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Preface

The TYPES meetings are a forum to present new and ongoing work in all aspects of type theory and its
applications, especially in formalized and computer-assisted reasoning and computer programming. In
the spirit of workshops, talks may be based on newly published papers, work submitted for publication,
but also work in progress.

This year, 91 abstracts were submitted, and each submission was reviewed by at least three program
committee members. Due to the large number of high-quality submissions and the limited space in the
programme, it was decided by the programme committee to select some submissions for 20 minute talks,
and some for 15 minute talks. In the end, 82 submissions were accepted (40 for a 20 minute slot, and 42
for a 15 minute slot).

The programme will also feature invited talks by Ingo Blechschmidt (University of Antwerp), Sonia
Marin (University of Birmingham), Chris Martens (Northeastern University), Christian Sattler (Chalmers
University of Technology and University of Gothenburg). One afternoon of the conference is co-located
with the Women in EuroProofNet 2025 workshop, and will be dedicated to gender balance in the
community.

The conference received financial support from the gold sponsor Jane Street, and the bronze sponsors
Formal Vindications, Well-typed, and Input Output. It also received support in the form of caramel
wafers from the local company Tunnock’s. We gratefully acknowledge all support.

Similarly to previous years, a formal post-proceedings volume in Dagstuhl’s Leibniz International
Proceedings in Informatics (LIPIcs) series is planned for after the conference; papers submitted to that
volume must not have been selected for presentation at the conference, but must represent unpublished
work, and are subjected to (another) full peer-review process.

June 2025, Glasgow Fredrik Nordvall Forsberg
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Towards topological type theory for decrypting transfinite

methods in classical mathematics

Ingo Blechschmidt

University of Antwerp

In constructive mathematics, an ongoing challenge is to extracting computational content
from infinitary arguments in classical mathematics — especially those that yield concrete results
via abstract tools such as minimal bad sequences or maximal ideals. Today, a wide range of
such techniques exists, constituting a late partial fulfillment of Hilbert’s program.

This talk presents work in progress on porting the modal operators ”everywhere” and ”some-
where”, as developed in set theory by Joel David Hamkins, Victoria Gitman and their collab-
orators, into type theory. This modal enrichment provides a uniform language for expressing
several established constructivization techniques, and is at the core of a relatively recent new
technique that offers insights on the origins of some of our most cherished inductive definitions.
These developments are closely connected to recent advances in type-theoretic presheaf and
sheaf models, dialogue continuity, synthetic algebraic geometry and well-quasi-order theory.



Intuitionistic modalities through proof theory

Sonia Marin

University of Birmingham
s.marin@bham.ac.uk

Intuitionistic modal logic, despite more than seventy years of investigation, [5],
still partly escapes our comprehension. Structural proof theoretic accounts of in-
tuitionistic modal logic have adopted either the paradigm of labelled deduction
in the form of labelled natural deduction and sequent systems [7], or the one
of unlabelled deduction in the form of sequent [2] or nested sequent systems [8,
1]. Both of these approaches are still under active consideration. In this talk, I
would like to give an overview of the current landscape of intuitionistic modal
proof theory and survey some of the more recent developments [3, 4, 6].
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A Guided Tour of Polarity and Focusing

Chris Martens

Northeastern University

Focusing and polarity are two intertwined ideas that relate proofs and computation, inform-
ing modern ideas about canonical forms, pattern matching, evaluation order, logical frameworks,
and logic programming in the proof-search-as-computation paradigm. However, the relationship
between these ideas, their history, and the underlying proof theory, remain obscure and folkloric
to many practitioners. This talk will serve as beginner’s guide for the uninitiated, attempting
to reconcile disparate presentations, separate orthogonal concepts, signpost the landscape of
important prior work in the area, and gesture at promising paths for further investigation.



A constructive higher groupoid model of homotopy type

theory

Christian Sattler

Chalmers University of Technology and University of Gothenburg

In homotopy type theory, every type effectively carries the structure of a higher groupoid :
a set equipped with a higher-dimensional equivalence relation. Conversely, there ought to
be an effective interpretation of homotopy type theory in higher groupoids. Unfortunately,
Voevodsky’s model in Kan simplicial sets is non-constructive. And existing cubical models fail
to constructively present higher groupoids in the above sense.

In this talk, I will introduce an effective interpretation of homotopy type theory in higher
groupoids. This is based on a combination of cubical and semisimplicial techniques.



Accessible Sets in Martin-Löf Type Theory with

Function Extensionality

Yuta Takahashi

Aomori University, Aomori, Japan
y.takahashi@aomori-u.ac.jp

Background: Accessible Sets in Cumulative Hierarchy After Bishop [5] showed that
analysis can be developed constructively without using Brouwer’s intuitionistic mathematics,
several authors investigated a system to formalise Bishop’s constructive analysis. For instance,
Myhill [13] introduced a system of constructive set theory, and later Aczel [1, 2, 3] introduced
another system of constructive set theory called constructive Zermelo-Fraenkel set theory CZF.
On the other hand, Martin-Löf [12] took an approach different from the set-theoretic one: he
formulated a framework of constructive type theory called Martin-Löf type theory MLTT.
This framework follows the Curry-Howard correspondence, and at the same time, comprises a
set of rules to define mathematical objects inductively or recursively.

Aczel’s work on CZF also showed that these two approaches are compatible. He defined
a cumulative hierarchy V of sets as a W-type in MLTT, and interpreted all axioms of CZF
in MLTT. This hierarchy can be considered as a setoid model of CZF: V is a type with
the equivalence relation

.
=, which is defined by the induction principle on V as a W-type. For

any set a : V, one can also define the type index a and the set pred a x, which are the type
of indices for the elements of a and the element of a of index x, respectively. We abbreviate
(i : index a)→ Φ(pred a i) as ∀(x∈a)Φ(x).

As in classical Zermelo-Fraenkel set theory, the transitive closure of a set can be defined in
CZF (see, e.g., [9]). Recall that the transitive closure TC(a) of a set a satisfies the equation

TC(a) = a ∪
⋃
{TC(x) | x ∈ a},

which implies that TC(a) is a transitive set:

∀x∀y(y ∈ x ∈ TC(a)→ y ∈ TC(a)).

So the transitive closure of a set a contains all sets below a in the hierarchy as its elements.
Through Aczel’s interpretation of CZF, one has the corresponding operator tc : V → V in
MLTT.

By using Dybjer’s indexed inductive definition [7], one can then define the accessibility
Acc : V → Set with the constructor prog, the eliminator indAcc, and the computation rule
below: for any universe level `,

prog : (a : V)→ ∀(x∈tc a)Acc x→ Acc a

indAcc : (P : (a : V)→ Acc a→ Set `)→
((a : V)(f : ∀(x∈tc a)Acc x)→

((i : index (tc a))→ P (pred (tc a) i) (f i))→ P a (prog a f))→
(a : V)(c : Acc a)→ P a c

indAcc P h a (prog a f) = h a f (λi.indAcc P h (pred (tc a) i) (f i))
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Roughly speaking, Acc a means that the set a is constructed from below: the constructor prog
says that if all sets below a are constructed then a is constructed as well. The eliminator indAcc
together with the computation rule provides the induction principle along such construction.
Note that Acc is a special case of the accessible part of a binary relation, which can be defined
as an inductive family by Dybjer’s indexed inductive definition. The notion of accessible part
has several applications in the areas of research such as proof theory and term rewriting (see,
e.g., [14] and [4], respectively).

The induction principle for Acc is stronger than the W-induction principle on a : V in the
sense that the former admits the induction hypothesis not only for an arbitrary x ∈ a, but also
for an arbitrary member of the transitive closure tc a. For instance, let

nextU : Σ(A:Set)(A→ Set)→ Σ(A:Set)(A→ Set)

be a universe operator which takes a family of types and returns a Tarski-universe (U,T)
containing all types in this family. Using the induction principle for Acc, one can define a
hierarchy U a t of Tarski-universes with a : V and t : Acc as follows.

U a (prog a f) = fst
(
nextU(index (tc a), λi.U (pred (tc a) i) (f i))

)

Roughly speaking, U a (prog a f) contains as its subuniverses not only U v t for any v ∈ a with
t : Acc v, but also U w s for any w ∈ tc a with s : Acc w.

Though the transitive closure operator tc is accompanied by a similar induction principle
which is stronger than the W-induction principle on V, the Acc-induction principle has an
advantage over that of tc: the Acc-induction principle has the simple and useful computation
rule as seen above. One might try to verify that the tc-induction principle would have the
following computation rule

indtc P h a = h a (λi.indtc P h (pred (tc a) i))

for any a : V with P : V→ Set ` and h : (a : V)→ ∀(x∈tc a)P (pred (tc a) x)→ P a. However, in
intensional MLTT it is implausible that one can obtain this computation rule, and in fact one
should not obtain, otherwise the evaluation of indtc P h a by the ξ-rule does not terminate:

indtc P h a = h a (λi.indtc P h (pred (tc a) i))

= h a (λi.h (pred (tc a) i)(λj.indtc P h (pred (tc (pred (tc a) i)) j))) = · · ·

Aim: Accessible Sets under Function Extensionality We show that the constructor
and eliminator of Acc, namely, the introduction and elimination rules of Acc are derivable in
MLTT with function extensionality: for any universe levels `1 and `2,

funext : (A : Set `1)(B : A→ Set `2)

(f g : (x : A)→ B x)→ ((x : A)→ f x =B x g x)→ f =(x:A)→B x g.

This means that indexed inductive definition is dispensable for formulating the constructor and
eliminator of Acc in MLTT with function extensionality, though its computation rule is still
missing without indexed inductive definition.

For this purpose, we first derive the induction principle on transitive closure tc without
using function extensionality: for any universe level `,

indtc : (P : V→ Set `)→ ((a : V)→ ∀(x∈tc a)P x→ P a)→ (a : V)→ P a.

2
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The accessibility Acc : V→ Set is then defined as follows: putting P := λa.Set, we define

acc := λa.λg.(i : index (tc a))→ g i, Acc := indtc P acc.

Next, using function extensionality, we prove the following propositional computation rule of
indtc. Essentially, this rule was already proved in the present author’s preprint [15, Appendix].

Proposition. For any P : V → Set `, h : (a′ : V) → ∀(x∈tc a′)P x → P a′ and a : V, we have
the following term of the identity type indtc P h a =P a h a (λi.indtc P h (pred (tc a) i)).

comptc P h a : indtc P h a =P a h a (λi.indtc P h (pred (tc a) i)).

If one takes P and acc as above, then an instance

comptc P acc a : Acc a =Set ∀(x∈tc a)Acc x

is obtained, which is crucial to our argument. Since the direction from the right of this identity
type to the left corresponds to the introduction rule of Acc, we can define the constructor
prog : (a : V)→ ∀(x∈tc a)Acc x→ Acc a by transporting along this direction:

prog := λa.λf.transport (λA.A) (sym (comptc P acc a)) f.

To derive the Acc-elimination rule, we prove (a : V)(c : Acc a) → P a c under the assumptions
of this rule by induction on transitive closure of a. Transporting from Acc a′ to ∀(x∈tc a′)Acc x
for any a′ : V provides the function inv : (a′ : V)→ Acc a′ → ∀(x∈tc a′)Acc x as

inv := λa′.λc′.transport (λA.A) (comptc P acc a′) c′,

so we have inv a c : ∀(x∈tc a)Acc x. By using the assumption

(a : V)(f : ∀(x∈tc a)Acc x)→ ((i : index (tc a))→ P (pred (tc a) i) (f i))→ P a (prog a f)

with the induction hypothesis ∀(x∈tc a)(d : Acc x)→ P x d, we have P a (prog a (inv a c)). As a
general fact on transport, we also have

(A : Set `1)(P : A→ Set `2)(x y : A)(p : x =A y)(c : P x)

→ transport P (sym p) (transport P p c) =P x c,

so prog a (inv a c) =Acc a c holds. Hence it follows from P a (prog a (inv a c)) that P a c holds.
In addition, we show with function extensionality that for any a : V there is a unique proof

of Acc a, that is,
(a : V)→ Σ(t:Acc a)((s : Acc a)→ t =Acc a s)

holds. We formalised our result in Agda by postulating function extensionality [16].

Future Work Aczel’s interpretation of CZF in MLTT was refined in Homotopy type theory
(HoTT) [17]. The cumulative hierarchy V of sets is defined not as a W-type but as a higher
inductive type, where the equivalence relation

.
= on V is replaced with the identity type =V and

V has the path constructor for =V. Other interpretations of CZF in HoTT were investigated
in, e.g., [10, 11, 8]. In the literature of HoTT the accessibility in general, namely, the accessible
part of a binary relation is defined by indexed inductive definition [17, 6]. A future research
direction is to examine whether its special case Acc is derivable in HoTT by adapting our
argument above: we will examine whether the constructor and eliminator of Acc are derivable
under some interpretation of CZF in HoTT, which can prove function extensionality by means
of the univalence axiom.
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In Cantor Space, No One Can Hear You Stream
Martin Baillon, Assia Mahboubi, and Pierre-Marie Pédrot

INRIA, France

It is well-known that all computable functions are continuous. This result has been enshrined
in various kinds of Brouwerian intuitionistic mathematics through flavours of bar recursion [19]
with varying degrees of compatibility with classical mathematics. In type theory, continuity is
usually phrased as a property of functions φ : (N → A) → B for suitable types A and B, and
boils down to the fact that such a function can only depend on a finite prefix of any argument
α : N → A. In this abstract, we will care about the case A := B, for which N → B is known
as the Cantor space, and B is some hereditarily positive type, i.e. purely first-order inductive,
typically B := N.

Streams of booleans are incomprehensible beings. Infinite processions crawling around the
stars like never-ending snakes, they stay in the shadows, lurking in the outskirts of computa-
tion. For cardinality reasons, most of them cannot even be named. Ungraspable, continuity
of all functionals over the Cantor space means that they will forever stay alien to our human
understanding. No function can actually witness their horror unheeded. In Cantor space, no
one can hear you stream.

As anecdotal as it may seem, continuity and its alter-egos have extremely strong conse-
quences, at least when given internally. For instance, bar recursion is enough to realize the
principle known as double-negation shift, and thus to reach the logical strength of second-order
arithmetic in a system that is otherwise simply-typed [5]. This is one of the reasons for the
importance of such principles in the eyes of the Brouwerian crowd, who used them to develop
constructive analysis. Continuity is furthermore tightly related to choice principles [6].

There has been a revival around this topic in recent years. In addition to the already men-
tioned papers, Escardó gave a proof that System T enjoys continuity in an external way [13]
using a kind of side-effect reminiscent of interaction-trees [20]. Baillon et al. gave a generaliza-
tion of this proof to Baclofen Type Theory, a variant of MLTT with a restricted form of large
elimination [4]. Escardó and Xu also studied more semantical approaches to the same kinds of
questions [21, 12]. From the community of PER semantics, there was an important series of
papers by several authors including Rahli in the intersection of all of them [18, 16, 17, 7, 8, 9]
considering various forms of continuity in realizability models of MLTT.

The work we describe here can be seen as a variant on the models considered in the latter
trend. It lies in the continuity of the first author’s PhD thesis [3] and can be seen as a mechanized
refinement of a previous work by Coquand and Jaber [11]. We prove external continuity of
functionals over the Cantor space in MLTT, i.e. terms of type ⊢ M : (N → B) → N by
embedding them into a larger type theory MLTT𭟋 which is basically MLTT where terms are
extended with a single abstract oracle α : N → B and contexts with partial knowledge about
the oracle

Γ := . . . | Γ, α(n) 7→ b n ∈ N, b ∈ B

where N := {0, 1, . . .} and B := {tt, ff} stand respectively for integer and boolean literals.
Such a hypothesis intuitively means that the value of α at n is known to be b. This partial
knowledge can be reflected equationally through the conversion rule below.

α(n) 7→ b ∈ Γ

Γ ⊢ α n ≡ b : B
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Moreover, all kinds of judgements of MLTT𭟋 are extended with a built-in splitting principle
that allows accumulating knowledge about the oracle. For instance, for term typing we have

Γ, α(n) 7→ tt ⊢M : A Γ, α(n) 7→ ff ⊢M : A α(n) 7→ − ̸∈ Γ

Γ ⊢M : A

It is somewhat immediate to the astute reader that the intended model for this theory is
some kind of sheaf model [15], i.e. a proof-relevant version of Beth semantics. Basing ourselves
upon the logrel-coq development [2], we prove in Coq that MLTT𭟋 enjoys a form of canonicity
and strong normalization using a logical relation model similar to the now famous NbE model
of Abel et al. [1]. While our syntax is essentially the same as the one from the Coquand-Jaber
note [11], we prove a somewhat more general result. Our model is indeed a kind of realizability,
i.e. based on reduction instead of evaluation in the metatheory. As a result, rather than just
equational canonicity, we also prove that well-typed terms actually reduce to a normal form.
As is usual in sheaf models, canonicity is weakened to some kind of decision tree, e.g. for N
it implies that for every closed ⊢ M : N there is a finite splitting tree such that M reduces
to an integer on each branch. This is a generalization of the trivial case of canonicity under
consistent, purely negative axioms [10].

Furthermore, our model features a first-class handling of variables, so it scales to open terms.
This is achieved by the standard trick ensuring that all relations are presheaves over contexts
and that neutrals are always realizers. While this technique is well-known, the resulting property
offers a stark contrast with the models of Rahli et al., such as TT2

C [9], where only closed terms
are manipulated in the semantics. The latter hardwires some logical consequences in the internal
language, such as equality reflection and, in particular, function extensionality. Unfortunately,
apart from not being provable in MLTT and making type-checking undecidable, extensionality
is often at odds with strong continuity principles. This forces some of the strongest continuity
principles to be made innocuous by squashing them, thus rendering them computationally
irrelevant.

Just like a proper handling of variables makes the notion of neutrals paramount, our work
highlights the importance of their sheaf equivalent, that we call α-neutrals. They are basically
the equivalent of neutrals, where the head is not a variable but α n with α(n) 7→ − ̸∈ Γ. Like
mere neutrals, they block computation but contrary to them, an α-neutral can be unlocked by a
weakening adding α(n) 7→ b. Indeed, extending contexts can increase computational knowledge
about the oracle. The resulting logical relation also smells very strongly of call-by-push-value
(CBPV) [14] and more generally of semantics of effectful languages. As a matter of fact, the
relation is split between a strong and a weak variant. The former corresponds to pure head
values that are not allowed to split, while the latter corresponds to effectful terms that require
splitting to be well-typed.

We will give insights about this model and describe some of the ongoing work on the for-
malization and the expected results to come.
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In the context of univalent foundations [17], injective types were introduced by the second
author in [6]. The interest in injectivity originated in its use to construct infinite searchable
types [5], but the topic turned out to have a rather rich theory on its own. We present new
examples and counter-examples of injective types from our Agda development [7].

Definition 1. A type D is (algebraically) injective if it has the property that for every
embedding j : X ↪→ Y , any map f : X → D into D has a designated extension f/j. By
extension, we mean that the diagram below commutes, i.e. f/j ◦ j = f holds.

