Why Is This Type Different From All Other Types?

An “Existentialist” Perspective on Parametricity Research

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbriicken, Germany

Parametricity Workshop
Glasgow, UK
May 2, 2012

A kind invitation from Patty Johann. ..

Hi Derek,

I am wondering if you would be willing to
kick off the workshop with a 75-minute talk
describing the major trends in the area and
their importance, from inception to the
present. The idea would be to provide a
contextual framework for the rest of the
day's programme.

Hi Patty,

First, let me say that I'm very honored
that you would ask me to give such a
talk. In principle, I would be very happy
to give it. However:

...l am terrified!

Hi Derek,

I am wondering if you would be willing to
kick off the workshop with a 75-minute talk
describing the major trends in the area and
their importance, from inception to the
present. The idea would be to provide a
contextual framework for the rest of the
day's programme.

Goals of this talk

To paint a high-level (but very incomplete) picture
and provide some historical background

To ask some provocative/confused questions
and incite the ire of the audience

To explain what excites me about parametricity
and why | think we're in a “golden age”

Outline

@ What is parametricity?

@ Parametricity and effects

@ The golden age of parametricity research:
An “existentialist” perspective

Outline

@ What is parametricity?

@ Parametricity and effects

@ The golden age of parametricity research:
An “existentialist” perspective

Strachey's “parametric polymorphism” (1967)

Idea: Parametricity = Genericity

e Polymorphic function should behave “generically”, i.e.,
“run the same code” at any instantiation of its type

o Explained with a single example:

map : Vo, 5. (a« =) = alist — Slist

Supported by various languages, including Liskov's
CLU and Girard-Reynolds’ System F (early 1970s)

But not clear formally what
parametricity-as-genericity is or what it buys you. ..

Reynolds’ “relational parametricity” (1983)

Idea: Interpret types 7 as logical relations R [7] p
e Base types interpreted via identity relation
e Universal types Va.7 interpreted by intersection over all
relational interpretations of a (I'm being vague)
Abstraction Theorem: If A;I e : 7, then
Vp € A—Rel. Y(y1,72) € R[I] p.

(le] v1: [e] 12) € R~ p.

Upshot: Behavior of e must not be affected by
change of data representation of type variables in A
o [e] v1 = [e] 12 if 7 is a base type
e Ex.: switching between polar and cartesian coordinates

Reynolds’ “relational parametricity” (1983)

|dea: Interpret types 7 as logical relations R [7] p
e Base types interpreted via identity relation

Question

But does Reynolds’ relational parametricity
capture Strachey's notion of genericity?

o [e] v1 = [e] 12 if 7 is a base type
e Ex.: switching between polar and cartesian coordinates

A “criticism” of relational parametricity

From Abramsky and Jagadeesan (2005):

“Relational parametricity is a beautiful and important notion.
However, in our view it is not the whole story. In particular:

@ It is a “pointwise” notion, which gets at genericity indirectly,
via a notion of uniformity applied to the family of
instantiations of the program, rather than directly capturing
the idea of a program written at the generic level, which
necessarily cannot probe the structure of an instance.

@ It is closely linked to strong extensionality principles, as shown
e.g. in [ACC93, PA93], whereas the intuition of generic
programs not probing the structure of instances is prima facie
an intensional notion — a constraint on the behaviour of
processes.”

A “criticism” of relational parametricity

From Abramsky and Jagadeesan (2005):

“Relational parametricity is a beautiful and important notion.

My Answer

Reynolds’ relational parametricity
explains what you can DO with
Strachey's “generic” notion of parametricity!

PToOSTOITT MOt PO ot TTroUre o T=TTToCCITT ST T rerer

an intensional notion — a constraint on the behaviour of
processes.”

Two kinds of applications of relational parametricity

o “Universalist”

o “Existentialist”

“Universalist” applications of relational parametricity

What can one say about all terms of a certain type?

Definability of types:

e Many types (e.g.,, X, +, 3, i, v) can be Church-encoded
in terms of V and —

e Can use parametricity to build simple, yet very expressive,
“metalanguages” and type theories

Free theorems (Wadler, 1989):

e V-types say something interesting about their inhabitants,
e.g., f :Ya.[a] — [a] can only rearrange elements:

Vg:o0— 7. (map g) o fl[o] = f[r] o (map g)

e Applicable to proving correctness of various program
optimizations (e.g., short-cut fusion)

“Existentialist” applications of relational parametricity

What can one say about particular terms of a
certain type?

