use
discrete domains

I By using discrete categories we forget about morphisms

I For any morphism f : X → Y between sets there is the graph
relation 〈f 〉 = {(x , y) | fx = y} ⊆ X × Y

I We can generalize this definition of graph relation

I In this way we replace the action of JΓ ` T K0 on morphisms
with the action of JΓ ` T K1 on graph relations

Graph Functor: Fibrational or Opfibrational?
Let f : X → Y be a morphism in B.
We have two candidate functors 〈 〉, 〈 〉′ : B→ → Rel(E)

I objects:
I 〈f 〉 = Σ(idX ,f)(Eq X)
I 〈f 〉′ = (f , idY)∗(Eq Y)

I morphisms:

X
f - Y

X ′

α
?

f ′
- Y ′

β
?

�
〈 〉

〈 〉 ′
-

Eq(X)
(idX ,f)§- 〈f 〉 〈f 〉 (f ,idY)§- Eq(Y)

Eq(X ′)

Eq(α)
?

(idX ′ ,f
′)§- 〈f ′〉

〈(α,β)〉
?

〈f ′〉

〈(α,β)〉′
?

(f ′,idY ′)
§
- Eq(Y ′).

Eq(α)
?

Graph Functor: Some Properties

Lemma
In our model the two definitions are equivalent.

The proof is based on Beck–Chevalley condition.
We can use two universal properties: cartesian and opcartesian.

Note that equality is a particular case of graph relation for identity
morphism, in fact we have

Eq(X) ∼= 〈idX 〉.

Lemma
If Eq is full and faithful then the graph functor is full and faithful.

A Taste of Bifibrationality: Graph Lemma

Lemma (Graph Lemma, Reynolds-Style)

For a syntactic functor F , F1〈h〉 = 〈F0(h)〉

Lemma
For a fibred functor F there are two vertical morphisms

ψ : 〈F0h〉 → F1(〈h〉) φ : F1(〈h〉′)→ 〈F0h〉′

such that φ ◦ ψ = id.

F1(Eq(X))
F1((id ,h)§)- F1(〈h〉)

∼=- F1(〈h〉′) F1((h,id)∗)- F1(Eq(Y))

Eq(F0X)

∼=
?

(id ,F0h)§
- 〈F0h〉

ψ
6

∼=
- 〈F0h〉′

φ
?

(F0h,id)∗
- Eq(F0Y)

∼=
?

The results shown as far about the graph functor are used to prove
that J∀X .(TX → X)→ X K is the carrier of the initial JT K0-algebra.

Related Work

I Dunphy and Reddy “Parametric limits”

I Hermida, Reddy and Robinson “Logical Relations and
Parametricity - A Reynolds Programme for Category Theory
and Programming Languages”

I Birkedal, Møgelberg “Categorical Models of Parametric
Polymorphism”

I Some unpublished works of Hermida

Future Work

I Extension to intensional Martin-Löf’s Type Theory

I Higher Order Parametricity

Rel(C) - C

Rel(E)× Rel(E)

Rel(P)

?

×
- Rel(E)

P

?
- E

B × B × B × B
?

(× , ×)
- B × B

Rel(U)

?

×
- B

U

?

B =Set E =Fam(Set) C =Sub(Rel(Fam(Set)))