X Y

D
f

j

f/j
(†)

We recall that an embedding is a map whose fibers are propositions. The algebraicity here
refers to the fact that we ask for a specified extension, i.e. formulated with a Σ-type, rather than
the existence of some unspecified extension, i.e. formulated with ∃, the propositional truncation
of a Σ-type. Here we consider only algebraically injective types and abuse terminology by
dropping the adjective.

With classical logic, i.e. in the presence of excluded middle, the injective types are precisely
the pointed types. In fact, this characterization is equivalent to excluded middle. In constructive
univalent foundations, the situation is more interesting, as we show in this abstract.

Injectivity and universe levels. The notion of injectivity is universe dependent [6], in the
absence of propositional resizing, so that we are led, for universes U , V and W , to consider types
D :W that are (U ,V)-injective in the sense that the types X and Y in (†) are restricted to live
in U and V , respectively. The following theorem says that there are no non-trivial small injective
types in general,1 and is comparable to Corollary 10 of [1] which says that in the predicative set
theory CZF it is consistent that the only injective sets (as opposed to classes) are singletons.

Theorem 2. If there is a (U ,U)-injective type in U with two distinct points, then the type
Ω¬¬ :≡ ΣP : U , is-prop(P )× (¬¬P → P ) of ¬¬-stable propositions in U , whose native universe
is U+, is equivalent to a type in U .

For simplicity, we will not pay too much attention to the universe levels here, but we stress
that they are important and that our Agda development [7] in TypeTopology rigorously keeps
track of them.

1The conclusion of Theorem 2, the resizing of Ω¬¬, is not provable in univalent foundations, as observed
by Andrew Swan. Given a small copy of Ω¬¬, we can interpret classical second order arithmetic via ¬¬-stable
propositions and subsets, but the consistency strength of univalent foundations is below that of classical second
order arithmetic by [14, Corollary 6.7].

mailto:tom.dejong@nottingham.ac.uk
mailto:m.escardo@bham.ac.uk
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Examples. The following is a non-exhaustive list of examples of injective types and extends [6]:

1. Any univalent type universe U . Indeed, given j : X ↪→ Y and a type family f : X → U ,
we can define (f/j) y :≡ Σ (x,−) : j−1(y), f x where j−1(y) :≡ Σx : X, f x = y denotes
the fiber of j at y. We note that defining an extension using Π instead of Σ also works.

2. The type of propositions ΩU in U . Similar to above, we have extensions via Π and Σ.

3. The type of ordinals in U , with extensions given by suprema [2, Thm. 5.8] for instance.

4. The type of iterative (multi)sets [9, 10] in U .
5. The types of (small) ∞-magmas, monoids, and groups.

6. The type LX :≡ ΣP : ΩU , (P → X) of partial elements [4] of any type X : U .
7. The underlying type of any sup-complete poset, and more generally, of any pointed dcpo.

Examples 1, 2 and 6 were already present in [6], as is the fact that injective types are closed
under retracts and dependent products. We now also have a sufficient criterion for a Σ-type
over an injective type to be injective which accounts for the examples of Item 5. For subtypes of
injective types there is a necessary and sufficient condition:

Theorem 3. A subtype Σ d : D,P d of an injective type D is injective if and only if we have
f : D → D such that for all d : D, the property P holds for f d, and P d implies f d = d.

In particular, any reflective subuniverse [16] is injective, which also follows from [6, Theorem 24].

Counter-examples. The only type that is provably not injective is the empty type, because
classically any pointed type is injective. But there are plenty of examples of types that cannot
be shown to be injective in constructive mathematics, because their injectivity would imply a
constructive taboo: a statement that is not constructively provable and is false in some models.

The relevant taboo in this case is weak excluded middle which says that for any proposition
P either ¬P or ¬¬P holds, and which is equivalent to De Morgan’s law [11, Prop. D4.6.2].

Theorem 4. If any of the following types is injective, then weak excluded middle holds.

1. The type of booleans 2 :≡ 1+ 1. (This counter-example already appears in loc. cit.)

2. The simple types, obtained from N by iterating function types.

3. The type of Dedekind reals.

4. The type of conatural [3] numbers N∞ :≡ Σα : N→ 2, (Π i : N, αi ≥ αi+1).

5. More generally, any type with an apartness relation and two points apart.

Counter-example 5 implies that none of the examples of injective types given above have
interesting apartness relations. In particular, this result may be seen as an internal version of
Kocsis’ result [12, Corollary 5.7] that MLTT does not define any non-trivial apartness relation
on a universe (in loc. cit. this fact is obtained by a parametricity argument).

In computation, it is important to identify decidable properties of types. The following
Rice-like [15] theorem says that injective types have no non-trivial decidable properties.

Theorem 5. If an injective type has a decomposition, then weak excluded middle holds.
Here, a decomposition of a type X is defined to be a function f : X → 2 such that we have

x0 : X and x1 : X with f x0 = 0 and f x1 = 1.

2
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While the type ΣX : U , X of pointed types and the type ΣX : U ,¬¬X of non-empty types
are both injective, the type of inhabited types is not in general.

Proposition 6. The type ΣX : U , ∥X∥ of inhabited types is injective if and only if all proposi-
tions are projective [13] (a weak choice principle that fails in some toposes [8]).

The above illustrates the constructive difference between the double negation and the
propositional truncation (which coincide if and only if excluded middle holds).
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Consider the situation illustrated below, in which two organisations wish to communicate in
a secure way without compromising their respective local information flow policies, as defined
using security lattices [4]. This becomes a matter of figuring out how to map security levels
in one organisation to security levels in the other organisation and vice versa, while taking the
intended communication pattern into account to ensure that no information can be leaked in
one organisation by sending it on a “roundtrip” through the other organisation:

top secret

secret intops secret domops

restricted

official use

public

secret

restricted

official intops official domops

public

While the local security policies can be enforced, e.g., by type systems [6] or static analysis [3], it
is non-trivial to prove that a given mapping between security levels is secure, i.e., that the local
information security policies are not compromised even when taking external communication
into account. Bhardwaj and Prasad propose the use of Lagois connections (as defined by
Melton [5]) as a framework defining such mappings in a way that is secure by design, yet without
mapping security levels to unnecessarily high counterparts [1, 2] and thereby avoid “label creep”.
Lagois connections are very similar to the more commonly known Galois connections with a
slight change:

Definition 1 (Lagois connection). A poset system (P, f, g,Q) is called an (increasing) Lagois
connection iff p ≤ gf(p) for all p : P (LC1), q ≤ fg(q) for all q : Q (LC2), fgf(p) = f(p) for
all p : P (LC3), and gfg(q) = g(q) for all q : Q (LC4).

With this definition in mind, flow is permitted between the two systems from p : P to q : Q
when f(p) ≤ q and analogously the other way around. As an example, in the figure above
information is allowed to flow from “secret intops” to “top secret” via the lattice itself but also
by a round trip of the Lagois connection via “secret”. The fact that f and g are monotone, by
virtue of (P, f, g,Q) being a poset system, ensures one way security in the sense that policies
are preserved post mapping, or more precisely p ≤ p′ implies f(p) ≤ f(p′) for all p p′ : P
(analogous for g). LC1 and LC2 ensures back and forth security, in the sense that mapping
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a label p : P back and forth resulting in gf(p), respects the local policy in the sense that
p ≤ gf(p) (analogous for fg). In relation to information flow, LC3 and LC4 mainly ensure
that the mappings are precise and that continued back and forth communication immediately
converges after one round trip.

Our contribution is a Coq formalization of Lagois connections and related theory for use
in secure information flow1. In particular, we have formalised the results from the seminal
work of Melton et al. [5] that are of interest for secure information flow [1]. Further, we
have used this formalisation to develop a formal variation of the type system developed by
Bhardwaj and Prasad [1, 2] and have proved, formally in Coq, that that our variation is sound
with respect to non-interference. Since our primary interest is secure information flow, the
formalisation is limited to security lattices, that is, finite inhabited lattices, allowing for a more
direct representation of many results by Melton et al. More importantly this moves us in a
direction where Lagois connections can automatically be established and proved within Coq.

Our main result is a formal proof of soundness for a type system very similar to the one
presented by Bhardwaj and Prasad [1, 2], i.e., one that is better suited for formal proofs and
conjectured to be equivalent:

Theorem 1. For a Lagois connection (P, f, g,Q), and an adversarial residing at level p : P
and q : Q such that p = g(q) and q = f(q). If for a program s, environments ν, νf , ν

′, ν′f and
µ, µf , µ

′, µ′
f belonging to the organizations of P and Q respectively:

1. starting in environment (ν, µ), executing s evaluates to (νf , µf ),

2. starting in environment (ν′, µ′), executing s evaluates to (ν′f , µ
′
f ),

3. s can be given security type (p′, q′), and

4. ν(v) = ν′(v) for all v with a security type p′′ : P such p′′ ≤ p and µ(v) = µ′(v) for all w
with a security type q′′ : Q such q′′ ≤ q.

Then νf (v) = ν′f (v) for all v with a security type p′′ : P such p′′ ≤ p and µf (v) = µ′
f (v) for all

w with security type q′′ : Q such q′′ ≤ q.

Intuitively, this result states that for two systems communicating over channels that respect
an underlying Lagois connection, non-interference will be guaranteed in each system, even
taking the communication into account. I.e., no information is leaked, even if has been on
a “roundtrip” through the other system. Essential to proving this result, the type system
additionally checks if the Lagois connection is respected when communication takes place.

In addition to providing a formalisation of existing work, our approach allowed us to write
certain proofs in a more direct style, simplifying working with both proofs and formalisation.
Furthermore, we argue that our formalisation is a solid foundation for further work on both
Lagois connections and the use of these for secure information flow. This is exemplified in
our current work, using (and extending) the framework to investigate and formalise secure
information flow between more than two systems as current methods [2] for extending the

framework do not do so nicely: Composing Lagois connections (P, f, g,Q), (Q, f̂ , ĝ, R) in a

chain as L = (P, f̂f, ĝg, R) = (P, f, g,Q)◦ (Q, f̂ , ĝ, R) is secure in the sense that L satisfies both
LC1 and LC2, but such compositions may not be precise and may not converge (quickly). For

example, L is only a Lagois connection iff ĝf̂f [P ] ⊆ f [P ] and fgĝ[R] ⊆ ĝ[R] (Theorem 3.22

in [5]). Further, we have observed chains of Lagois connections L = (P, f, g,Q) ◦ (Q, f̂ , ĝ, R)
1The formalisation is available at https://github.com/CasperStaahl/TYPES-2025-formalization-preview
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that are lossy, in the sense that the established Lagois connection L is less precise than one that
could be established between P and R directly even though (P, f, g,Q) and (Q, f̂ , ĝ, R) are as
precise as possible.

In our ongoing work we explore ways to mitigate this limitation by considering Lagois
connections over communication topologies given by undirected graphs. Not all topologies
“automatically” give rise to secure communications, but some do and we are currently working
to characterise such topologies.
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Abstract

We prove that S(5) = 47, 176, 870. The Busy Beaver value S(n) is the maximum number
of steps a halting n-state 2-symbol Turing machine can perform from the all-0 tape
before halting and S was historically introduced as one of the simplest examples of a
noncomputable function. Using the Coq proof assistant, we enumerate 181,385,789 5-state
Turing machines, and for each, decide whether it halts or not. Our result marks the first
determination of a new Busy Beaver value in over 40 years, leveraging Coq’s computing
capabilities and demonstrating the effectiveness of collaborative online research.

Introduced by Tibor Radó in 1962 as part of the Busy Beaver game [15], S(n) is the
maximum number of steps that a halting n-state 2-symbol Turing machine1 can do from the
all-0 tape before halting. The function S is noncomputable as it would otherwise allow to solve
the halting problem: run an n-state machine for S(n) + 1 steps and, if it has not halted by
then, you know it will never halt.

As S in noncomputable, there is no algorithm that computes all of its values, but one can
still try to determine some of them. We can get a sense of how hard this is by noting that,
for instance, there is a 25-state 2-symbol Turing machine [4, 7] that iterates all even natural
numbers in search of a counterexample to Goldbach’s conjecture2, and halts iff one is found (i.e.
iff the conjecture is false), which means that proving the value of S(≥ 25) is at least as hard as
proving or disproving Goldbach’s conjecture. Worse, this idea can be generalised to any other
Π1 statement3, such as Riemann Hypothesis or ZF’s consistency which have been respectively
reduced to S(744) and S(748) [20, 19, 14, 19, 1, 6].

Nonetheless, researchers have embarked on the quest of finding what is the biggest value of S
we can know. Motivations include: (i) trying to find the simplest open problem in mathematics
on the Busy Beaver scale by exhibiting an n-state Turing machine for which it is unknown
whether it halts or not but S(n− 1) is known (i.e. the halting status of all n− 1-state Turing
machines is known) and (ii) studying compute in the wild by discovering non-human-engineered
algorithms that do quirky things in a quirky way.

Prior to this work, only the four first values of S had been proved: S(1) = 1, S(2) = 6 [15],
S(3) = 21 [9], S(4) = 107 [3]. After some early attempts in the 1960s and 1970s [12, 13], the
search for S(5) took a turn in 1989 when Marxen and Buntrock found a new 5-state champion4

(i.e. a 5-state machine with bigger step-count than previously known ones) achieving 47,176,870
steps [10], thus showing S(5) ≥ 47,176,870. In 2020, after thirty years without improvements,
Aaronson conjectured that there was no better 5-state machine, i.e. S(5) = 47,176,870 [1].

Our main result is to prove this conjecture, using the Coq proof assistant5 [17]:

Theorem (Lemma BB5 value). S(5) = 47,176,870.

The proof, called Coq-BB5, is available at https://github.com/ccz181078/Coq-BB5.
∗Presenting author
1Turing machines with one bi-infinite tape and allowing undefined transitions.
2The conjecture states that every even natural number n > 2 can be written as the sum of two primes. This

is one of the oldest open problems in mathematics.
3i.e. a logical statement of the form “For all x, ϕ(x)” with ϕ using only bounded quantifiers meaning that a

computer can check ϕ(x) in finite time for any x.
4https://bbchallenge.org/1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
5The Coq proof assistant has been renamed Rocq.

https://github.com/ccz181078/Coq-BB5
https://bbchallenge.org/1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA


Coq proof of the fifth Busy Beaver value bbchallenge

S(5) pipeline Nonhalt Halt Total decided
1. Loops 126,994,099 48,379,711 175,373,810
2. n-gram Closed Position Set (NGramCPS) 6,005,142 0 6,005,142
3. Repeated Word List (RepWL) 6,577 0 6,577
4. Finite Automata Reduction (FAR) 23 0 23
5. Weighted Finite Automata Reduction (WFAR) 17 0 17
6. Long halters (simulation up to 47,176,870 steps) 0 183 183
7. Sporadic Machines, individual proofs 13 0 13
8. Reduction to 1RB 14 0 14
Total 133,005,895 48,379,894 181,385,789

Table 1: Approximation of the S(5) pipeline as implemented in Coq-BB5. All the 181,385,789
enumerated 5-state machines are decided by this pipeline, which solves S(5) = 47,176,870.

In this talk, we will present Coq-BB5 and describe, at various technical levels, how the proof
works. The overall structure of the proof is as follows: the proof enumerates 5-state machines
in Tree Normal Form (TNF) [2, 3, 10]. TNF essentially consists in enumerating partially-
defined Turing machines starting from a machine with no transitions defined, each enumerated
machine is passed through a pipeline of proof techniques mainly consisting of deciders which
are algorithms trying to decide whether the machine halts or not 6:

1. If the machine halts, i.e. meets an undefined transition, a new subtree of machines is
visited for all the possible ways to fill the undefined transition.

2. If the machine does not halt, it is a leaf of the TNF tree.
The TNF enumeration terminates when all leafs have been reached, i.e. all the enumerated
Turing machines have been decided and there are no more halting machines to expand into
subtrees. The proof enumerates 181,385,789 machines7 in about 45 minutes8, and runs the
pipeline summarised in Table 1 on each of them. All the algorithms (TNF enumeration and
deciders) are programmed and proved correct in Coq.

The deciders essentially leave 13 Sporadic Machines undecided, for which we provide
individual Coq proof of correctness [11, 18]. Among them, the monstruous Skelet #1 9, which is
a translated loop (i.e. eventually repeats the same pattern translated in space) that only starts
looping after 1051 steps with a period of more than 8 billion steps [8]. This machine is named
after Georgi Georgiev (a.k.a Skelet) who first found it, as well as 42 other arduous ones, back in
2003 [5]. After all the enumerated machines are proved halting/nonhalting, the proof concludes
S(5) = 47,176,870: Marxen and Buntrock’s champion is the winner of the fifth Busy Beaver
competition.

The talk will also discuss meta aspects of this result such as how were proof assistants
used in practice and how the research was conducted within The bbchallenge Collaboration, a
self-organised, international, online community of scientists (most without academic affiliation)
gathered around the bbchallenge.org platform [16].

6We don’t use the word “decider” in the usual sense of theoretical computer science, formally we mean an
algorithm that (i) takes as input a Turing machine, (ii) is guaranteed to finish, and (iii) returns either HALT,
NONHALT or UNKNOWN. Proving that a decider is correct means that, if the decider returns HALT/NONHALT then,
indeed, the machine halts/does not halt.

7The list of enumerated machines, with halting status and decider information is made available at: https:
//docs.bbchallenge.org/CoqBB5_release_v1.0.0/.

8When compiled in parallel using native compute. Unparallelised compilation with vm compute takes about
13 hours (on a Macbook Pro M3 Max).

9https://bbchallenge.org/1RB1RD_1LC0RC_1RA1LD_0RE0LB_---1RC
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The bbchallenge Collaboration (credits). The following contributions resulted in the
determination of the fifth Busy Beaver value: mxdys (Coq-BB5, Loops, RepWL); Nathan
Fenner, Georgi Georgiev a.k.a Skelet, savask, mxdys (NGramCPS); Justin Blanchard, Mateusz
Naściszewski, Konrad Deka (FAR); Iijil (WFAR); mei (busycoq); Shawn Ligocki, Jason
Yuen, mei (Sporadic Machines “Shift Overflow Counters”); Shawn Ligocki, Pavel Kropitz,
mei (Sporadic Machine “Skelet #1”); savask, Chris Xu, mxdys (Sporadic Machine “Skelet
#17”); Shawn Ligocki, Dan Briggs, mei (Sporadic Machine “Skelet #10”); Justin Blanchard,
mei (Sporadic Machines “Finned Machines”); Shawn Ligocki, Daniel Yuan, mxdys, Rachel
Hunter (“Cryptids”); Yannick Forster, Théo Zimmermann (Coq review); Yannick Forster (Coq
optimisation); Tristan Stérin (bbchallenge.org); Tristan Stérin, Justin Blanchard (paper writing).
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Meta-theoretical studies of type theories often rely on realizability techniques, including the
so-called “logical relations”, to establish interesting properties of the systems. The prototypical
examples of such results are normalization for simply typed lambda calculus with Tait’s com-
putability technique [Tai67], then System F with Girard’s reducibility candidates [Gir72], the
same year as Martin-Löf Type Theory (MLTT) with [Mar98].
However, type theorists and practitioners did not stop with MLTT, and newer, more

convenient systems were created and gradually refined for specific applications. Today, a
plethora of systems are used to prove and program, with examples as diverse as Homotopy Type
Theory (HoTT) and Cubical Type Theory for synthetic homotopy theory, Multi-Modal Type
Theory for the internal logic of specific toposes, or 2-Level Type Theory for interaction between
HoTT and a type theory with uniqueness of identity proofs (UIP). With a proliferation of new,
more exotic type systems, the demand for meta-theoretical verification has grown significantly.