Representation independence (Mitchell, 1986):

e Can prove two ADTs contextually equivalent if there
exists a simulation relation between their type
representations that is preserved by their operations

e Essentially a special kind of universalist application:
exploits a fact about all contexts of a certain type

Fundamentally a relational, extensional property,
not an intensional one!

Can we talk about parametricity
without talking about:

o Semantics?
@ Syntax?

Plotkin and Abadi’s logic for parametricity (1993)

Second-order logic with primitive notions of

relations and equality
o Logical relations R 7] p definable in the logic

Parametricity axiom, which can be used to establish
definability of types in a purely syntactic manner:

VB1, .., Bn Vx : (VYa.1[a, B1, - - ., Ba])-
(X7X) €R [[\V/OC.T[Oé, 517 s 7ﬁn]]] {ﬁj = eqﬂj}

Demonstrates the semantics-independent
expressive power of parametricity

Semantic models and relatives of parametricity

Reynolds built his logical relations over a naive,
classical set-theoretic model of System F types that
turned out not to exist!

Lots of work on models that do exist + semantic
criteria for what being a “parametric model” means:
e Pitts’ constructive set-theoretic model, Bainbridge et al.’s
PER model, realizability models
o "“Reflexive graph” models: parametric APL structures
(Birkedal-Mggelberg), parametric limits (Dunphy-Reddy)

Semantic models and relatives of parametricity

Reynolds built his logical relations over a naive,
classical set-theoretic model of System F types that

Question

What's the state of the art here?
(I don't know.)

Semantic models and relatives of parametricity

Reynolds built his logical relations over a naive,
classical set-theoretic model of System F types that
turned out not to exist!

Lots of work on models that do exist + semantic
criteria for what being a “parametric model” means:
e Pitts’ constructive set-theoretic model, Bainbridge et al.’s
PER model, realizability models
o "“Reflexive graph” models: parametric APL structures
(Birkedal-Mggelberg), parametric limits (Dunphy-Reddy)

Semantic models and relatives of parametricity

Reynolds built his logical relations over a naive,
classical set-theoretic model of System F types that
turned out not to exist!

Lots of work on models that do exist + semantic
criteria for what being a “parametric model” means:

e Pitts’ constructive set-theoretic model, Bainbridge et al.’s
PER model, realizability models

o "“Reflexive graph” models: parametric APL structures
(Birkedal-Mggelberg), parametric limits (Dunphy-Reddy)

Related notions of “uniformity”:
e Naturality, dinaturality, genericity (Longo et al., 1993)
e Does parametricity subsume these?

Outline

@ What is parametricity?

@ Parametricity and effects

@ The golden age of parametricity research:
An “existentialist” perspective

The overarching trend in parametricity research

From Voigtlander and Johann (2007):

“The ultimate goal of the line of research advanced in this
paper is the development of tools for reasoning about
parametricity properties of, and parametricity-based
transformations on programs in, real programming languages

rather than toy calculi.”

The overarching trend in parametricity research

Generalizing parametricity to handle

richer languages supporting:

o Computational effects (recursion, mutable state,
control operators, concurrency)

o Higher kinds, dependent types
o Units of measure

o Substructural types

o Dynamic type analysis

The overarching trend in parametricity research

Generalizing parametricity to handle

richer languages supporting:

o Computational effects (recursion, mutable state,
control operators, concurrency)

o Higher kinds, dependent types
o Units of measure

o Substructural types

o Dynamic type analysis

Generalizing parametricity to handle effects

@ Definability of types in the presence of effects

@ Free theorems in the presence of effects

@ Representation independence and local state

Generalizing parametricity to handle effects

@ Definability of types in the presence of effects

@ Free theorems in the presence of effects

@ Representation independence and local state

System F + recursion /effects as a core metalanguage?