Proving properties of such systems has also gotten harder, proportionally with their expressive
power and with the expectation that such proofs must now be formalized. Some formalization
efforts have focused on the engineering part of such proofs, while also providing a solid base
for experimentation with new features. Projects such as MetaCoq [Soz+20], Agda Core or
Lean4Lean [Car24] focus on the idiosyncrasies of specific proof assistants, while LOGREL-MLTT
[AÖV18] and its direct descendant LOGREL-COQ [Adj+24] study a more idealized version of
MLTT.

In the case of the latter, we have been trying to simplify its implementation, as some design
choices for the propagated invariants can sometimes feel very arbitrary and redundant. We are
also trying to precisely understand what comparisons can be made with high level abstractions
like proofs by normalisation by evaluation [Fio22] and Synthetic Tait Computability (STC)
[Ste21] and whether some of their tools can be used in our developments. I will present some
work-in-progress improvements, proof techniques, as well as future directions for the development,
highlighting our expectations for the project.

What’s in a logical relation formalization? Both of LOGREL-MLTT and LOGREL-COQ
follow a similar pattern of defining realizers in an inductive-recursive manner (with a trick when
encoding in ROCQ). What kind of information these realizers contain is not fixed though! The
definition of realizers is parametrized by another notion of “semantic typing”, which has to follow
quite a lot of axioms for the fundamental lemma to go through. The choice of semantic typing
influences what kind of result one gets via the logical relation argument, but also constrains
what kind of type theory we can interpret.

In the current development, to prove the decidability of typing and conversion, this semantic
typing is instantiated by the graph of a bidirectional typing algorithm. However, that system
does not satisfy the axioms mentioned above at first glance. To prove that it does, one needs to
go through the whole fundamental lemma with a different choice of semantic typing, which seems
very inefficient (and not very principled). We would like to only instantiate the construction
once with a system that gives us the expected corollaries directly.

Canonical derivations Standard presentations of dependent type theories include the general
application inference rule and its congruence counterpart
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Γ ⊢ 𝑓 ∶ Π 𝐴 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
APP

Γ ⊢ 𝑓 ∶ 𝐵[↑ 𝑎]
Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π 𝐴 𝐵 Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴

APPCONG
Γ ⊢ 𝑓 𝑎 ≡ 𝑔 𝑏 ∶ 𝐵[↑ 𝑎]

These inference rules, more specifically APPCONG, cause derivations of conversion to not
be unique, as for example Γ ⊢ (𝜆 𝑥 ∶ 𝐴, 𝑥) 𝑦 ≡ (𝜆 𝑥 ∶ 𝐴, 𝑥) 𝑦 ∶ 𝐴 can be derived because of
either APPCONG directly, or by a transitive combination of β-reductions. For the same reason,
derivations do not contain normal form information, as applications can be typed without
reducing them.

A different presentation of dependent type theory can also be given, with a work-in-progress
formalization, whose derivations all faithfully reflect β-normal η-long reduction information.
This can be achieved by avoiding the general APP and APPCONG rules, and instead always
relying on reduction, even for typing. This technique is reminiscent of cut-free presentations of
first-order logic, and is behind some bidirectional type systems, including the one present in
LOGREL-COQ, although only for the conversion judgements [Len21].
Once the system is established, a key property to show first is that derivations are indeed

unique, as well as inferred types. With this uniqueness result, basic properties like transitivity of
conversion are shown with straightforward strong inductions. Then, the crux of the realizability
technique should be able to show that general elimination rules are admissible for our new
system.

Proof-engineering techniques in ROCQ As is usual in meta-theory, proofs are conceptually
clear but require a lot of tedious work. I will also mention a couple of techniques that we employ
to stay within ROCQ’s restrictions while keeping our proofs manageable.
One drastic change is to only use partial equivalence relations (PERs) for the judgements

of our type theory, and create a completely binary version of the system. As an example, the
usual judgement Γ ⊢ 𝑎 ∶ 𝐴 would correspond to Γ ≡ Γ ⊢ 𝑎 ≡ 𝑎 ∶ 𝐴 ≡ 𝐴, and Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 to
Γ ≡ Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 ≡ 𝐴. Though this might seem like a needless increase in complexity, this lets
us treat all rules uniformly while not repeating ourselves when proving properties about both
the typing rules and the congruence rules.

More pragmatically, mutual inductive types in ROCQ are quite impractical to use, especially
since one needs to manually generate the combined schemes, as well as provide numerous
induction motives on use. Instead, I use a single indexed inductive type, leading to a net gain in
conciseness when writing down the type signatures of properties. Using the unary parametricity
translation of that inductive lets me define a strong induction principle, along the lines of [Tas19].
With these generalizations, proving properties of our canonical system is relatively speedy.
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Abstract

Algebraic theories such as semigroups, monoids, rings or Heyting algebras can easily
be described in dependent type theories, such as that of Lean, by packing together sorts,
operations and equations. Abstractly, these theories should be interpretable in many dif-
ferent settings beyond bare types. Leveraging semantics of geometric logic in presheaf
categories, i.e. categories of “varying sets”, we explore the potential of interpreting such
algebraic theories in these extended settings.

Motivation & Goals By packing together types, operations and (equational) proofs, de-
pendent type theories provide direct representation of algebraic structures. For instance, the
notion of semigroup is defined in Lean’s mathlib library [2] as (a variant of)

class Semigroup (G : Type u) where
* : G -> G -> G
/-- Multiplication is associative -/
protected mul_assoc : forall a b c : G, a * b * c = a * (b * c)

Algebraic structures also admit an alternative approach within dependent type theories by
presenting them through equational theories. The benefits of this latter indirect point of view
is that we can consider models of such theories in settings beyond that of bare types as carriers
of sorts. In our work, we leverage geometric theories to represent such algebraic structures and
use their well-studied categories of models in presheaf categories, e.g. categories of families of
sets parametrized by some base category. Following [1], we formalize a notion of geometric
theories T in Lean [3] and construct the category T -Mod(C) of T -models, using the notation
of [1, Definition 1.2.12], in any presheaf category Func(Cop,Set), functorially with respect to C.
We then explore the correspondence between the direct and indirect presentations of algebraic
structures, with the hope of being able to transfer direct proofs about the former to constructions
applicable on models in any presheaf category. Our Lean formalization is available at https:
//github.com/kyoDralliam/model-theory-topos.

Geometric Logic, Geometric Theories With an eye towards interpretations in presheaf
categories, we choose to work with geometric logic, a slight extension of the ∧,∨,=,∃ fragment
of first-order logic with arbitrarily large disjunctions

∨
i∈I ϕi. This logic is both expressive

enough to represent many theories of interest, in particular any equational, algebraic theory,
and admits interpretations in large classes of categories, notably in any (pre)sheaf topos. We
define a deep embedding of single-sorted geometric logic in Lean parametrized by a signature
collecting operations and predicates of finitary arity. The formalization employs well-scoped
syntax and parametrizes geometric formulas with a small universe (U, (Ik)k∈U ) to deal with
arbitrary disjunction

∨
i∈I ϕi. A geometric theory T consists of a signature ΣT together with

a collection of axioms (ϕi ⊢x⃗i
ψi)i provided by sequents of geometric formulas over ΣT .

https://github.com/kyoDralliam/model-theory-topos
https://github.com/kyoDralliam/model-theory-topos
https://github.com/kyoDralliam/model-theory-topos/blob/939474d01d7db33237e5bb119947eb8e2d45f947/ModelTheoryTopos/Syntax/GeometricLogic.lean#L15
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Interpreting into Presheaf Categories We formalize the notion of model of a geometric
theory T in presheaves over a base category C. Concretely, it consists of a collection of models
in Set indexed by the objects of C equipped with structure-preserving maps induced by the
morphisms of C. This formalization choice goes much beyond the specific case of Set but
uses that most constructs are lifted pointwise from their counterpart Set, a simplification that
wouldn’t be achievable in an arbitrary (Grothendieck) topos or a geometric category.

We establish the soundness of our interpretation of geometric logic, obtaining the following
theorem by a straightforward induction:

theorem soundness {T : theory} (M:Mod T D) {n : RenCtx} (phi psi: fml T.sig n)
(h:Hilbert.proof phi psi): InterpPsh.Str.model M.str (sequent.mk _ phi psi)

In words, given a model M ∈ T -Mod(D), any proof h : ϕ ⊢x1,...,xn
ψ induces a factorization

JϕKM ↣ JψKM of the interpretation of formulas ϕ, ψ as subobjects of Mn.
Rather than working with a single presheaf category each time in isolation, we establish the

interaction between them: to transport interpretations of geometric formulas between presheaf
categories, we formalize the construction of a functor T -Mod(D) → T -Mod(C) from a functor
F : C → D via pullback.

Connecting to Lean’s Algebraic Structures We now turn to the interplay between Lean’s
algebraic structures (i.e. dependently typed records) and their encoding as geometric theories.
We experiment with the simple examples of semigroups and monoids. For instance, the sig-
nature of semigroups consists of a single binary operation and no predicates, while the corre-
sponding theory adds the associativity axiom as follows:

def semigroup_sig : monosig where
ops := Unit
arity_ops := fun \_ => 2
preds := Empty
arity_preds := Empty.rec

abbrev mul (t1 t2: tm semigroup_sig n)
: tm semigroup_sig n :=

.op () (fun i => [t1 , t2][i])

def assoc : sequent semigroup_sig where
ctx := 3
premise := .true
concl := fml.eq (mul (.var 0) (mul (.var 1)

(.var 2))) (mul (mul (.var 0) (.var 1))
(.var 2))

def semigroup_thy : theory where
sig := semigroup_sig
axioms := [ assoc ]

As a sanity check, we prove that the category of models of semigroups over the trivial category
with a single object is equivalent to Mathlib’s category of semigroups.

Beyond relating algebraic structures with geometric theories, we also want to transport
proofs. An interesting aspect of that process, is that even simple proofs about standard objects
can turn into interesting properties once evaluated on non-trivial presheaf categories. We plan
to investigate the specific case of monoids, building upon existing Lean proofs. We hope this
example can inform us about the general recipe for extracting geometric proofs from proof
scripts for other algebraic structures.
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Löb’s theorem ([24], short: LT) states that in sufficiently strong formal systems such as
Peano Arithmetic (PA), for a sentence φ we have PA ⊢ φ if and only if PA ⊢ provPA[⌜φ⌝] →̇φ,
where the formula provPA(x) is the standard provability predicate. It is a strengthening of
Gödel’s second incompleteness theorem (short: G2) which can be recovered via φ := ⊥. Similar
to the incompleteness theorems, the proof of LT is highly technical. Even for a fixed system
such as PA, there are many different provability predicates of varying strengths. Not all of them
qualify for LT, and formal reasoning about provability predicates is highly tedious.

For Gödel’s first incompleteness theorem (short: G1), even in Rosser’s [31] strengthening,
these technical challenges can be avoided, as demonstrated by Kirst and Peters [20] who mech-
anise an abstract and computational proof of G1 [12] due to Kleene [21, 22] in Rocq [34].
They build their proof on the axiom Church’s Thesis (CT) [23, 35], a well-understood axiom in
constructive mathematics stating that quantifiers over functions in a constructive setting only
range over computable functions. Fundamentally, their proof reduces G1 to the undecidability
of provability in PA, mechanised by Kirst and Hermes [18].

For this abstract, we

1. mechanise the traditional proof of G1 via Carnap’s diagonal lemma [6], using CT, with
Rosser’s [31] strengthening, complementing Kirst and Peters’ computational mechanisa-
tion,

2. mechanise Tarski’s theorem [33] about the undefinability of truth,
3. mechanise a proof of LT parameterised against a sufficiently strong provability predicate,
4. define a provability predicate and prove some of the necessary properties, all in Rocq,
5. extend Paulson’s [28, 27] Isabelle mechanisation of a sufficiently strong predicate to yield

LT.

In general, the abstract approach of Kirst and Peters does not extend to G2 or LT, because
these theorems inherently rely on concrete implementation details of the underlying logical
system, unlike G1. The results of this paper mechanised in the Rocq Prover [34] formally work
in the Calculus of Inductive Constructions (CIC) [7, 26]. They rely on and are contributed to
the Rocq Library for First-Order Logic [19] and the Rocq Library of Undecidability Proofs [11].
All proofs are constructive. This abstract is based on the first author’s Bachelor’s thesis [1]
carried out in the group of Gert Smolka, advised by the other authors.

Mechanised synthetic computability. We use synthetic computability theory due to Rich-
man, Bridges, and Bauer [29, 5, 2]. In synthetic computability theory, the usual notions from
computability theory are defined without referring to a concrete model of computation. For
instance, a predicate P : X → P is said to be decidable iff there is a decider f : X → B such
that for all x, P x holds iff f x = true. If O(X) ::= Some(x) |None denotes the option type
over X, we say that P is (recursively) enumerable if there is an enumerator f : N→ O(X) such
that for all x, P x holds iff there exists n such that f n = Some(x). In type theory, synthetic
computability has been developed by Forster [9] and colleagues. Of importance for this abstract
is the standard fact [10] that λφ. T ⊢ φ is (recursively) enumerable if T is.
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Arithmetical Church’s thesis. We define a variant of Church’s thesis for Robinson arith-
metic (Q) [30], a subsystem of PA. A formula φ is Σ1 if it is of the form ∃̇x1. . . . . ∃̇xn. ψ and ψ
does not use unbounded quantification. A theory T is called Σ1-sound if T ⊢ φ implies N ⊨ φ
for all Σ1-formulas φ. Church’s thesis for Robinson arithmetic (CTQ) states that for every
function f : N → N, there exists a binary Σ1-formula φ(x, y) such that for all n, it holds that
Q ⊢ ∀̇y. φ[n, y] ↔̇ y =̇ f n. CTQ is already employed by Kirst, Hermes, and Peters [14, 15, 20].
If applied to deciders and enumerators, CTQ implies that certain predicates can be represented
in Q as well [20, 14]. Most importantly, for any (recursively) enumerable P : X → P and any
Σ1-sound T ⊇ Q, there is a unary Σ1-formula φ(x) such that for all n, P n holds iff T ⊢ φ[n]
(weak representation). Also, for any disjoint (recursively) enumerable P, P ′ : X → P and con-
sistent T ⊇ Q, there is a unary Σ1-formula φ(x) such that for all n, both P n implies T ⊢ φ[n]
and P ′ n implies T ⊢ ¬̇φ[n] (strong separation).

Diagonal lemma and G1. A standard approach [4, 32] to prove G1 is to establish the
diagonal lemma [6], stating that for all unary formulas φ(x) there is a sentence G such that
Q ⊢ φ[⌜G⌝] ↔̇G, where ⌜·⌝ is an encoding of formulas into closed terms. As a second step,
the diagonal lemma is used to diagonalise against a provability predicate. We observe that the
diagonal lemma readily follows from CTQ. G1 then easily follows from (recursive) enumerability
of λφ. T ⊢ φ with a brief application of weak representability and diagonalisation. We also
mechanise the following strengthening of G1 following Rosser [31].

Theorem 1 (G1 [12]). Let T ⊇ Q be (recursively) enumerable and consistent. Then there is
an independent sentence for T .

Here, the idea is to diagonalise against the negation of the formula obtained from strong
separability applied to λφ. T ⊢ φ and λφ. T ⊢ ¬̇φ. Similar reasoning also gives rise to Tarski’s
theorem [33].

Theorem 2 (Tarski [33]). There is no first-order formula trueN(x) such that N ⊨ φ iff N ⊨
trueN[⌜φ⌝] for all sentences φ.

For all these results, CTQ is extremely helpful since instead of defining actual formulas for
the provability predicates, only enumerability of provability is needed, which is easy to establish
synthetically. The proofs thus reduce to the key insights gained from Gödel’s and Tarski’s work,
making the proofs extremely concise. Without CTQ, the results can still be shown if one assumes
that T is µ-recursively enumerable, but then the proofs would become very tedious.

LT and internal vs external provability. Following a classification due to Feferman [8],
we distinguish between external and internal provability predicates. An external provability
predicate only has to correctly identify provable formulas, i.e. T ⊢ φ iff T ⊢ provT [⌜φ⌝] for
all φ. CTQ implies the existence of an external provability predicate, which is sufficient for
Theorem 1. Mostowski [25], Bezboruah, and Shepherdson [3] observe that external predicates
are too weak for LT by giving an external predicate for which G2 and hence also LT fails.

An internal provability predicate needs to additionally allow proving some deduction rules
of the logical system as object level implications. This was made precise by Löb [24], based
on previous work by Hilbert and Bernays [16]. The required properties are known as Hilbert-
Bernays-Löb (HBL) derivability conditions, which are as follows, where φ,ψ are arbitrary for-
mulas:

T ⊢ φ implies T ⊢ provT [⌜φ⌝] (necessitation)

T ⊢ provT [⌜φ →̇ψ⌝] →̇ provT [⌜φ⌝] →̇ provT [⌜ψ⌝] (modus ponens rule)

T ⊢ provT [⌜φ⌝] →̇ provT [provT [⌜φ⌝]] (internal necessitation)

2
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For an internal provability predicate, LT follows abstractly, and we mechanise this abstract
proof in Rocq.

Theorem 3 (Löb [24]). Let T be a theory admitting the diagonal lemma and let provT (x) satisfy
the HBL conditions. Then T ⊢ φ iff T ⊢ provT [⌜φ⌝]→ φ for all sentences φ.

Defining internal provability predicates. To do so, most authors arithmetise the notion
of provability and define a complicated formula prfT (x, y) such that prfT (x, y) is provable iff
y arithmetises a proof of the formula with code x. In this setting ∃̇y. prfT (x, y) characterises
provability of x. Usually, a proof of a formula φ is encoded as a list of formulas representing the
deduction of φ from the deduction rules. This is also how the standard provability predicate
for PA is constructed.

While PA and related systems of arithmetic are strong enough to express the required list
functions and to prove properties about these functions on the object level, choosing arithmetic
to define provability predicates is not ideal. Instead, we prove the following:

Theorem 4. There is an extension of PA with native function symbols for basic list functions
to avoid some of the technicalities. In this system, there is an internal provability predicate
satisfying necessitation and the modus ponens rule.

This development is axiom-free. The verification of necessitation and the modus ponens
rule heavily relies on a proof mode for first-order logic due to Koch [17], which made these
mechanisations possible in the first place. As part of this proof, we contribute a mechanisation
of Hilbert systems and a proof of its equivalence to natural deduction to the Rocq Library of
First-Order Logic [19].

Paulson [28, 27] mechanises an internal provability predicate in HF set theory, easing arith-
metisation, but the definition and the correctness proofs are still very arduous. We add the
following to Paulson’s Isabelle development:

Theorem 5. Paulson’s provability predicate is sufficient to deduce LT.

Future work. Ultimately, we would like to obtain a Rocq mechanisation and verification of
an internal provability predicate in a suitable system of first-order logic resembling PA. Besides
doing the tedious work to prove internal necessitation for our predicate, it also seems promising
to follow the approach by Halbach and Leigh [13] who give a system of first-order logic with
function symbols for syntax manipulation which can express PA. These syntax functions seem
helpful in the verification of internal necessitation.

In addition, it may be desirable to understand how strong a theory T of first-order arithmetic
needs to be such that the HBL conditions for T ’s standard provability predicate can be proved.
There may be research on this of which the authors are currently unaware.
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Löb’s Theorem and Provability Predicates in Rocq Bailitis, Kirst, and Forster
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Expansion in a Calculus with Explicit Substitutions

Ana Jorge Almeida, Sandra Alves, and Mário Florido

LIACC, Departamento de Ciência de Computadores
Faculdade de Ciências, Universidade do Porto

Term expansion was first defined in [8] to relate terms typed in an intersection type system
with linear terms. Recently, new applications of term expansion include the relation with other
substructural type systems (relevant and ordered type systems) [2] and quantitative types [3].
Here we define term expansion for a calculus with explicit substitutions and apply it to relate
a λ-calculus with explicit substitutions [9] with a resource calculus [5], where the argument of
a function is a bag of resources, that is, a multiset of terms.

1 Explicit substitutions

Although the λ-calculus [4, 6] is a convenient model for computational functions, it lacks
the means for observing operational properties of the execution of such algorithms, mainly due
to its implicit β-contraction, which is a meta-operation. There was a necessity to explicitly
deal with substitutions, in order to bridge the gap between theory and implementation, allow
efficient reduction in implementations, and avoid variable capture and scope issues [1].

Here we will be using a modification of the explicit substitution calculus presented in [9],
the λxgc-calculus, which is an adaptation of λσ [1], that retains variable names instead of using
indices à la Bruijn [7], and preserves strong-normalisation.

Definition 1 (λx-preterms). The λx-preterms are the extension of the λ-preterms defined
inductively by

M ::= x | λx.M |MN |M < x := N >

In this calculus, explicit substitution is given highest precedence. It also has explicit garbage
collection [10], which is useful and easy to specify using names.

Definition 2 (Evaluation in the λxgc-calculus). The reduction is defined as −−−→
bxgc

=−→
b
∪ −→

x

∪ −→
gc

.

(λx.M)N −→
b
M < x := N >

x < x := N >−→
xv

N

x < y := N >−−−→
xvgc

x if x ̸≡ y

M < x := N >−→
gc

M if x /∈ fv(M)

(M1M2) < x := N >−−→
xap

M1 < x := N > M2 < x := N >

M −−−→
bxgc

M ′

MN −−−→
bxgc

M ′N

(λx.M)N2 −−−→
bxgc

M ′ if y /∈ fv(N2)

((λx.M) < y := N1 >)N2 −−−→
bxgc

M ′ < y := N1 >

Example 1. Consider the λx-term (λx.xx)I, where I ≡ λz.z.

(λx.xx)I −−−→
bxgc

(xx) < x := I >−−−→
bxgc

x < x := I > x < x := I >−−−→
bxgc

II −−−→
bxgc

z < z := I >

−−−→
bxgc

I
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2 Term Expansion

We now relate expansion with a resource calculus [5], where the standard λ-calculus ap-
plication MN , is denoted by MN∞, to indicate that the argument N is always available for
function M .

Our main focus now is to develop a relation between terms typable by idempotent inter-
section types and a subset of Boudol’s language, which we will refer to as Λ∞, allowing us to
express only multiplicities ∞, hence each bag of resources is used without restriction.

Definition 3 (Boudol’s terms). The following terms are the syntax of Boudol’s λ-calculus with
multiplicities.

M ::= x | λx.M | (MP ) | (M < P/x >) terms
P ::= 1 |M | (P | P ) |M∞ bags of terms
V ::= λx.M | V < P/x > values

Definition 4 (Expansion). Given a pair M : σ, where M is a λ-term and σ an intersection
type, and a term N , we define a relation E(M : σ) ◁ N , which we call expansion:

E(x : τ) ◁ x
E(λx.M : τ1 ∩ · · · ∩ τn → σ) ◁ λx.M∗ if x ∈ fv(M) and E(M : σ) ◁M∗

E(λx.M : τ → σ) ◁ λx.M∗ if x /∈ fv(M) and E(M : σ) ◁M∗

E(MN : σ) ◁ (M∗(Pm1
1 | · · · | Pmk

k )) if for some k > 0 and τ1 . . . τk such
that E(M : τ1 ∩ · · · ∩ τk → σ) ◁M∗

and E(N : τi) ◁ Pi
mi for 1 ≤ i ≤ k

E(M < x := N >: σ) ◁ (M∗ < (Pm1
1 | · · · | Pmk

k )/x >) if for some k > 0 and τ1 . . . τk such
that E(M : τ1 ∩ · · · ∩ τk → σ) ◁M∗

and E(N : τi) ◁ Pi
mi for 1 ≤ i ≤ k

Since we are working with Λ∞, we have that for some k > 0 and 1 ≤ i ≤ k, mi =∞.

Theorem 1 (Expansion and Multiplicities). Given a λx-term M and a type σ, such that
E(M : σ) ◁M∗, if M −−−→

bxgc
→ V1 then M∗ ↠B V2 and E(V1 : σ) ◁ V2.

This theorem is proved by induction on the definition of expansion, and it shows that, if
we evaluate a λx-term until it reaches a value, then we are able to expand that initial term,
evaluate it in Boudol’s system and its result is an expansion of the value obtained in the λx
evaluation.

Example 2. Using the term in Example 1, we have

E((λx.xx)I : σ) ◁ ((λx.(xx∞))I∞)

because E(λx.xx : ((σ → σ) ∩ σ)→ σ) ◁ λx.(xx∞) and E(I : (σ → σ) ∩ σ) ◁ I.

((λx.(xx∞))I∞)→ (xx∞) < I∞/x > → (Ix∞) < I∞/x > → z < x∞/z >< I∞/x >
→ x < x∞/z >< I∞/x >
→ I < x∞/z >< I∞/x > ≡ I

and E(I : σ) ◁ I.

2
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3 Conclusion and Future Work

Here we have proved that there exists a relation between ACI-intersection types and a
resource calculus that deals with multiplicities m =∞ (infinitely available resources).

This serves as preliminary work towards proving that there exists a relation between AC-
intersection types and a resource calculus of finite multiplicities. We also wish to look into an
extension of this calculus that deals with α-conversion.

Acknowledgements This work was financially supported by: UID/00027 of the LIACC -
Artificial Intelligence and Computer Science Laboratory - funded by Fundação para a Ciência
e a Tecnologia, I.P./ MCTES through the national funds.

References

[1] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substitutions. In Proceedings
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Abstract

In current dependent type theories, we give types to the indices of inductive datatypes
but we say very little about the structure of those index types. Categorically, they are
treated as discrete, as the only structure automatically respected is equality. Here, I give a
universe construction for datatypes indexed over small categories which are functorial by
construction, hence presheaves, with a definition and proof given once for all.

1 Introduction

Whenever we find ourselves engineering coincidences, something is wrong. If we cannot artic-
ulate the design choices whose consequences we propagate, something is wrong. Let me show
you something wrong. In Haskell, Agda, Idris, Lean or Coq (to name but a handful), I can
write a function (pronounced ‘thin’)

t : Term n θ : n ⊑ m
t ↑ θ : Termm

t ↑ ι = t t ↑(θ #ϕ) = (t ↑ θ) ↑ϕ

where Termn is the type of well scoped lambda-terms with n free variables in scope, and n ⊑ m
is the type of order-preserving injections—thinnings—embedding n free variables into a larger
scope with m free variables1. Moreover, with synthetic astonishment I can subsequently prove
that · ↑ · respects thinning identity, ι, and composition, #. In other words, I extend Term to a
presheaf over (op-)thinnings — a functor into Type. And what is wrong is that I do it myself.

2 Worked Example

Let us take a closer look at the constructors of Term · and the action of · ↑ ·:

x : 1 ⊑ n
var x : Term n

f , s : Term n
app f s : Term n

t : Term (n+1)
lam t : Term n

(var x ) ↑ θ = var (x # θ) (app f s) ↑ θ = app (f ↑ θ) (s ↑ θ) (lam t) ↑ = lam (t ↑(θ+1))

Note that for var, θ acts by postcomposition. Moreover, for lam, the postfix ·+1 which happens
to n in the type looks a lot like the ·+1 which happens to θ in the function. What is the latter?
Thinnings n ⊑ m (determining particular choices of n things from m) are generated thus:

0 : 0 ⊑ 0
θ : n ⊑ m

θ� : n ⊑ m+1
θ : n ⊑ m

θ+1 : n+1 ⊑ m+1

1I like m to be larger than n. Count the sticks.
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The ·+1 action on a thinning coincides with the ·+1 action on source and target scopes.
My overloading of the constructors is deliberate emphasis. The definitions of identity and
composition confirm that ·+1 is a functor.

ι0 = 0

ι(n+1) = ιn+1

0 # 0 = 0
θ # (ϕ�) = (θ #ϕ)�

(θ�) # (ϕ+1) = (θ #ϕ)�
(θ+1) # (ϕ+1) = (θ #ϕ)+1

In this talk, we shall learn to spot such structure and make presheaves on purpose. We should
be able to express the definition of Term in a way that points out how 1 ⊑ · is a functor from
Thin to Type and ·+1 from Thin to Thin, recovering the action of Thin on Term automatically.

3 Prospectus

My specific plan is to construct a universe of datatype descriptions, as in previous work [4], by
syntactifying a class of strictly positive functors whose least fixpoint may then be taken. But
where we previously described indexed containers [2], we may now consider strictly positive
functors between presheaves.

This construction necessarily relies on some formalisation of category theory, and it is a
local non-goal for this to be a comprehensive treatment. We can get a long way with a notion
of small categories and functors between them. The thinnings are exactly such a category, with
·+1 exactly such a functor.

We may then, separately, say what it is to be a presheaf — a functor from a small ‘index’
category into Type, and lift type constructors accordingly. In particular, the covariant Hom-
functor (arrows from a given source) gives such a presheaf, with 1 ⊑ · a case in point. With this
notion in place, we can give a syntax of descriptions for functors between presheaves, including
the identity, constants, pairing, composition with a small functor, and pointwise Π and Σ over
sets. When the source and target index categories of a description coincide, we may take a least
fixpoint. We show once, for all such descriptions that this fixpoint a presheaf itself, obtaining
the action of arrows in the index category and the proofs that identity and composition are
respected.

4 Future Work

The idea that our indexed datatypes should respect more than discrete structure on indices is
one small part of a broader agenda towards directed type theory [5, 3], but we can have it in
our hands, now. Of course, we should very much like functor laws to hold definitionally, and
that should be workable [1]. Let us see how much more categorical structure we can build into
type theory for the price of having enough language to point it out.
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[4] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. The gentle art of levi-
tation. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN inter-
national conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010, pages 3–14. ACM, 2010.

[5] Daniel R. Licata and Robert Harper. 2-dimensional directed type theory. In Michael W. Mislove and
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Abstract

Binding is notoriously difficult to implement both correctly and efficiently. When using
names, one must be ever vigilant for name capture. When using de Bruijn indices and
thinnings, one must correctly adjust them whenever their scope changes. These invariants
have tripped up even the most seasoned compiler writers. Using dependent types, it is
straightforward to ensure the correct use of de Bruijn indices and thinnings. Unfortunately,
such implementations are often inefficient. Moreover, this requires that the compiler is
written in a dependently-typed language.

We present a Haskell library that provides an implementation de Bruijn indices and
thinnings that is both correct and efficient. The library exports the usual inductive defi-
nitions for de Bruijn indices and thinnings, indexed on the type-level with the size of their
scope and scopes, respectively. However, it implements these efficiently as machine words
and bit vectors. We test the correctness of the efficient implementation using QuickCheck.
We intend to benchmark the library against the usual inductive definitions, to ensure that
it is more efficient, and against the unsafe efficient implementation, to ensure that the
type-level indices do not incur any runtime overhead.

Background. Logicians, type theorists, and compiler writers have struggled with syntax
and binding for over a century [3]. Compiler writers, especially, struggle with representing
binding. Named representations of binding use matching names—be they strings or numbers—
for binding sites and bound variables. Using names, one must work to avoid name capture
and ensure α-equivalence. Nameless representations of binding got their party started with de
Bruijn and his indices [1] which represent bound variables as numbers that index into the list
of enclosing scopes, writing, e.g., λ.(λ.1) for λx.(λy.x). For the remainder of this abstract, we
leave our stringly-named friends behind and focus on indices.

De Bruijn Indices and Thinnings, Inductively. A de Bruijn index selects an element
from a list—be it a typing context or an evaluation environment, and we can represent them
in Haskell as we will show. . . Everybody brace for length-indexed vectors! Nat is the kind of
type-level natural numbers:

type data Nat = Z | S Nat -- We write 0 for Z, 1 for S 0, 2 for S 1, 3 for S 2, etc.

Env n is the type of lists of length n and Ix n is the type of indices into such lists:

data Env n a where
Nil :: Env Z a
Cons :: a → Env n a → Env (S n) a

data Ix n where
FZ :: Ix (S n)
FS :: Ix n → Ix (S n)

Where an index selects a single element from a list, a thinning selects a sublist. Th m n is the
type of thinnings that thins a list of length m out to a list of length n by either keeping or
dropping each element:
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data Th m n where
Done :: Th Z Z
Keep :: Th m n → Th (S m) (S n)
Drop :: Th m n → Th (S m) n

ex1 :: Th 4 2 -- [A, B, C, D] to [C, D]
ex1 = Drop ◦Drop ◦Keep ◦Keep $Done

ex2 :: Th 4 2 -- [A, B, C, D] to [A, C]
ex2 = Keep ◦Drop ◦Keep ◦Drop $Done

Both ex1 and ex2 are examples of thinnings that select a sublist of length 2 from a list of
length 4. Both have type Th 4 2. However, they are distinct: ex1 drops elements 1 and 2
and ex2 drops elements 2 and 4. The type Th 4 2 is inhabited by all combinations of selecting
2 elements from a list 4. This is such a general concept that thinnings, for compiler writers,
pop up all over. In evaluation, a thinning can represent a batch of adjustments to the bound
variable indices [5]. In dependent type checking, a thinning can represent the portion of its
context to which a meta-variable has access. Using co-de Bruijn representation [5], thinnings
can even be used to represent binding, obviating the need for indices.

De Bruijn Indices and Thinnings, Efficiently. The inductive definitions Ix and Th are
correct but inefficient. The index 3, represented as FS (FS FZ ), takes up five machine words. I
hope we can agree that one machine word should suffice. If you really need more than 264 nested
binders1, you can use Haskell’s efficient arbitrary-precision Integer type2. Likewise, ex1 and ex2
each take up nine machine words, where 4 bits would suffice to represent each Keep and Drop.
Such optimisations are often found in the wild. Both smalltt [4] and ask [6] represent indices
as Int and thinnings as bit vectors—smalltt uses Int , which is efficient but limits the number
of nested binders to 64, and ask uses Integer as an infinite bit vector. Unfortunately, these
optimisations lose the type-level safety guarantees of the inductive definitions. Anecdotally, the
most error-prone parts of both ask and Idris 1 [2] was in their implementations of binders.

Contribution. Our contribution is a library that provides an efficient implementation of de
Bruijn indices and thinnings, representing indices as words and thinnings as bit vectors, but
whose API matches the inductive definitions, including type-level safety guaratees. Our library
leverages bidirectional pattern synonyms, view patterns, and—most importantly—lies to mimic
the inductive data type definitions down to their constructors. Our technique leverages unsafe
projection and embedding functions between the efficient representation and the inductive base
functor, generating the inductive constructors on a by-need basis, e.g., indices are defined as:

data IxF f n where
FZF :: IxF f (S n)
FSF :: f n → IxF f (S n)

newtype Ix (n ::Nat) = Ix Word16
unsafeProject :: Ix n → IxF Ix n
unsafeEmbed :: IxF Ix (S n)→ Ix (S n)

pattern FZ ← (unsafeProject → FZF ) where FZ = unsafeEmbed FZF
pattern FS i ← (unsafeProject → FSF i) where FS i = unsafeEmbed (FSF i)

We test the equivalence of the inductive and the efficient definitions using a QuickCheck suite.
In the future, we hope to benchmark our library against the inductive definitions. While the
data type definitions make it sufficiently clear that our library is more space efficient, such a
benchmark would test whether or not our library is more time efficient. Furthermore, we hope
to benchmark our library against the efficient definitions without type-level safety guaratees,
which would test whether or not our type-level indices introduce any runtime overhead.

1For simplicity, we assume a 64-bit architecture.
2But you should, probably, re-evaluate the decisions that led to you needing 18446744073709551615 variables.
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This work studies a categorical presentation of normalization by evaluation formalized in the
Rocq proof assistant, resulting in an effectively executable algorithm for normalizing pure λ-
calculus terms. Former work on categorical normalization, such as [1, 3, 4], has failed to establish
both soundness and (strong) completeness of normalization by evaluation purely categorically.
Either they have relied on a non-categorical proof, or they have relied on an a priori charac-
terization of normal forms to deduce some properties. In this work we present a new universal
property for syntax that supports the construction of a purely categorical argument for both
soundness and (strong) completeness.

Categorical Normalization Normalization by Evaluation is a technique for computing the
normal forms of λ-calculi terms in a reduction-free manner. It has seen many different exposi-
tions [2, 1, 3, 4]: proof-theoretic, type-theoretic, and category-theoretic. The category-theoretic
presentation of Čubrić, Dybjer, and Scott by way of the Yoneda embedding [3] constructs a
normal form algorithm purely functorially by the universal property of quotiented syntax within
the setting of p-category theory. This ensures that the resultant algorithm satisfies soundness:
that the output is βη-convertible with the input. Although, they resort to non-categorical
techniques to establish that their normalization algorithm is (strongly) complete: that it maps
βη-convertible inputs to α-equivalent outputs; and that their normalization algorithm produces
β-normal–η-long–normal forms. The presentation of Fiore by way of categorical gluing [4] con-
structs a normal form algorithm using manually constructed maps over glued objects of neutral
and normal forms. It is precisely because these forms are considered up to α-equivalence that
the resultant algorithm is (strongly) complete.

Our approach combines techniques from these two prior works, with a new universal prop-
erty to allow for a construction of a normal form algorithm that is both sound and (strongly)
complete. This allows for an algorithm that reduces the problem of βη-convertibility to that of
α-equivalence without needing an a priori known notion of normal form.

P-Category Theory Recently, e-category theory has received attention as a way of importing
classical results into the setting provided by constructive proof assistants [5, 6]. Instead of us-
ing the in-built Martin-Löf Identity type for equality of morphisms, e-categories come equipped
with their own equivalence relation on morphisms. This turns homs into setoids, requiring op-
erations on morphisms to respect the equivalence relation. p-category theory [3] replaces the
use of equivalence relations with partial equivalence relations (i.e. relaxing reflexivity), thereby
resulting in hom-subsetoids. This subtle change comes with technical advantages that provide
a more appropriate setting for categorical normalization algorithms. We continue in Čubrić,
Dybjer, and Scott’s [3] use of p-category theory to phrase our construction and formalization.