System F is very expressive, but it's total

|dea: Adding recursion /effects in the “right” way
could enable it to serve as a metalanguage for the
semantics of more realistic languages

e Encode rec. types = Solve rec. domain equations in types

Problem: Even just parametricity + Y renders the
type theory inconsistent (Huwig-Poigné, 1990)

@ Need to restrict parametricity to only interpret abstract
types with “admissible” (strict, chain-complete) relations

Plotkin's idea (1993): Use linearity to model strictness

Theory of PILLy /Lily worked out by
Birkedal-Mggelberg-Petersen denotationally (2006) and
Bierman-Pitts-Russo operationally (2000):

Smash product T@7 EVa.(r -7 —a) —oa

Coalesced sum T®T £Va.l(t —a) o !(7' —a) —oa

Product X7 EVa.((T —a) @ (7' - a)) -«
Separated sum T4+ 2Tl

Existential Ja.7(a) £ VB.(Va. 7(a) — 3) — 3

Truth values T2 Va.la —la —a

Flat naturals N, £ Va.la —!(la — a) —«a

Inductive po. T(a) 2 Va. l(t(a) — a) —a (a +ve in 7(a))
Co-inductive va.7(a) 23 al(a —o71(a)@a (o +vein 7(a))
Recursive reca.7(a,a) = va. t(uB.7(a, B),a) (a +ve in 7(a, B),

B —ve in 7(a,)

PE: Scaling to monadic effects

Mggelberg and Simpson (2007) define a type theory
PE with linearity, polymorphism, and
value/computation types a la Levy's CBPV

e Value/computation types needed, e.g., to allow for
effectful operations at polymorphic type

choice : VX. X - X = X

Again, many types are encodable, although PE does
not handle recursion

PE: Scaling to monadic effects

Mggelberg and Simpson (2007) define a type theory

Question

Are these type theories (PILLy, PE)
actually useful as metalanguages?

What's left to do here?

not handle recursion

Generalizing parametricity to handle effects

@ Definability of types in the presence of effects

@ Free theorems in the presence of effects

@ Representation independence and local state

Pitts-Stark’'s T T-closure and operational logical relations

Pitts-Stark (1998) propose a simpler alternative to
“admissibility” and PILLy for operational models:
o T T-closure (aka | I -closure, biorthogonality)

Useful for several reasons:

o Ensures that the LR is admissible in the domain-theoretic
sense (and thus, closure under fixed-points)

e Ensures completeness w.r.t. contextual equivalence
e Works even for lang’'s with “context-sensitive” semantics

Key results about free theorems in the presence of effects

Pitts (2000):
e Studied PolyPCF, a lazy language with recursion

e Proved various extensionality principles, as well as
definability of list and 3 types

Johann (2002):

o Proved correctness of various free-theorem-based
optimizations like short-cut fusion in a setting like Pitts's

Key results about free theorems in the presence of effects

Johann-Voigtlander (2004, 2007):

e Proved correctness of restrictions of the above
optimizations in the presence of “seq”

e Influential partly due to its surprising (negative) results

Johann-Simpson-Voigtlander (2010):
e Generic framework for T T-closed relations in the presence
of arbitrary Plotkin-Power-style “algebraic effects”
e Proved extensionality principles and definability of
monadic type T(7) = Va.(T — a) — «

Key results about free theorems in the presence of effects

Johann-Voigtlander (2004, 2007):

aDravad covvactnace of cocteictione of +tha Sbhava

Question

Do the JV free-theorem restrictions invalidate
common cases where short-cut fusion is useful?

MotauiC typc {7) ~ va.\'lm ——7 &) =7 k

The “identity extension” lemma

Apparently important lemma whose importance
confuses me:

R [[T]] (Oz = eqo) = €47 /0]

Seems necessary to prove parametricity in
denotational settings

But not needed in operational settings

e Falls out as a consequence of T T-closure,
but not when step-indexing is used!

e Seems relevant in proving certain definability results and
free theorems (e.g., short-cut fusion) but not others

The “identity extension” lemma

Apparently important lemma whose importance
confuses me:

Question

What the hell is going on here?

e Seems relevant in proving certain definability results and
free theorems (e.g., short-cut fusion) but not others

Generalizing parametricity to handle effects

@ Definability of types in the presence of effects

@ Free theorems in the presence of effects

© Representation independence and local state

Representation independence for local state

Reasoning about local state much like reasoning
about abstract types

e Should be able to change internal data representation
without affecting clients

Some major differences:

e State and the invariants on it may “change shape” as the
program is executed

e State has a “temporal” component in that it can undergo
irreversible changes

Denotational models of Algol, focused on “invariants”

Reynolds-Oles (1981-82):

e Functor-category model (a kind of Kripke model),
but fairly weak reasoning principles