∗Research partially supported by EPSRC grant EP/V002309/1.
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Universal Properties of Syntax The free Cartesian-closed category1, F , satisfies an initial-
ity property.

F M

J−K

I

q u

For any pointed Cartesian-closed category, M, and strictly-pointed Cartesian-closed functor, I,
thereinto, there is a universal strictly-pointed Cartesian-closed interpretation functor, J−K, from
the free Cartesian-closed category, F , resulting in a unique natural isomorphism, q : J−K ∼⇒ I : u.

Čubrić, Dybjer, and Scott [3] use this fact to deduce their normal form algorithm. Moreover,
their switch to p-category theory allows them to consider a second category: the category of
unquotiented (i.e. up to α-equivalence) terms. They remark that this category is initial over
some term algebra but seemingly make no use of this fact. They use presheaves over this
category to deduce non-categorically that their algorithm is (strongly) complete. Their use of
p-category theory allows them to conclude that the computational aspect of presheaves over the
two categories are identical. Indeed it was a desire to replicate their argument more categorically
that resulted in the presented work.

The category of unquotiented simply-typed λ-calculus terms, A, also satisfies an initiality
property but with respect to the free Cartesian-closed category, F .

R

A A

F M

i i

j I

J−K

u′

q′

For any pointed Cartesian-closed category, M, and strictly-pointed Cartesian-pre-closed functor,
I, thereinto, there is a universal strictly-pointed Cartesian-closed interpretation functor, J−K,
from the free Cartesian-closed category, F , resulting in a unique pair of natural transformations,
q′ : J−K ◦ j ◦ i⇒ I ◦ i, and u′ in the reverse direction. Where the functor j is the quotient map
from unquotiented syntax to quotiented syntax, the category R is the category of renamings,
and i is the inclusion map from renamings into (unquotiented) syntax. And Cartesian-pre-
closure is a novel condition weaker than full Cartesian-closure for functors that arises from the
weaker structure of A. A category, C, is Cartesian-pre-closed precisely when:

• it is Cartesian;
• it has a pre-exponential operator on objects:

(−)⇒ (=) : C0 × C0 → C0;
• such that there are maps natural in c:

C(c× a, b)⇒ C(c, a⇒ b)

C(c, a⇒ b)⇒ C(c× a, b).

A functor, F : C → D, with C Cartesian-pre-closed and D Cartesian-closed, is Cartesian-pre-
closed precisely when:

1We consider freeness over a single base type in our work; one may easily instead consider freeness over a
set of base types.
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• it is Cartesian;
• there is a family of maps:

e′ : F (a)⇒ F (b)→ F (a⇒ b);
• such that the following holds:

e′ ◦ (F (f) ◦ p)∗ ∼ F (f∗).

By judiciously instantiating M and I with presheaves over A and the Yoneda embedding one
can replicate the construction, mutatis mutandis, from [3] and induce a normal form algorithm
that is strongly complete purely categorically. However this algorithm is not obviously sound
due to the weaker naturality properties of q′ and u′.

This shortfall can be overcome by further judicious instantiation of M with a gluing category
allowing for an algorithm that is both sound and strongly complete. There are a number of
possible candidates for such a gluing category that allow for the desired conclusions of soundness
and (strong) completeness, each with their own resultant computational aspects. It suffices for
the result to use the arrow category of presheaves over A for M, and the pairing of the Yoneda
embedding with the relative embedding along j for I. This realises the domain and codomain
parts, respectively, as containing strict information for (strong) completeness, and weak quotient
information for soundness. This gluing construction can be seen to combine aspects of [4]
with our new universal property permitting the induction of a normal form algorithm purely
categorically without any a priori knowledge of neutral and normal forms.
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The modal µ-calculus is an extension of the basic modal logic K with least and greatest
fixpoint operators. It is of foundational importance in the field of model checking [1], and
also of considerable theoretical interest to logicians for its rich properties. The model checking
and satisfiability problems for the µ-calculus are decidable, yet the logic is highly expressive
— it subsumes the temporal logics LTL, CTL, CTL* and propositional dynamic logic, and is
equivalent to the bisimulation-invariant fragment of monadic second-order logic [5]. Of interest
to the practising type theorist, the µ-calculus admits a constructive semantics in containers
which is currently in the early stages of being explored [10].

This (still work-in-progress) project is concerned with formalising the correctness and finite-
ness proofs for a particular key syntactic construction on µ-calculus formulas, namely their
(Fischer-Ladner) closure. This can be thought of as a succinct graph representation of the
formula. The definition of the closure is not structurally recursive, and indeed, the proof of its
finiteness (originally due to Kozen [6]) is fairly technical, particularly in a formal setting where
issues like variable binding and substitution must be treated seriously.

A key feature of our work is the use of syntax-with-binding as an inductive presentation of
rational codata — data structures that loop back on themselves — in a manner similar to the
technique first demonstrated by Ghani et al [3], and Hamana [4].

We work in Agda, using guarded corecursion. At the time of submission, the bulk of the
formalisation is complete (up to and including Theorem 1). Theorem 2 is still a work-in-
progress.

The µ-Calculus Formulas in the modal µ-calculus are generated by the following grammar,
parameterised by some set A of atomic propositions. We represent formulas in Agda as an
inductive data type using well-scoped de Bruijn indices for the variables, but for convenience
we write variable names here. Note the lack of implication or arbitrary negations; this is
required to maintain strict positivity, which is important when giving the semantics of the
fixpoint operators.

µML :“ J | K | A |  A | µML^ µML | µML_ µML | l µML | 3 µML | µx.µML | νx.µML

We can define substitution for these formulas in standard fashion, which allows us to de-
fine the unfolding of a fixpoint formula as its direct subformula with the outermost variable
substituted for the whole formula: unfold pµx.ϕq “ ϕ rx :“ µx.ϕs.

The Closure The closure of a µ-calculus formula ϕ is the least set of formulas that contains
ϕ and is closed under the “single-step closure relation”, which relates modal and propositional
formulas to their direct subformulas, and fixpoint formulas to their unfoldings. We define the
membership relation for the closure ´ PC ´ as the transitive reflexive closure of this single-step
relation, where “ψ PC ϕ” means “ψ is in the closure of ϕ”.

˚Work-in-progress Agda formalisation available at https://github.com/Sean-Watters/mu-calc-de-bruijn

https://github.com/Sean-Watters/mu-calc-de-bruijn
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The membership relation PC allows us to characterise the closure, but does not provide
an obviously terminating algorithm to compute it. Note that it is not immediate from the
definition of PC that the closure graph only contains finitely many nodes, as the unfolding of
ϕ is not structurally smaller than ϕ, and it is not immediately clear that a chain of unfoldings
would eventually loop back on itself.

Kozen’s original proof of finiteness involves an alternative definition of the closure which is
structurally recursive. The key to it is the so-called expansion map, which can be thought of as
the “maximal unfolding” — the expansion map sequentially instantiates every free variable for
its binder, in order from most recently bound to least. This definition of the closure is finite
by construction, but it is difficult to directly prove it equivalent to the standard definition in a
formal setting.

Our approach is to first define two closure algorithms; one that produces an infinite cotree
via guarded corecursion directly from the definition of PC (which is trivially correct), and one via
Kozen’s inductive algorithm (which is intrisically finite). Crucially, the inductive data structure
we use for the latter includes a notion of back-edges, which allows us to unfold it to an infinite
codata structure. We then prove that the coinductive algorithm is bisimilar to the unfolding of
the inductive one, and by doing so, obtain correctness and finiteness for both constructions.

Rational Codata Just as a rational number is one whose decimal expansion is finitely pre-
sentable as a prefix plus a loop, an element of a rational codata type is an infinite data structure
for which every infinite path eventually falls into a repeating cycle. They arise via the rational
fixpoint of endofuctors, which is a particular sub-coalgebra of the final coalgebra [8][9].

We argue that the correct way to think about the closure of a µ-calculus formula is as a
rational codata structure. Inductive structures such as lists and trees forget the backedges,
which are crucial to the properties we wish to prove, meanwhile simply using cotrees forgets
any evidence we may have had about the closure being finitely presentable.

In the style of Ghani et al. [3], we represent the closure as an inductive “µ-calculus formula-
shaped tree”. That is: such trees store data at both nodes and leaves, nodes are labelled by
formula constructors t^,_,l,3, µ, νu (and have the appropriate arities), and we also have
variables which we consider as pointers to tµ, νu-nodes. Thus, this presentation is a syntax-
with-binding. We define their unfolding to non-wellfounded cotrees (with the same node arities
and labelling) via guarded corecursion.

Bisimilarity for cotrees is defined as the pointwise lifting of propositional equality, for which
we create a DSL for compositional proof, following the technique first demonstrated by Daniels-
son [2]. We now have all we need to prove that the two definitions of the closure are equivalent:

Theorem 1. The direct coinductive definition of the closure is bisimilar to the unfolding of the
inductive syntax-with-binding definition.

Our notions of correctness for each algorithm relate the paths through the tree produced
to PC , in the sense that a path exists from ϕ to ψ iff ψ PC ϕ. For both kinds of tree, this is
an instance of the “Any” predicate transformer (or rather, in the inductive case, a variant of
it that allows backedge traversal). If we can transport proofs of Any across bisimulations of
the form found in Theorem 1, then we can prove the finite-by-construction inductive algorithm
correct. The proof of this fact is still work-in-progress.

Theorem 2 (WIP). Let T be the tree with backedges produced by the inductive closure algorithm
applied to ϕ. Then for all formulas ψ there is a path to ψ in T iff ψ PC ϕ. That is, T really is
the closure of ϕ.
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Conclusions and Future Work We believe this to be the first serious attempt at formalising
the Fischer-Ladner closure of the modal µ-calculus in a proof assistant, though others have
previously formalised different aspects of the µ-calculus in Agda [10], Rocq [7], and LEGO [11].
A natural next step in this programme would be to formalise the game semantics of the µ-
calculus (where the closure plays a key role), and in doing so obtain a correct-by-construction
model checker.

In our opinion, the modal µ-calculus and type theory are ripe for further cross-fertilisation.
For example, we believe that rational codata types are currently under-explored, and that this
work provides a good example of their utility. In particular, we would like to further investigate
the inductive syntax-with-binding presentation and its unfolding, and whether these generalise
usefully to containers. Our hope is to develop a type-theoretic framework for ergonomically
reasoning about finitely-presentable infinite data.
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Background

In a seminal paper, Hofmann and Streicher [1] constructed the groupoid model for Martin-Löf
Type Theory (MLTT). In this model, a type A is interpreted as a groupoid JAK, while its
identity type IdA is interpreted as the hom-set of JAK. Further work has shown that types
can be also interpreted as ∞-groupoids [2], and that, together with the univalence axiom, the
resulting theory allows for a synthetic development of ∞-groupoids [3].

More recently, new, directed, type theories have emerged, with the goal of developing a way
of doing synthetic category theory. Different approaches have been used, such as a 2-dimensional
theories [4], modal typings [5, 6, 7], or multilayered approaches [8], among others. Arguably
the most successful of these are Simplicial Type Theory [8] and Triangulated Type Theory [6].
However, they achieve their expressive power by interpreting types not as categories, but more
general structures, and then carving out those types that behave like categories.

Our work aims to develop a type theory with comparable expressive power to the aforemen-
tioned ones, but without changing the universe of types. It builds on previous joint work with
Mangel [9], which itself is a continuation of the work done in [10]. The key new contributions
are a new context extension rule and modified rules for hom-types, which we now sketch.

An overview of directed type theory

We sketch some basic components in our theory, which were already present in [10]. Extending
the groupoid model, we define contexts to be categories, with the empty context being the
terminal category. A type in a context Γ is a functor A : Γ → Cat, it follows that a type in
the empty context is a category. The context extension operation Γ ▷ A is interpreted as the
Grothendieck construction

∫
Γ
A. As usual, terms of A are sections of the canonical projection

Γ ▷ A→ Γ.
Furthermore, we have types Acore and Aop for each type A, which in the semantics are ob-

tained by postcomposing A : Γ→ Cat with the endofunctors core, op : Cat→ Cat, respectively.
We additionally have a hom-type former, with formation rule:

hom-Form
Γ ⊢ A type

Γ, x : Aop, y : A ⊢ homA(x, y) type

In the empty context, this type is interpreted as the usual functor homA : Aop × A → Set,
except that each set is interpreted as a discrete category.

The dependent 2-sided context extension

In addition to the usual context extension rule, we now have a “dependent 2-sided” version:
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Ctx-Ext2

Γ ctx Γ ⊢ A type Γ, a : Aop ⊢ B(a) type

Γ, a : A, b
2f

: B(ā) ctx

Semantically, it corresponds to a dependent analogue of Street’s notion of a 2-sided fibra-
tion [11], which we call a dependent 2-sided fibration (D2SFib). This construction is
equipped with an opfibration over Γ and a “local fibration” over

∫
Γ
A, and is the universal such

construction in the sense that we obtain an equivalence of categories

Functor(

∫

Γ

(op ◦A),Cat) ≃ D2SFib(Γ, A)

We now interpret terms Γ, a : A ⊢ b 2f

: B as sections (Γ, a : A)→ (Γ, a : A, b
2f

: B).
However, D2SFibs are not stable under pullback, which requires us to make a new judgment

to capture all substitutions. We write Γ ⊢ X typed for any displayed category X → Γ; equiv-
alently, for a normal lax functor X from Γ to the double category of profunctors Prof. Now,
terms in X correspond to sections of the displayed category, and so we can write:

Subst
Γ, x : X,∆ ⊢ a 2f

: X Γ ⊢ m : X

Γ,∆[m/x] ⊢ a d

: X

New rules for the hom-type

In particular, when applying this new operation to the hom-type we are able to form the new
context b : A, ā : A, f

2f

: homA(a, b) ctx (note the switching of the variables). Semantically, this
corresponds to the arrow category A→, which validates the following rules:

hom-Intro
Γ ⊢ A : U Γ ⊢ x : A

Γ ⊢ reflx
d

: hom(x̄, x)

hom-Elim
Γ, a : A ⊢ X type

Γ, b : A, a : A, f
2f

: homA(ā, b), x : Xop ⊢ D type

Γ, a : A, x : X ⊢ d d

: D[a/b, reflA/f ]

Γ, b : A, a : A, f
2f

: homA(ā, b), x : X ⊢ jd
2f

: D

As an example of the semantics, the hom introduction rule in the empty context states that
the diagonal ∆ : A → A × A lifts along the projection A→ → A. For another example, we
can now precisely capture natural transformations between two functors F,G : A → B, they
correspond to judgements a : A ⊢ τa : hom(F ā,Ga).

Furthermore, these rules plus the directed analogue of function extensionality are sufficient
to develop some category theory. Indeed, we can show:

Lemma (Yoneda). Let A : U core be a type. Then, the following two functors are naturally

2
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isomorphic

Y, Ȳ : (A→ Set)×A→ Set

Y (F, a) :≡
∏

(x,f):
∑

x:A hom(a,x)

Fx

Ȳ (F, a) :≡ Fa

Future works
This is still work in progress; in particular, we need to better understand D2SFibs, their pull-
backs, and their relation with factorization systems. Additionally, we still have to investigate
just how much category theory can be developed internally. We hope that properties of Tri-
angulated Type Theory, such as a directed structure identity principle, have an analog for our
syntax.
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One key insight emerging from the development of Martin-Löf Type Theory is that types
are synthetic groupoids. That is, the identity types of a given type A possess the structure of a
groupoid—the terms are the objects, reflt is the identity morphism on t : A, the invertibility of
identity terms encodes the fact that every morphism is an isomorphism, and so on. The “lower-
dimensional” version of this observation was made in the 1990s, most famously in Hofmann and
Streicher’s groupoid model [3]. In the groupoid model, the types are synthetic 1-groupoids: the
model’s refutation of the uniqueness of identity proofs corresponds to the fact that there may be
multiple distinct morphisms between any two objects in a groupoid, but the identity structure
becomes propositional beyond that point. Using type theory as a synthetic language for higher
groupoids, indeed ∞-groupoids, was a key impetus behind the development of homotopy type
theory [10]. In homotopy type theory, the types are natively higher groupoids [11], with the
identity types possessing (potentially) nontrivial identity type structure of their own, and those
identity types having interesting identity types, and so on.

These developments led naturally to the question: what about synthetic categories? That
is, can the symmetry of identity types be dropped (yielding “hom-types”), so that our types are
instead natively endowed with the structure of synthetic categories? This question proves to be
more challenging, but the outlook of such directed type theory is quite hopeful. Approaches
to directed type theory also come in higher- and lower-dimensional flavours. In recent years,
there has been a significant amount of interest in the simplicial approach to synthetic ∞-
category theory pioneered by Riehl and Shulman[9], with important pieces of∞-category theory
being performed in the synthetic style [12, 1, 2] and an experimental proof assistant rzk being
developed to allow for computer formalisation [4]. The lower-dimensional track—a “directed
analogue” of Hofmann-Streicher—is less-developed: though the appropriate definition of the
category model and its hom-types are known [8], there has yet to be a consensus on how to
arrange the category model’s polarity calculus in such a way to make synthetic 1-category
theory possible. In recent work [7, 6], I1 propose a resolution to these issues (combining aspects
of the type theories of North [8] and Licata-Harper [5], plus further innovations), and show how
the category model interprets a directed type theory capable of synthetic 1-category theory.

The purpose of this talk is to expound this directed type theory, and show the style of
synthetic category theory it permits. Following the HoTT Book [10], we adopt an informal
style more suited to mathematical practice. In this style of directed type theory, a modal
typing discipline is adopted to track the variances of terms: t : A means that t is covariant,
whereas t : A− means that t is contravariant. Viewing types as synthetic categories, this is
the same as saying that A− is the opposite category of A. Accordingly, we type our hom-type
formation rule as follows.

x : A−, y : A ` hom(x, y) type

These polarities have a substructural character: for closed terms we are able to freely coerce
between A− and A (for every closed term t : A−, there is a closed term −t : A and vice-versa)

1Jointly with Thorsten Altenkirch.
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but for open terms we have no such operation. Therefore, the reflexivity term—the identity
morphisms in our synthetic category theory—are stated only for closed terms.

t : A−

reflt : hom(t,−t)

The purpose of these restrictions is to prevent the elimination principle for hom-types—the
directed J-rule—from being able to prove symmetry. We can prove by metatheoretic argument
that our directed J-rule,

t : A−

y : A, u : hom(t, y) `M(y, u) type
m : M(−t, reflt)

y : A, u : hom(t, y) ` Jt,M (m) : M(y, u)

cannot prove symmetry: it is validated by the category model, but the category model refutes
symmetry (not every category is a groupoid). Using this principle of directed path induction,
we can easily construct the composition of hom-terms 2 and prove it satisfies the category laws.

When we carry out synthetic category theory in this setting, it permits a novel style of
category theory, which we call inductive category theory. In this framework, the universal
mapping properties of traditional category theory are instead reframed as principles of induction.
For instance, we make the following definition: given terms s, t : A, we say that a term s×t : A−

and terms π1 : hom(s× t, s) and π2 : hom(s× t, t) constitute a product of s and t if it satisfies
the following principle of induction.

z : A−, u : hom(z, s), v : hom(z, t) `M(z, u, v) type
m : M(s× t, π1, π2)

z : A−, u : hom(z, s), v : hom(z, t) ` elim(m) : M(z, u, v)

From here, we can recover the usual universal mapping property. For instance, given a cone
k : A−, f : hom(k, s), g : hom(k, t), we can obtain the hom-term 〈f, g〉 : hom(k,−(s × t)) by
induction: just set 〈π1, π2〉 equal to refls×t and we’re done.

In this talk, we’ll explore this peculiar method of phrasing category-theoretic concepts, show-
ing that it can encompass more complex notions like exponentials and adjoints, and speculate
on what a fully-worked out category theory in this style might look like.
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Equality in Martin-Löf type theory is inherently symmetric [8]: this is what allows for types
to be interpreted as sets, groupoids [9], and ∞-groupoids [19]; points of a type correspond to
objects, and equality is precisely interpreted by morphisms which are always invertible.

A natural question follows: can there be a variant of Martin-Löf type theory which enables
types to be interpreted as categories, where morphisms need not be invertible? Such a system
should take the name of directed type theory [13, 16, 1, 6, 11, 2] (DTT), where the directed
aspect comes from a non-symmetric interpretation of “equality”, which now has a source and
a target in the same way that morphisms do in a category. A common feature of current
semantic approaches to directed type theory is to resort back to the maximal subgroupoid Ccore

of categories [16, 2] in order to use the same variable with different variances C and Cop; this
is needed to validate introduction (refl) and elimination (J) rules for directed equality.

Dinaturality for directed type theory. In this work, we describe a first-order non-
dependent proof-relevant type theory where types are interpreted as categories, terms as func-
tors, predicates as endoprofunctors and entailments as dinatural transformations [4]; intuitively,
dinatural transformations allow for the same variable to appear both covariantly and contravari-
antly, and terms are required to be given only “on the diagonal” by equating the two occurrences
with the same value, thus avoiding the need for groupoids. An excerpt of the rules of our type
theory is shown in Figure 1, where (refl) and (J) capture the rules for directed equality. This
type theory is equipped with a syntactic notion of polarity which allows variables to be dis-
tinguished based on their appearance in negative and positive positions, which are represented
in entailments as x : Cop and x : C, respectively. Such polarity is used to express a syntactic
requirement on the J-rule: given a directed equality in context homC(x, y) with x : Cop, y : C,
then x and y are allowed to be contracted to the same variable z only if both x and y ap-
pear only positively (i.e., with the same polarity) in the conclusion and only negatively (i.e.,
with the opposite polarity) in the context. This rule allows us to syntactically recover the
same definitions about equality that one expects in standard Martin-Löf type theory, except
for symmetry because of the syntactic restrictions: e.g., transitivity of directed equality (the
composition map in a category), congruences of terms along directed equalities (the action of
a functor on morphisms), transport along directed equalities (the coYoneda lemma), and an
internal (di)naturality statement. Proving equational properties about these maps also follows
the same steps as in Martin-Löf type theory using directed equality induction, given in (J-eq),
which is a “dependent” version of (J) for the judgement of equalities of entailments. Cru-
cially, (J-eq) is validated in the model using dinaturality of maps. As in the case of symmetric
equality [10, Lemma 3.2.3], (J) is actually an isomorphism, and the inverse map is given by
precomposing with (refl). Finally, the interval type I := {0 → 1} with a single arrow serves as
countermodel for symmetry of directed equality.

Dinaturals famously do not compose [18]; the practical consequence of this fact is that in
this type theory there is no general cut rule for entailments. We provide two restricted cut rules
(cut-din) and (cut-nat), intuitively capturing the composition of dinaturals with naturals, which
are enough to capture all practical cases in which composition is needed. The rule (cut-assoc)
captures associativity of these two compositions in the equational theory for entailments.

∗Loregian was supported by the Estonian Research Council grant PRG1210. Veltri was supported by the
Estonian Research Council grant PSG749.

https://arxiv.org/abs/2409.10237
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[Γ] Φ ⊢ α : P
(var)

[Γ] Φ, a : P, Φ′ ⊢ a : P
[Γ] Φ ⊢ α : P

(wk)
[Γ] A, Φ ⊢ wk(α) : P

(⊤)
[Γ] Φ ⊢ ! : ⊤

[x : C, Γ] Φ(x, x) ⊢ α : P (x, x)
(op)

[x : Cop, Γ] Φ(x, x) ⊢ α : P (x, x)
Γ ⊢ F : C [x : C, Γ] Φ(x, x) ⊢ α : Q(x, x)

(idx)
[Γ] Φ(F op(x), F (x)) ⊢ F ∗(α) : Q(F op(x), F (x))

[Γ] Φ ⊢ P × Q
(prod)

[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

[x : Γ] A(x, x), Φ(x, x) ⊢ B(x, x)
(exp)

[x : Γ] Φ(x, x) ⊢ Aop(x, x) ⇒ B(x, x)
[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)

[z : ∆, x : Γ] k : P (z, z), Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)
(cut-din)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ[α] : Q(z, z)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ : P (z, z)
[a : ∆op, b : ∆, x : Γ] k : P (a, b), Φ(x, x, a, b) ⊢ α[k] : Q(a, b)

(cut-nat)
[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ α[γ] : Q(z, z)

(refl)
[x : C, Γ] Φ ⊢ reflC : homC(x, x)

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(b, a) ⊢ J(h)[e] : P (a, b)
[a : C, Γ] Φ ⊢ Q(a, a)

(end)
[Γ] Φ ⊢

∫
a:C Q(a, a)

[Γ]
(∫ a:C

Q(a, a)
)

, Φ ⊢ P

(coend)
[a : C, Γ] Q(a, a), Φ ⊢ P

[Γ] Φ ⊢ α = β : P
(J-comp)

[z : C, Γ] k : Φ(z, z) ⊢ J(h)[reflC] = h : P (z, z)
[z : C, Γ] Φ(z, z) ⊢ α[reflC] = β[reflC] : P (z, z)

(J-eq)
[a : Cop, b : C, Γ] e : homC(a, b), Φ(b, a) ⊢ α[e] = β[e] : P (a, b)

[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)
[z : ∆, x : Γ] k : P (z, z), Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)

[a : ∆op, b : ∆, x : Γ] k : Q(a, b), Φ(x, x, a, b) ⊢ β[k] : R(a, b)
(cut-assoc)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ (β[γ])[α] = β[γ[α]] : R(z, z)

Figure 1: Main rules for entailments of first-order dinatural directed type theory.

Implication in the logic is given by the notion of polarized exponentials [5, 3], which are
interpreted via the pointwise hom of endoprofunctors in Set: their behaviour is captured in
the rule (exp), which intuitively allows for predicates to switch between the two sides of the
turnstile simply by inverting the variance of all their variables.

(Co)ends as quantifiers. Moreover, we show how dinaturality allows us to more precisely
view (co)ends [14] as the “directed quantifiers” of directed type theory, which we present in
a correspondence reminiscent of the quantifiers-as-adjoints paradigm of Lawvere [12]. The
rules for (co)ends are captured as (coend), (end). Despite the lack of general composition,
the rules for directed equality and coends-as-quantifiers can be used to give concise proofs of
theorems in category theory using a distinctly logical flavour via a series of isomorphisms: e.g.,
the (co)Yoneda lemma, Kan extensions computed via (co)ends are adjoints, presheaves form a
closed category, hom preserves (co)limits, and Fubini, which easily follow by modularly using the
logical rules of each connective. This constitutes a concrete step towards formally understanding
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the so-called “(co)end calculus” [14] from a logical perspective. We show an example of (co)end
calculus as directed type theory via the following two derivations, which formally capture the
Yoneda and coYoneda lemma, respectively, using the rules given in Figure 1:

[a :C] Φ(a) ⊢
∫

x:C homop
C (a, x) ⇒ P (x)

(end)
[a :C, x :C] Φ(a) ⊢ homop

C (a, x) ⇒ P (x)
(exp)

[a :C] homC(a, x) × Φ(a) ⊢ P (x)
(J)

[z : C] Φ(z) ⊢ P (z)

[a :C]
∫ x:C homC(x, a) × P (x) ⊢ Φ(a)

(coend)
[a :C, x :C] homC(a, x) × P (a) ⊢ Φ(x)

(J)
[z : C] P (z) ⊢ Φ(z)

Related works. North [16] describes a dependent directed type theory with semantics in
Cat, but using groupoidal structure to deal with the problem of variance in both introduction
and elimination rules for directed equality. A similar approach is followed in [2] using the
notion of neutral contexts (i.e. groupoidal) instead of core-types. We focus on non-dependent
semantics, and tackle the variance issue precisely with the notion of dinatural transformation
instead of having to resort back to groupoidal structure.

New and Licata [15] give a sound and complete presentation for the internal language of
(hyperdoctrines of) certain virtual equipments. These models capture enriched, internal, and
fibered categories, and have an intrinsically directed flavour. This generality comes at the cost
of a non-standard syntactic structure of the logic, which forces variables to appear in an ordered
linear way. Our work is similar in spirit since we provide a formal setting to prove category-
theoretical theorems using logical methods, but we only focus on the 1-category model. We
treat ends and coends as quantifiers directly, with adjoint-like correspondences to weakening
functors acting on the context, without the need for quantifiers to include (restricted forms
of) conjunction and implication as in their work. Our rules for directed equality are more
reminiscent of the J-rule in MLTT, and specifically focus on the semantic justification based
on dinaturality; because of dinaturality, we are similarly restricted in the way that composition
can be performed, and indeed the specific substitution structure of Prof, viewed as a double
category, is an instance of our cut rules. Since we consider less general models, our contexts do
not have any restriction on appearance of variables: this allows us to consider profunctors of
many variables as typically needed in (co)end calculus (e.g. Fubini) and to state the statement
that directed equality can be symmetric. Moreover, certain derivations, e.g., the fact that
presheaf categories are cartesian closed, are not easy to capture as abstract properties of such
models, while they are straightforward to capture logically using dinaturality.

Another approach to directed type theory involves using geometric models with different
flavours [17, 6, 7, 20], typically by axiomatizing a directed interval type. In comparison, we
work directly with the more “algebraic” and elementary notions of 1-categories and dinatural
transformations, interpreting directed equality directly with hom-functors and their elimination
rules rather than with synthetic intervals.

Directed equality can also be captured at the judgemental level [13, 1]; however, such rewrites
are typically not described internally using hom-types and their elimination rule.

Future work. We believe type dependency to be the most interesting development of this
theory, with particular attention to how the polarity of variables interacts with type dependency.
To that end we are currently exploring a notion of dinatural context extension based on a
“diagonal” generalization of the Grothendieck construction to dinatural families of types A :
Γop × Γ → Cat, where objects are pairs (X ∈ Γ, a ∈ A(X, X)), and arrows are given by a lax
wedge-like condition as pairs (X, a) → (Y, b) := (f : X → Y, α : A(idX , f)(a) → A(f, idY )(b)).
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We develop a type theory that we show is an internal language for comprehension categories.
Usually, the semantics of Martin-Löf type theory (MLTT) is given in discrete or full comprehen-
sion categories. Requiring a comprehension category to be full or discrete can be understood
as removing one ‘dimension’ of morphisms. In our syntax, we recover this extra dimension.
We show that this extra dimension can be used naturally to encode subtyping as sketched by
Coraglia and Emmenegger [5]. We then extend our type theory with Π-, Σ- and Id-types and
discuss how to add subtyping for these type formers to both the syntax and semantics.

Motivation There are two primary approaches to studying denotational semantics of a type
theory: one starts with syntax and later develops semantics (e.g., simply typed lambda calculus
[3], MLTT [9]), while the other begins with intended semantics and then creates a syntax for it
(e.g., cubical type theory [2, 4]). One can think of the latter as developing an internal language
for a given categorical structure. More specifically, this can be thought of as developing a class
of languages that can be used to soundly reason about the given categorical structure. Each
instance of the categorical structure then gives a specific language, called its internal language.

We enact the semantics-first process by developing an internal language for comprehension
categories. We focus on comprehension categories as they constitute the most general semantics
for dependent type theory in the sense that all other categorical structures that are used to
interpret dependent theory embed in and can be compared in comprehension categories [1].
However, the structural rules of Martin-Löf dependent type theory (strMLTT) are far from being
complete with respect to comprehension categories – indeed, one often restricts to full or discrete
comprehension categories to give semantics for strMLTT. Instead of restricting comprehension
categories to full or discrete ones, we enlarge the syntax to describe all comprehension categories.

A comprehension category consists, among other things, of two categories: one whose objects
interpret the contexts and one which interprets types. Thus, at first glance, a comprehension
category can express morphisms between both contexts and types. In strMLTT, however, type
morphisms can be recovered from the context morphisms. Both the requirements of discreteness
and fullness ‘kill off’ this ‘extra dimension’ of morphisms. By not postulating discreteness
or fullness, we gain back this ‘extra dimension’ in the syntax. As argued by Coraglia and
Emmenegger [5], morphisms between types can be used to encode subtyping in a natural way.
Thus, our syntax and semantics can capture coercive subtyping.

CCTT We design judgements and structural rules, which we call CCTT. The judgements of
CCTT include the following two judgements which are not present in strMLTT.

1. Γ ⊢ s : ∆, where Γ,∆ ctx

2. Γ | A ⊢ t : B, where Γ ⊢ A,B type
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Judgement 1 adds explicit substitution to the syntax in the sense of [6]. Judgement 2 expresses
‘t is a witness for A being a subtype of B’. Judgements 1 and 2 are interpreted as the morphisms
in the category of contexts and types in a comprehension category, respectively.

We want types (contexts) and type morphisms (substitutions) to form a category. The rules
of CCTT regarding type morphisms are as follows.

Γ ctx Γ ⊢ A type
ty-mor-id

Γ | A ⊢ 1A : A

Γ ⊢ A,B,C type Γ | A ⊢ t : B Γ | B ⊢ t′ : C
ty-mor-comp

Γ | A ⊢ t′ ◦ t : C

Γ | A ⊢ t : B
ty-id-unit

Γ | A ⊢ t ◦ 1A ≡ t : B
Γ | A ⊢ 1B ◦ t ≡ t : B

Γ | A ⊢ t : B Γ | B ⊢ t′ : C Γ | C ⊢ t′′ : D
ty-comp-assoc

Γ | A ⊢ t′′ ◦ (t′ ◦ t) ≡ (t′′ ◦ t′) ◦ t : D

We have similar rules for context morphisms. The rules for context extension and sub-
stitution mirror the action of the comprehension functor and the reindexing functors in a
comprehension category, respectively. Some of these rules are as follows:

Γ ctx Γ ⊢ A type
ext-ty

Γ.A ctx

Γ ⊢ A,B type Γ | A ⊢ t : B
ext-tm

Γ.A ⊢ Γ.t : Γ.B

Γ ctx Γ ⊢ A type
ext-proj

Γ.A ⊢ πA : Γ

Γ,∆ ctx Γ ⊢ s : ∆ ∆ ⊢ A type
sub-ty

Γ ⊢ A[s] type

∆ ⊢ A,B type Γ ⊢ s : ∆ ∆ | A ⊢ t : B
sub-tm

Γ | A[s] ⊢ t[s] : B[s]

In CCTT, the term judgement Γ ⊢ a : A is not a primitive; instead, we introduce a notation
for it that stands for two judgements. This notation mirrors terms being interpreted as sections
of the projection morphisms πA : Γ.A→ Γ in a comprehension category.

Notation 1. Γ ⊢ a : A stands for the following two judgements:

1. Γ ⊢ a : Γ.A

2. Γ ⊢ πA ◦ a ≡ 1Γ : Γ

Theorem 2 (Soundness). Every comprehension category models the rules of CCTT.

Subtyping One can regard type morphisms as witnesses of coercive subtyping: a judgement
Γ | A ⊢ t : B can be seen as t is a witness for the subtyping relation A ≤ B. Coraglia
and Emmenegger explore this in generalized categories with families (GCwFs), a structure
equivalent to comprehension categories [5]. In their notation, this judgement is written as
Γ ⊢ A ≤t B.

Proposition 3. From the rules of CCTT, we can derive the following rule.

Γ ⊢ A,B type Γ ⊢ A ≤t B Γ ⊢ a : A

Γ ⊢ Γ.t ◦ a : B

The rule in proposition 3 states that if A is a subtype of B, then a term of type A can be
coerced to a term of type B. This corresponds to the subsumption rule in coercive subtyping.

In the following table, we discuss the meaning of some of the rules of CCTT from the
subtyping perspective, and how they relate to the rules discussed in [5].

Rule of CCTT Meaning under Subtyping Rule in [5]
ty-mor-id Reflexivity of subtyping witnessed by 1A -
ty-mor-comp A ≤f B and B ≤g C give A ≤g◦f C. Trans and Sbsm
ty-id-unit Each 1A is an identity for witness composition. -
ty-comp-assoc Composition of witnesses is associative. -
ext-tm A ≤t B gives a context morphism Γ.A ⊢ Γ.t : Γ.B. -
sub-tm Substitution preserves subtyping. Wkn and Sbst

2
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Type Formers We extend CCTT with Π-, Σ- and Id-types, and show that these extensions
can be interpreted in any comprehension category with suitable structure for each type former.
We then discuss how CCTT can be extended with subtyping for each type former, and define
a suitable semantic structure for interpreting these extensions.

Related Work Coercive and subsumptive subtyping have been studied from different angles.
Coraglia and Emmenegger [5] observe that vertical morphisms in GCwFs can be seen as

witnesses for coercive subtyping. They also show this in the presence of Π- and Σ-types.
Luo and Adams [8] study structural coercive subtyping syntactically. They address coher-

ence issues of composition of subtyping by having functoriality for type formers.
Laurent, Lennon-Bertrand and Maillard [7] extend MLTT to a type theory with functorial

type formers. They use this functoriality to extend MLTT to two type theories with coer-
cive and subsumptive subtyping, respectively. They also study meta-theoretic properties of
their systems, e.g. showing that their functorial system is normalizing and has decidable type
checking.

Zeilberger and Melliès [10] give a categorical view of subsumptive subtyping. They interpret
type systems as functors from a category of type derivations to a category of underlying terms.
In this setting, subtyping derivations are vertical morphisms.
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Propositional truncation is one of the most basic examples of higher inductive types, and
formalises the idea of a proposition “most closely approximating a type” [Uni13]. We can
define the propositional truncation of a type A as follows. It is a type ∥A∥ together with a map
| − | : A → ∥A∥, such that ∥A∥ is a proposition and satisfies the following recursion principle:
given any proposition P and map f : A→ P , there is a (unique) map t : ∥A∥ → P , as illustrated
below.

A P

∥A∥

f

|−|
t

We will give two general techniques for constructing models of type theory that do not
have propositional truncation, while retaining as much of the other parts of type theory as
possible. Both techniques are based on higher modalities [RSS20], and in particular to get
concrete examples of models, we will use higher modalities on cubical assemblies [Uem19, SU21]
arising from Lifschitz realizability [vO08, LvO13, RS20, Kou19]. To explain the key property of
Lifschitz realizability that we will use, we first recall that for a fixed universe U , we can think of
a modality as a Σ-closed reflective subuniverse of U , denoted U⃝ ↪→ U [RSS20, Section 1.3]. We
recall [Qui16] that lex Σ-closed reflective subuniverses can be viewed as models of homotopy
type theory. We note however, that the implementation of higher inductive types, and in
particular propositional truncation, may or may not be preserved by the inclusion U⃝ ↪→ U . In
particular for modalities arising from Lifschitz realizability, we can show the following theorem.