Meyer-Sieber (1988):
e Shows how to support reasoning about invariants on a
range of interesting (second-order) examples:

begin
integer x;
procedure Add2;

begin x := x + 2 end ~ diverge

x = 0; P(Add2);
if x mod 2 = 0 then diverge

end

Denotational models of representation independence

O’Hearn-Tennent (1993):

e The first approach to really support reasoning about
representation independence:

begin begin
integer x; integer x;
integer procedure Val, integer procedure Val,
Val := x; N Val := —x;
procedure Inc; = procedure Dec;
begin x := x+ 1 end begin x := x — 1 end
x :=0; P(Inc, Val); x := 0; P(Dec, Val);
end end

e Reduces rep. ind. in Algol to rep. ind. in System F by a
polymorphic store-passing interpretation

o Sieber (1992) provides an alternative approach, also based
on logical relations, that | don’t know the details of

Denotational accounts of irreversible state change

O’Hearn-Reynolds (1995):

e Similar to O'Hearn-Tennent, but interprets Algol into a
polymorphic linear type system in order to track
irreversibility of state change

begin
integer x;
procedure Inc;
begin x .=x+1lend = P(diverge)

x :=0; P(Inc);
if x > 0 then diverge
end

O’Hearn-Reddy (1995):

o A completely different approach to locality and
irreversibility based on placing invariants on the
observable actions on local state

Operational models of local first-order state

Pitts (1997):
e Operational possible-worlds model of Idealized Algol (IA),
inspired by O'Hearn-Reynolds and prior work

@ Provides a more direct method of proving all previous
results, including reasoning about irreversibility

Pitts-Stark (1998):

e Models a simply-typed ML-like language with int ref'’s,
but does not support reasoning about irreversibility

e Major difficulty involves the fact that variables may escape
their scope (T T-closure is introduced to deal with this)

@ One of my all-time favorite papers

Operational models of local first-order state

Pitts (1997):
e Operational possible-worlds model of Idealized Algol (IA),

Question

Are there any examples of Algol equivalences
that become inequivalences when ported to ML?

LACTE SCOPC {1 T =CI0OSUTC IS TIrouutcu 1o ucdi WILTT LS)

@ One of my all-time favorite papers

Operational model of local higher-order state + u,V, 3

7 = 3Ja.3B. (unit —» a) x (unit = B) x (a x B — bool)
e1 = letx=ref0in
pack (int, pack (int, _. x := Ix 4+ 1; Ix,
Ax = Ix+1; Ix,

Ap.p.1 = p.2))
e = pack (unit, pack (unit, A_. (),
A),
A_. false))

Ahmed-Dreyer-Rossberg (2009):

e Building on Pitts-Stark (1998) and Ahmed (2004, 2006),
step-indexing used to model higher-order state + u,V,

o Key idea: Irreversibility of state change modeled through
state transition systems (STS's)

o Especially useful for modeling “generative” ADTs that
grow over time in accordance with changes to local state

The local state of the art

public
>
0 1

—

private

7 = (unit — unit) — int
e = M.(F(O;f();1)
e = letx=ref 0in \f.(x:=0;f ();x:=1;f {); !x)

Dreyer-Neis-Birkedal (2010):
o Show that a T T-closure of the ADR model is sound in
the presence of call/cc, but some extensions to it are not

e Give a framework for understanding the impact of
higher-order state, call/cc and exceptions
on STS-style reasoning about local state

The local state of the art

public
>
0 1

—

private

Question

“Full abstraction” in operational models
seems to be a rather uninformative property.)

It seems to imply something stronger
in denotational models, but why?

e Give a framework for understanding the impact of
higher-order state, call/cc and exceptions
on STS-style reasoning about local state

Bisimulations for ML-like languages

Environmental bisimulations

e Coinductively-defined sets of relations, quite similar to the
ADR model in terms of expressive power

e Sumii-Pierce (2004, 2005), Koutavas-Wand (2006),
Sangiorgi-Kobayashi-Sumii (2007), Sumii (2009)

Normal form (or open) bisimulations

o Elegant treatment of higher-order functions, can be
combined with env. bisim. to model local H-O state

e Lassen-Levy (2007, 2008), Stgvring-Lassen (2007)

Parametric bisimulations

@ Synthesis of ideas from the above techniques, as well as
Dreyer-Neis-Birkedal logical relations

e Hur-Dreyer-Neis-Vafeiadis (2012)

Outline

@ What is parametricity?

@ Parametricity and effects

@ The golden age of parametricity research:
An “existentialist” perspective

My “existentialist” view

Looking at concrete applications of parametricity is

really useful!

e Examples help to convey intuitions and uncover
deficiencies in existing models

Some of the most influential papers are in large part
influential thanks to emphasis on concrete examples

o Meyer-Sieber (1988), Wadler (1989), Kennedy (1997),
Pitts-Stark (1998), Johann-Voigtlander (2004), ...

Denotational models provide amazing insights, but
operational models offer a lower barrier to entry

e Enabled someone like me to get involved in the field and
start working out examples quickly without learning a
huge body of mathematics first

We're in a golden age of parametricity research!

We've spent 30 years building the foundations of
the house of parametricity, let's live in it!

e Now that we've adapted parametricity to more realistic
languages, let's start deploying it in a broader range of
“real” applications besides free theorems and ctx. equiv.

This is win-win
e New apps will expose further holes in our foundations,
just as concrete examples have done in the past

e For reasoning about large systems, abstraction is key,
and parametricity is the only game in town

Application #1: Compositional compiler correctness

Goal: compositional equivalences between programs
in different languages (Benton et al.)

e e.g., compositional compiler correctness

Application #1: Compositional compiler correctness

Goal: compositional equivalences between programs
in different languages (Benton et al.)

e e.g., compositional compiler correctness

Compiler

Application #1: Compositional compiler correctness

Goal: compositional equivalences between programs
in different languages (Benton et al.)

e e.g., compositional compiler correctness

Compilerl Compiler2 Hand-Opt.

p3 in Asm

Application #1: Compositional compiler correctness

o Horizontal compositionality is preservation of
equivalence under linking of modules.

e Vertical compositionality is transitive composition
of equivalence proofs.

Parametric bisimulations to the rescue!
(POPL'12 — Joint work with Hur, Neis, Vafeiadis)

Logical relations are not transitively composable
e Especially step-indexed Kripke logical relations
e Hur et al. [ICFP09, POPL11] only studied one-pass compilers

Bisimulations do not scale (in an obvious way) to
inter-language reasoning
@ Due to their use of “syntactic” devices for H-O functions

Parametric bisimulations remove these limitations
o "Relational” treatment of H-O fcns (like logical relations)
e Supports transitive composition of proofs (like bisim's)

Application #2: Making substructural types more flexible

Combination of existential + substructural types
o Allows for precise control over invariants on private state

e Example: interface of a memory allocator whose internal
invariant depends on the set of allocated locations

JA : LocSet — Type.

init.cap : A(0)
® malloc : IVL: LocSet. A(L) —o
X : Loc. ptr X @ cap X 1 ® A(LW {X})

® free : VL : LocSet. VX : Loc.
ptr X @ cap X 1 ® A(Lw {X}) — A(L)

Problem: Interface pollution for clients

o A client must thread the “capability” A(L) through its
interface to guard against interference from other clients

Superficially substructural types
(Submitted — Joint work with Krishnaswami, Turon, Garg)

We propose a new sharing rule:
e Enables A(L) to be split into “fictionally disjoint” pieces,
so clients can be oblivious to one another’s existence

Split . VL]_, L2 - LocSet. A(L]_ W L2) —0 A(Ll) (059 A(Lg)
join . VLl, L2 : LocSet. A(Ll) 0% A(L2) —o A(Ll %) L2)

This can be done for any commutative monoid!
e Each ADT can pick whatever monoid is best
e Builds on Birkedal et al.’s work on separation logic

@ Soundness of the rule proven using a novel variant of
Dreyer-Neis-Birkedal possible-worlds model, with the
STS's replaced by monoids

Application #3: Log. relations for fine-grained concurrency
(Joint work with Turon, Thamsborg, Ahmed, Birkedal)

Verification of fine-grained concurrent algorithms

e People have focused on linearizability (Herlihy-Wing, '90),
but what client really cares about is contextual refinement

class StackSpec[A]

class TreiberStack([A] private val s = new SeqStack[A]
def push (a:A) = ... = def push (a:A) = atomic {s.push(a);}
def tryPop () = ... def tryPop () = atomic {s.tryPop();}

We're adapting STS-based logical relations to verify
these contextual refinement properties directly

e This is work in progress, but already we can see that new
and interesting extensions of existing models are required

Parametricity is our secret weapon.
Let’s put it to work!