Theorem 1. Let ⃝ be the Lifschitz realizability modality on cubical assemblies. Then,

1. The inclusion U⃝ ↪→ U preserves Π and Σ types.

2. The inclusion U⃝ ↪→ U preserves the empty type, coproducts and all W -types.

3. The inclusion U⃝ ↪→ U does not preserve propositional truncation.

Moreover, following [LvO13, RS20] we can construct a countable increasing sequence of
reflective subuniverses ⃝n for n ≥ 2 as variations on Lifschitz realizability. One can then show
the following theorem.

Theorem 2. For each n ≥ 2,

The inclusion U⃝n ↪→ U⃝n+1 preserves Π and Σ types.

The inclusion U⃝n
↪→ U⃝n+1

preserves the empty type, coproducts and all W -types.

The inclusion U⃝n
↪→ U⃝n+1

does not preserve propositional truncation.

This already suffices to construct our simplest model of type theory without propositional
truncation. We recall that when viewing locally cartesian closed categories as models of ex-
tensional type theory, the existence of propositional truncation in the type theory corresponds
precisely to the locally cartesian closed category being regular [AB04, Mai05]. By simply taking
the colimit over the increasing sequence of reflective subuniverses in theorem 2, one can obtain
the following.
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Theorem 3. There is a category E such that

1. E is locally cartesian closed.

2. E has an initial object, disjoint coproducts and all W -types (including in particular a
natural number object).

3. E is not regular.

The simpler construction is limited in that it does not feature any universes of small types.
Adding universes introduces multiple complications. Firstly, instead of producing models of
extensional type theory, we might alternatively ask for the universe to be univalent, to get
models of univalent type theory. Secondly, we might ask to have not just one universe, but
a cumulative increasing sequence of universes. Finally, working with universes introduces the
following subtle point about the definition of propositional truncation. For a given type A : Un,
it might happen that A has a restricted propositional truncation in the sense that it does not
satisfy the recursion principle in general (i.e. for all universe levels) but does once we restrict to
propositions at universe level n. That is, for any proposition P : Un, and map A→ P , there is
a map ∥A∥ → P . To get models avoiding even this weaker version of propositional truncation,
we use our second, more sophisticated construction, which combines the previous ideas with
gluing [Shu14].

In particular, we have the following key lemma:

Lemma 4. Suppose that E is a type theoretic fibration category in the sense of [Shu14] and that
it moreover contains an inclusion of subuniverses U ↪→ V which preserves all type constructors
except for propositional truncation, but does not preserve propositional truncation. Then viewing
E→ as a type theoretic fibration category, again as in [Shu14], it contains a universe closed under
all type constructors except propositional truncation, and does not satisfy restricted propositional
truncation.

Using this and the results above on Lifschitz realizability, we can obtain the following the-
orems:

Theorem 5. There is a model of type theory with a cumulative increasing sequence of universes
such that:

1. Each universe is univalent.

2. Each universe is closed under Π and Σ types, coproducts and W -types, and contains the
empty type.

3. None of the universes have all restricted propositional truncations.

Theorem 6. There is a model of extensional type theory with a cumulative increasing sequence
of universes such that:

1. Each universe is closed under Π and Σ types, coproducts and W -types, and contains the
empty type.

2. None of the universes have all restricted propositional truncations.

As well as talking about these results, I will report on the current work in progress of adding
certain higher inductive types, such as the circle type to the model.
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Abstract

The groupoidal model of Martin-Löf type theory was introduced by Hofmann and
Streicher in 1998, proving that the uniqueness of identity proofs property is false in this
type theory and thus revealing higher dimensional structure [2]. In this model, dependent
types are modelled by isofibrations between groupoids; these are functors with the property
that paths can be lifted in a suitable way. Groupoids and isofibrations form a category
with families, which gives a model of dependent type theory.

One issue with formalising models given by categories with families constructively is
that substitution of terms is only modelled up to isomorphism rather than on the nose.
Due to work by Gambino and Larrea [1], this problem can be ironed out by working with
structure rather than mere properties.

In this talk, I will describe some recent work in which this algebraic approach is taken
to construct a structural version of Hofmann and Streicher’s groupoidal model. We work
with cloven isofibrations; these are functors equipped with the structure of a path lifting.
Moreover, we work in the setting of internal groupoid theory, without the reliance on
set theoretic foundations. This recovers Hofmann and Streicher’s approach when working
internally to the category of sets and forgetting the algebraic structure. Our abstract
setting allows for a relative consistency result: that models of Martin-Löf type theory can
be constructed using Martin-Löf type theory.
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factorisation systems, The Journal of Symbolic Logic, 88(1):242–289, 2023.

[2] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. Twenty- five
years of constructive type theory (Venice, 1995), 36:83–111, 1998.



Realizability Triposes from Sheaves

Bruno da Rocha Paiva and Vincent Rahli

University of Birmingham, United Kingdom

Abstract

Given a topos E and a Lawvere-Tierney topology 2 : Ω → Ω on it, we develop a
realizability E-tripos using the internal logic of the topos. Instantiating E with a category
of presheaves, we recover a notion of realizability with choice sequences.

Choice sequences first appeared in Brouwer’s second act of intuitionism [14]. Brouwer
envisioned an idealised mathematician that would generate entries of an infinitely proceeding
sequence (α0, α1, α2, . . . ). At any given moment, the mathematician would only have access
to the entries generated so far, hence any deductions would necessarily rely on a finite number
of entries. The first formal systems of Brouwer’s intuitionism were developed by Kleene and
Vesley [9] and Kreisel and Troelstra [10] in which the authors investigated the Bar Theorem,
continuity principles, as well as different kinds of choice sequences.

More recently, interpretations of Brouwer’s choice sequences have been leveraged to give anti-
classical models of dependent type theories. In [4] the authors give a computational account of
forcing. Based on this view of forcing the authors of [5] produce a model of MLTT falsifying
Markov’s principle. This interpretation of choice sequences is combined with term models in a
series of papers [1, 2, 3, 11, 7] to explore principles such as bar induction, continuity of functions
on the Baire space and different versions of Markov’s principle. As pointed out by [12], there
is a common thread of constructions internal to sheaf models which links all the foregoing
works. In the tradition of Kripke and Beth semantics, by taking a category of sheaves over a
preordered set W of worlds and carrying out the standard operational constructions internally
to this model, we should expect to recover models akin to the above.

In what follows, we will start from this observation and attempt to connect these realizability
constructions, in the form of PER models with choice sequences, to categorical realizability over
categories of sheaves, rather than the category of sets. As in the abstract, we fix a topos E and
a Lawvere-Tierney topology 2 : Ω→ Ω and proceed to define a realizability tripos over E . We
refer to [8] for an introduction to topos theory, in particular section A4.4 for a treatment of
Lawvere-Tierney topologies.

Definition 1. Given objects X and Y of E, we define partial morphisms from X to Y
as morphisms from X to Y⊥, where Y⊥ is the partial map classifier of Y [8, §A2.4]. In the
internal logic, given elements x and y of X⊥, we use x ↓ to mean that x is defined, x ≼ y to
mean that if x is defined then so is y and their values agree, and x ≃ y for the conjunction of
x ≼ y and y ≼ x.

Definition 2. An internal partial combinatory algebra consists of an object A of E, a
partial morphism − · − : A× A⇀ A and elements k, s : A satisfying the internal statements:

k · a ↓ s · a ↓ s · a · b ↓
a ≼ k · a · b a · c · (b · c) ≼ s · a · b · c

We define partial combinatory algebras (pca) using ≼ as opposed to ≃. It is shown in [6]
that any “weak” pca, that is using ≼, is isomorphic to a “strong” pca, that is using ≃, hence
this is mainly an aesthetic decision. Note that weak pcas differ from ordered pcas [17, §1.8].
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Whereas an ordered pca comes equipped with an ordering on the underlying object A, weak
pcas simply use the ordering ≼ on partial terms A⊥.

The usual story with partial combinatory algebras carries over to the internal setting. We
can still show that a pca is functionally complete and with that we get access to most program-
ming constructs needed for realizability such as pairings, booleans, coproducts, and whatever
else the mind might dream of. See [17, §1.1] for an elaboration on pcas and how to program
with them.

With an internal pca we could now define a realizability tripos akin to the usual set-based
realizability triposes. In fact this is done in [16], in which the author takes a pca internal to a
category of presheaves, takes its sheafification to get a pca internal to the relevant category of
sheaves, and then implicitly works in the realizability topos arising out of said pca object.

Definition 3. Given an object X we define the type of realizability predicates on X as the
type X → PA. We further define an ordering on realizability predicates φ,ψ : X → PA by

φ ≤ ψ :≡ ∃e : A.∀x : X.∀a ∈ φ(x).2(e · a ↓ ∧ e · a ∈ ψ(x))

Given a realizability predicate φ : X → PA, for each x : X we think of the subobject φ(x) ↪→
A as the programs which evidence that x satisfies φ, i.e. its realizers. We say that φ implies ψ,
written φ ≤ ψ, if there exists a program e which for every x, will take evidence that x satisfies φ
and convert it to evidence that x satisfies ψ. We include the modality 2 to accommodate for
choice sequences. For example suppose the program e relies on the sixth entry of a choice
sequence α, but so far we have only generated the first three entries. In such a case, the 2

lets us generate more entries for α before requiring that e · a be defined. If we did not use the
modality then we would not be able to generate more entries in α, effectively disallowing the
use of choice sequences as realizers.

Using the internal language of E we can show that realizability predicates on an object X
with this particular ordering form a pre-ordered set. Furthermore, we can define reindexing
pre-Heyting algebra morphisms by precomposition, show these have left and right adjoints (as
monotone maps) satisfying the Beck-Chevalley condition, and finally we can give an appropriate
generic element giving us an E-tripos. For an introduction to the theory of realizability triposes
and constructions on these we refer the reader to [17, §2]. The definitions of the required left
and right adjoints, and generic element are very similar with the ones in the usual setting.

In [15] the authors also use the internal logic of a category E to define categories of assemblies
and show that these still give models of constructive set theories. While the authors assume less
about the category E to define assemblies, they stick to defining assemblies over the internal
version of Kleene’s first algebra K1. So while the tools used are similar, the classes of models
considered are different.

To talk about choice sequences we instantiate E to the category of presheaves over a posetW.
In the prototypical case where we want our pca to have a single choice sequence code δ, we
may take this poset to be the set of lists of natural numbers inversely ordered by prefix. The
generated values of δ at each world would then be decided by the underlying list of natural
numbers. For the modality 2, we take the Lawvere-Tierney topology associated with the
following notion of covering: an upwards closed set U ⊆W covers a world w : W if all increasing
sequences of worlds starting at w intersect with U . The category of assemblies arising out of this
tripos seems like a particularly good setting for studying the realizability of choice sequences
themselves, it should contain interpretations of the natural numbers and the Baire space while
being simpler to work with than the realizability topos.

In this setting, an internal pca will consists of a pca Aw for each world w : W with application
maps (−) ·w (−) and transition maps (−)|w⊑v : Av → Aw. The application maps, which are

2
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partial functions, have to be monotone in their domain as well as natural. By choosing different
pca objects we expect to be able to handle different versions of choice sequences, from fully
lawless choice sequences, to lawful choice sequences and any variation sitting in between these.
This contrasts the situation with a sheafified pca object [16], where sheafification inadvertently
adds realizers which may not have been computable before. For example, consider the pca object
given by K1 at every world. In particular, application of terms is independent of the world and
so we have no choice sequence realizers, as their behaviour will be the same at every world. If
we take its sheafification, a realizer at a world w won’t be a single element e : K1 anymore,
but will instead be a compatible family of realizers (eu)u∈U indexed by a cover of w. Aside
from being compatible [8, Definition 2.1.2 in §C2.1], we have no restrictions on this family of
realizers, so sheafification has added realizers whose behaviour can vary wildly between different
worlds, despite starting with a pca object without choice sequences.

Towards the study of realizability of choice sequences, we now suggest two assemblies of
interest: that of pure natural numbers and that of effectful natural numbers.

Definition 4. The pure natural numbers assembly, denoted Npur, consists of the constant
presheaf ∆N along with the realizability relation e ⊨w n if and only if the code e : Aw equals the
Church encoding of n : N at w.

Definition 5. The effectful natural numbers assembly, denoted Neff , consists of the sheafi-
fication of ∆N. As for the realizability relation, if we have U covering w and and a compatible
family nu of natural numbers, then e ⊨w (nu)u∈U , if and only if there exists a cover V of w and
for all v ∈ U ∩ V and a : Av, (e|v⊑w) ·v a is defined and equals the Church encoding of nv at v.

At the level of underlying presheaves, the later is the sheafification of the former, so we hope
to find an analogous universal property to justify it as the correct definition of effectful natural
numbers. With this, we can then study choice sequences as the exponential object Neff → Neff

in this category.
We intend on using a theorem prover to formalise the arguments in the internal logic of E

as done in [13]. The formalisation is currently in its early stages, but we hope to progress more
on it once definitions are more settled.
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1 Introduction

Finding solutions to so-called recursive domain equations [11] is a well-known, important prob-
lem in the study of programs and programming languages. Mathematically speaking, the
problem is finding a fixed point (up to isomorphism) of a suitable endo-functor F : C → C on a
suitable category C, i.e., an object X of C such that F (X) ≃ X [9, 8, 11, 14, 1, 4]. A particularly
useful instance, inspired by the step-indexing technique, is where the functor is over (a subcat-
egory of) the category of presheaves over the ordinal ω and the functors are locally-contractive,
also known as guarded functors [3]. This corresponds to step-indexing over natural numbers.
However, for certain problems, e.g., when dealing with infinite non-determinism, one needs to
employ trans-finite step-indexing, i.e., consider presheaf categories over higher ordinals [2, 5].
Prior work on trans-finite step-indexing either only considers a very narrow class of functors
over a particularly restricted subcategory of presheaves over higher ordinals [12], or treats the
problem very generally working with sheaves over an arbitrary complete Heyting algebra with
a well-founded basis [3]. In this work we present a solution to the guarded domain equations
problem over all so-called guarded functors over the category of presheaves over ordinal num-
bers, as well as its mechanization in the Rocq prover. This can be seen as a simplification of
the work of Birkedal et al. [3] from the setting of the category of sheaves to the setting of the
category of presheaves which is more amenable to mechanization using proof assistants. Our
Rocq mechanization [13] can be found at: https://github.com/logsem/synthetic_domains.

2 Presheaves Over All Ordinals

In this work we talk about step-indexing over (all) ordinals, e.g., we speak of sheaves or
presheaves over Ord, the set of all ordinals (which we also consider to be a preorder cate-
gory under the usual order). This is to be understood as the set of all ordinals definable in a
certain Grothendieck universe. (In Rocq, the type Ord is a universe polymorphic definition
corresponding to the type of all ordinals in the universe.)

An important endo-functor on PSh(Ord) that plays an important role in our development
is the so-called later functor (▶ : PSh(Ord)→ PSh(Ord)):

▶F (α) := lim
β≺α

F (β) (▶F )β⪯α := lim
γ≺β

Π▶F (α)
γ

The object map of ▶, at each stage, takes the limit (in Set) of the diagram induced by the
object (presheaf) it is mapping at all smaller stages. In particular, ▶F (0) is always the terminal
(singleton) set, and ▶F (α+) ≃ F (α). The morphism map of the functor ▶, (▶F )β⪯α is defined

as the amalgamation of projections Π
▶F (α)
γ : ▶F (α) → F (γ) of the limit that is (▶F )(α).

There is also an important natural transformation Next : idPSh(Ord) → ▶ associated with ▶.

https://github.com/logsem/synthetic_domains
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We say a morphism in PSh(Ord), i.e., a natural transformation η : F → G, is contractive, if
it factors through Next, i.e., η = η′ ◦NextF ; we call η′ the witness of contractivity. Contractive
morphisms are closed under composition with any other (not necessarily contractive) natural
transformation. Importantly, contractive natural transformations have unique fixed points; a
natural transformation ξ : 1 → A is a fixed point of a contractive morphism η : A → A if
η ◦ ξ = ξ.

3 Locally Contractive Functors and Solutions

Definition (Locally Contractive Functors). Let C and D be two PSh(Ord)-enriched categories.
We write EhomC

A,B for the object of PSh(Ord) representing the collection of morphisms from A

to B in a category C, and we write EhmF
A,B : EhomC

A,B → EhomD
F (A), F (B) for the morphism of PSh(Ord)

representing the internal action of an enriched functor F on morphisms. We say a PSh(Ord)-
enriched functor F : C → D is locally contractive if the internal action morphisms of F , EhmF

A,B ,

are contractive with the witness of contractivity being morphisms E▶hmF
A,B : ▶EhomC

A,B → EhomD
F (A), F (B).

Furthermore, expressed in terms of equality of morphisms in PSh(Ord), the morphisms E▶hmF
A,B

must preserve identity and composition.

Importantly, the functor ▶ itself (under self-enrichment of PSh(Ord)) is locally contractive,
and locally contractive functors are closed under composition with arbitrary enriched functors.

Theorem. Any locally contractive functor F : C → C has a unique (up to isomorphism) solution
X for which F (X) ≃ X.

Note how each solution F (X) ≃ X gives rise to an F -algebra structure on X. The proof of
uniqueness of the solution essentially shows that an object is a solution if and only if it is the
initial F -algebra — the F -algebra morphism out of this initial F -algebra is constructed as the
unique fixed point of the internal action of the functor F on morphisms, which is contractive
since F is locally contractive. It is also for this reason that our construction of the solution is
essentially constructing an F -algebra whose underlying map is an isomorphism. Technically,
this construction consists of iteratively (by transfinite induction) constructing ordinal-shaped
diagrams of F -algebras, taking their limit, and applying F to the constructed limit.

Apart from working with the category of F -algebras as opposed to working directly in C,
our solution construction differs from that of Birkedal et al. [3] in how we treat zero and limit
ordinals. Working with sheaves, Birkedal et al. [3] at zero and limit ordinals simply take the
limit of the construction at stages below. By contrast, we apply F to the limit at every single
stage and not just at successor ordinals. (A similar difference also appears in our construction of
fixed points of contractive morphisms as defined above.) Another way to look at this difference
is if we look at the sequence of objects constructed in these two approaches (in our case the
carrier objects of the algebras we compute). Up to isomorphism, what we compute is the
sequence X while Birkedal et al. [3] compute the sequence Y :

X0 := F (1); X1 := F (F (1)); X2 := F (F (F (1))); · · · Xω := F ( lim
α≺ω

Xα); Xω+ := F (Xω); · · ·

Y0 := 1; Y1 := F (1); Y2 := F (F (1)); · · · Yω := lim
α≺ω

Yα; Yω+ := F (Yω); · · ·

4 Related Work

The most closely related works to us are Rocq mechanizations of the domain equation solver
of the ModuRes library [10], the domain equation solver of the Iris program logic [6] which

2
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is a nicer reimplementation of the domain equation solver of the ModuRes library, and the
domain equation solver of transfinite Iris [12]. (In fact, for our mechanization we have used the
step-indexing development of Spies et al. [12] who use the mechanization of ordinal numbers
by Kirst et al. [7].) The former two mechanizations work with the category of complete ordered
family of equivalences (COFEs), a representation of the category of complete bisected bounded
ultra metric spaces (CBUlt) [4] that is particularly amenable to mechanizations [10]. These
only support step-indexing up to ω. Transfinite Iris, inspired by Birkedal et al. [3], extends the
definition of OFEs (COFEs without completeness requirement) and COFEs to higher ordinals.
However, Transfinite Iris, unlike the ModuRes library and Iris, only solves domain equations
for functors of the form OFEop ×OFE→ COFE and not COFEop × COFE→ COFE.
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Building on a refinement of the novel loop-checking algorithm of Bezem and Coquand [2], we
present a new design and implementation of cumulative universe polymorphism for dependent
type theories, materialized in a branch [6] of the Rocq prover. Our system handles universe
level polymorphism for the full universe algebra (ℓ, 0,+1,max). The constraint solving algo-
rithm based on Horn clauses is theoretically polynomial. However, to stay competitive with the
previous algorithm based on the work of Bender et al. [1], we make the algorithm incremental
and integrate a union-find datastructure to capture semantic universe level equalities by effi-
ciently represented equivalence classes; this makes the algorithm more user-friendly in practice,
reflecting inferred equalities instantaneously in annotations.

On the type theory side, the original system of Sozeau and Tabareau [9] is simply generalized:
universe-polymorphic binders can take universe expressions as arguments, all constraints can
be enforced and checked, and we remove a long-standing distinction between inferred types
and checkable types [4]. This puts the system on par with Agda and Lean’s (non-cumulative)
universe systems.

On the elaboration side, the previous system [9] introduced a heuristic in unification to avoid
unnecessary unfoldings and an (infamous) minimization procedure to try to reduce the number
of unnecessarily quantified universes and constraints, which naturally grows exponentially fast
in presence of implicit cumulativity [3]. We generalize the notion of universe variance intro-
duced for cumulative inductive types [10] to all definitions and use it to refine the unification
heuristics and provide a more principled universe level metavariable solving process: it should
now guarantee a principal typing property.

The talk will present all these aspects along with examples and our preliminary performance
benchmarks and compatibility status.

A new loop-checking algorithm for universes

In dependent type theories with predicative universe levels, universe checking involves veri-
fying equalities (inequalities u ≤ v are interpreted as v = max(u, v)) between universe level
expressions:

Universe levels u, v := ℓ (universe level variable)
| 0 (bottom universe)
| u+ 1 (successor)
| max(u, v) (supremum)

Here 0 should be neutral for max, successor distributes over max and max is idempotent,
subsumptive (max(u, u + 1) = u + 1), associative and commutative. This already generates
a non-trivial quotient where for example max(0 + 1, u + 1) = u + 1. To make matters a
little more interesting one might add level metavariables (noted ?ℓ) to solve during elaboration
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and unification. Then, unification can get stuck: max(?l, ?k) = max(?u, ?v) has no general
solution. In Agda and Lean, this requires adding user annotations, instantiating metavariables
sufficiently to disambiguate. This situation is quite problematic when one considers automated
tactics as used in Rocq or Lean, where it might be difficult to make the tactics annotate
generated terms. We would rather like to keep the universe checking entirely automated,
so Rocq rather handles a context of universe constraints that are incrementally checked for
consistency. Previous versions of Rocq did not run into the problem of getting stuck as
the system carefully avoided generating max( , ) = max( , ) constraints [4], at the cost of
a less expressive theory and unpleasant API: inferred types needed to be ”refreshed” before
being put into terms, using fresh universe variables as proxies for max expressions. Currently
in Rocq, we actually consider a cumulative hierarchy of universes, so equational problems
become entailments of shape u0 ≤ ℓ0 . . . ui ≤ ℓi ⊢ u ≤ ℓ. Note the restriction to levels on the
right hand side of inequality constraints which is enforced by the type inference algorithm [4].
We lift this restriction to levels on the right using the new algorithm of [2], which is able to
handle all constraints. I.e., the whole algebra is supported and the entailments to check can
now have the general shape: u0 ≤ u1 . . . ui ≤ ui + 1 ⊢ u ≤ v. This also greatly simplifies the
API for term manipulation. In addition, it cannot ”get stuck”: it is correct and complete for
the (in)equational theory.

The new algorithm [2] is based on a representation of constraints as Horn clauses and
performs forward reasoning to check for consistency. Informally, it maintains an assignment
of the variables in N ∪ {+∞} that forms a minimal model of the Horn clauses; the value +∞
signals a loop. The algorithm can be used both to check that a new constraint is consistent
or produce a loop (used during elaboration), and to decide whether a constraint is deducible
from existing constraints (used during kernel type-checking). We extended the algorithm so
that each time a constraint ℓ ≤ ℓ′ is introduced, we check if ℓ′ ≤ ℓ also holds, in which case we
choose a canonical variable among the two and substitute the other one by it in the constraints.
Then checks for equality between level variables can be done in constant time, which is crucial
for performance.

We tested the new implementation against the previous one on the standard library and
some large Rocq projects (e.g. math-comp, the HoTT library and Iris), and found a 15%
overhead on average, which is expected against a highly optimized implementation for a simpler
problem. Note that on average universe checking accounts for 25% of Rocq’s compilation times,
according to an empirical study by Pierre-Marie Pédrot. However, most libraries do not use
polymorphism yet but rely on a very large global graph of constraints, which is less suitable
to the new algorithm. On the other hand, experiments on universe polymorphic code shows
drastic improvements on performance, with much less constraints being generated and more
reasonable inferred quantifications on universes.

Variances

We found the largest slowdowns of the new algorithm in Rocq’s Reals library, in proof scripts
using the setoid rewrite tactics [8]. Those proofs generated a large amount of global uni-
verse constraints. To solve this, we switched the setoid rewrite tactic to rather use universe
polymorphic definitions, avoiding interaction with the global graph. The main polymorphic
definitions of interest are:

Definition relation@{i} (A : Type@{i}) := A → A → Prop.
Class Proper@{i} {A : Type@{i}} (R : relation@{i} A) (m : A) := R m m.
Definition respectful@{i j} {A : Type@{i}} {B : Type@{j}} (RA : relation A) (RB : relation B)

: relation (A → B) := fun f g ⇒ ∀ x y, RA x y → RB (f x) (g y).

2
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The tactic performs proof search on instances of Proper@{i} R m, indexed by the syntax of
the relation R and the morphism m. If done näıvely, however, unification will spend a lot of
time unifying universe levels before doing useful work, for example in a unification constraint
relation@{i} A ≃ relation@{j} B will always first try to unify i and j before looking at the
arguments A and B. However one can see that unfolding relation would result in a unification
that would rather start comparing A and B as i and j do not appear in the unfoldings. For
respectful A B RA RB, the same is true for i and j.

Hence, we reify information on the occurrences of universe variables as a variance annotation
on universe level binders, reusing the variance analysis used for cumulative inductive types. A
variance can be one of: irrelevant (∗), covariant (+), contravariant (−) or equivariant (=). We
automatically infer an over-approximation of the variance of each variable at specific positions:
in the nth binder type, the return type or the body of the definition. If a variable does not appear
in a specific position, it is irrelevant. Typically, parameter universes appear contravariantly in
some binder of the definition (e.g. in the 1st binder A : Type@{i} for relation) but irrelevantly
everywhere else. So, if the definition is applied to at least one argument, for example i in
relation@{i} A in Proper’s second binder, then we can consider this occurrence irrelevant as well:
unfolding relation@{i} A makes i disappear. Applying this analysis compositionally results in
most universe binders being considered as irrelevant in Proper R m instances. We can use this
automatically inferred information during unification to avoid doing any unification on universes
until the real indexes of the proof search (the syntactic shape of the relation and morphism)
are unified, resulting in type unifications that will set the universes straight. This improves
unification performance significantly. The new setoid_rewrite tactic is even more performant
than the previous tactic in the Reals library.

In addition to improving unification performance, this variance information can also be used
to drive the so-called ”minimization” algorithm we we now call simplification that solves level
metavariables: those appearing in contravariant positions only can be maximized without loss
of generality while those appearing in covariant positions only can be minimized without loss of
generality. The user can also annotate definitions to provide the exact set of universe variables
he expects a definition to quantify over, and simplification will then proceed to instantiate
metavariables in terms of the explicitly quantified variables, providing much finer control to the
user than the previous implementation. Preliminary experiments using this to develop a new
sort-and-universe polymorphic prelude [7, 5] are encouraging.

Acknowledgments We are grateful to Thierry Coquand, Mart́ın Escardó, Pierre-Marie
Pédrot & Nicolas Tabareau for helpful discussions on this work.
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Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025. doi: 10.
1145/3704912. URL https://doi.org/10.1145/3704912.

[8] Matthieu Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning, 2(1):41–62, December 2009.

[9] Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq. In Gerwin Klein
and Ruben Gamboa, editors, ITP 2014, volume 8558 of Lecture Notes in Computer Science,
pages 499–514. Springer, 2014. ISBN 978-3-319-08969-0. doi: 10.1007/978-3-319-08970-6
32. URL http://dx.doi.org/10.1007/978-3-319-08970-6.

[10] Amin Timany and Matthieu Sozeau. Cumulative Inductive Types In Coq. In Hélène
Kirchner, editor, FSCD, volume 108 of LIPIcs, pages 29:1–29:16, July 2018. ISBN 978-
3-95977-077-4. doi: 10.4230/LIPIcs.FSCD.2018.29. URL https://doi.org/10.4230/

LIPIcs.FSCD.2018.29.

4

http://doi.acm.org/10.1145/2756553
http://doi.acm.org/10.1145/2756553
https://www.sciencedirect.com/science/article/pii/S0304397522000317
https://www.sciencedirect.com/science/article/pii/S0304397522000317
http://pauillac.inria.fr/~herbelin/publis/univalgcci.pdf
http://pauillac.inria.fr/~herbelin/publis/univalgcci.pdf
https://github.com/jpoiret/coq/tree/new-prelude
https://github.com/jpoiret/coq/tree/new-prelude
https://github.com/mattam82/coq/tree/universes-clauses
https://github.com/mattam82/coq/tree/universes-clauses
https://doi.org/10.1145/3704912
http://dx.doi.org/10.1007/978-3-319-08970-6
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.4230/LIPIcs.FSCD.2018.29


Internalized Parametricity via Lifting Universals

Aaron Stump

Boston College, Boston, Massachusetts, aaron.stump@bc.edu

Introduction. Internalizing the parametricity principle introduced by Reynolds has sev-
eral well-known benefits for Type Theory [6], including derivation of induction principles for
lambda-encoded data, and “free theorems” derived solely from types [8, 7]. Bernardy and
Moulin identified a critical issue taking the (meta-level) relational interpretation J−K of a type
containing an internalized use VXW of that interpretation [4]: there is a mismatch between the
meta-level interpretation, which is indexed by variable renamings, and the internalized version,
which it seems should not be. Bernardy and Moulin’s solution, based on a symmetry property
of relational interpretations, necessitates a pervasive change to the theory, where abstractions
now bind hypercubes of variables. Altenkirch et al. follow this geometric approach, leading to
a complex formal system [1]. Our goal is a simpler solution.

This abstract describes a constructive type theory VCCW (pronounced “lift CC”) in progress,
which extends the Calculus of Constructions (CC) with an internalized parametricity principle.
VCCW’s introduces a construct VAWki (“lifting”), with i ≤ k, where k is the arity of the relation.
Definitional equality unfolds applications of this operator, as suggested also by Altenkirch et
al. [1]. But VCCW avoids the mismatch identified by Bernardy and Moulin, by internalizing the
meta-level renamings as part of a type form called a lifting universal, with syntax Πx〈x̄〉 : A .B.

Syntax. The syntax of VCCW is shown in Figure 1. It can be seen as an extension of the
Calculus of Constructions (CC), and uses the sorts ? and 2 as in [2]. Metavariable θ ranges
over the binders. We have generalized forms for Π-types, λ-abstractions, and applications, as
well as VtWki for internalized interpretation. For VtWki , it is required that i ≤ k.

Lifting universals. In general, the interpretation of a type T as a k-ary relation is indexed
by k+1 variable renamings ρ0, · · · , ρk. Bernardy and Lasson realize these renamings by a fixed
scheme for deriving the names of new variables x0, · · · , xk−1, x̊ from a starting variable x [3].
Here, in contrast, we will consider the renamings explicitly. If i < k, then ρi maps each free
variable x in T to a variable xi used in speaking about the i’th term that the relation is relating.
The renaming ρk is used to map x : R to a variable xk showing that the inputs x̄ are related
by the interpretation of the type R. For simplicity, we take xk to be x, so ρk is the identity
renaming and may be omitted. We write x̄k for the vector x0, · · · , xk−1.

VCCW augments the Π-binder from CC to quantify additionally over x̄k, with syntax Πx〈x̄〉 :
R .S. This combines the renamings x 7→ xi, for i < k, with accepting an input x that proves the
x̄ are related by the relational interpretation of R. The formation, introduction, and elimination

naturals N 3 i, j, k
variables Var 3 x, y, z,X, Y, Z
binders Bnd 3 θ ::= λ | Π
sorts Srt 3 s ::= ? | 2

terms Tm 3 A,B,C, t, R, S, T ::= x | s | θ x〈x̄〉 : R .S | t′ t〈t̄〉 | VtWki
contexts Ctx 3 Γ ::= · | x〈x̄〉 : A,Γ

Figure 1: Syntax for VCCW
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Γ ` A : s1 Γ, x〈x̄〉 : A ` B : s2

Γ ` Πx〈x̄〉 : A .B : s2

Γ ` Πx〈x̄〉 : A .B : s Γ, x〈x̄〉 : A ` t : B

Γ ` λx〈x̄〉 : A . t : Πx〈x̄〉 : A .B

Γ ` t′ : Πx〈x̄k〉 : A .C Γ ` t〈t̄〉 : A

Γ ` t′ t〈t̄k〉 : [t〈t̄〉/x]C

(∀ i < k. Γ ` ti : VAWki ) Γ ` t : VAWkk t̄
Γ ` t〈t̄k〉 : A

Figure 2: Typing rules for lifting universals, along with helper judgement Γ ` t〈t̄〉 : A

[t〈t̄〉/x]VxWki = ti i < k
[t〈t̄〉/x]VxWkk = t
[t〈t̄k〉/x]VyWni = VyWni n 6= k ∨ y 6= x
[t〈t̄〉/x]x = t
[t〈t̄〉/x]y = y x 6= y
[t〈t̄〉/x]? = ?
[t〈t̄〉/x]θ y〈ȳ〉 : R .S = θ y〈ȳ〉 : [t〈t̄〉/x]R . [t〈t̄〉/x]S
[t〈t̄〉/x](s′ s〈s̄〉) = [t〈t̄〉/x]s′ [t〈t̄〉/x]s〈[t〈t̄〉/x]s̄〉

Figure 3: Applying a substitution [t〈t̄〉/x] to a term

rules are shown in Figure 2. When k = 0, these rules are isomorphic to the usual ones from CC
for Π-types, and we use the usual syntax Πx : A .B for Πx〈 〉 : A .B. Similarly, t′ t abbreviates
t′ t〈 〉, and λx : A .B abbreviates λx〈 〉 : A .B. Figure 3 defines substitution. The critical idea
is to respect the lifting operator: when substituting into VxWki , we choose the i’th term from
the vector t̄ (first equation of Figure 3).

Typing liftings. Figure 4 gives the last typing rules for VCCW, which are those for liftings,
as well as the axiom ? : 2 and the conversion rule. Parametricity is expressed in rule π. The
rules vr and vp show how assumptions of the form x〈x̄〉 : A contribute to typing: x is a proof
that x̄ is in the relational interpretation of A, and each xi has type VAWki , where the lifting is
needed to interpret variables y in A introduced with similar assumptions y〈ȳ〉 : B.

Conversion. VCCW uses definitional equality to simplify uses of V−W. The critical idea is
to use a contextual definitional equality of the form Γ ` A ' B, and to add an assumption
x〈x̄〉 : A to the context in the case of a lifting universal. This information may then be used
to reduce VxWki , as expressed in rule L of Figure 5, which says that if we find an assumption
x〈x̄〉 : A in Γ where the length of x̄ is kj for some j, then we can replace x with xij , while

retaining the other liftings. (Here, ij is the requested position from the VxWk̄
ī

notation.) But
this replacement is only allowed for positional liftings, where ij < kj . This replacement can
be justified as a permutation of a positional lifting with other liftings. But such permutation

Γ ` A : B i < k

Γ ` VAWki : VBWki
Γ ` A : B

Γ ` VAWkk : VBWkk VAWk0 · · · VAWkk−1

π
Γ ` ? : 2

x〈x̄k〉 : A ∈ Γ

Γ ` x : VAWkk x̄
vr

x〈x̄k〉 : A ∈ Γ i < k

Γ ` xi : VAWki
vp Γ ` t : A Γ ` A ' B

Γ ` t : B

Figure 4: Typing rules for liftings, plus additional standard rules

2



Internalized Parametricity via Lifting Universals Aaron Stump

x 6∈ FV(B)

Γ ` Πx〈x̄k〉 : A .B ' Π x̄ : VAWk .Πx : VAWkk x̄ . B
x〈x̄kj 〉 : A ∈ Γ ij < kj

Γ ` VxWk̄
ī
' VxijWk̄\kjī\ij

L

S ≡ ΠX : A .B

Γ ` VSWkk ' λ Ȳ k : S .ΠX〈X̄k〉 : A .VBWkk (Ȳ X̄) Γ ` VA BWkk ' VAWkk VBWk0 · · · VBWkk−1

Γ ` A ' A′ Γ, x〈x̄〉 : A ` B ' B′
Γ ` θ x〈x̄〉 : A .B ' θ x〈x̄〉 : A′ . B′

i < k

Γ ` V?Wki ' ? Γ ` V?Wkk ' λ Ȳ k : ? . Ȳ → ?

Figure 5: Selected rules for definitional equality.

does not make sense for relational liftings (VAWkk), where arity-k and arity-j relational liftings
result in different arity relations, and hence could not be permuted. The first rule of Figure 5
makes Πx〈x̄〉 : A .B an abbreviation for the nested Π-type one would expect from the relational
interpretation of Πx : A .B, as long as x has been completely eliminated from the body. The
middle row of Figure 5 expresses the relational semantics of Π-types using lifting universals, and
applications using positional liftings (0 ≤ i < k) and the relational lifting (i = k). Positional
lifting behaves homomorphically with respect to the constructs of CC (rules omitted).

Example: iterated internal parametricity. Internalized unary parametricity is ex-
pressed as ΠA : ? .Π a : VAW1

0 .VAW1
1 a (abbreviate this T ). The type given for a is as required

by the type of VAW1
1, based on rule π. Let us calculate VT W2

2.

VT W2
2 '

λ X̄2 : T .ΠA〈Ā3〉 : ? .Π a〈ā3〉 : VAW1
0 .VVAW1

1 aW2
2 (X̄ Ā ā) '

λ X̄2 : T .ΠA〈Ā3〉 : ? .Π a〈ā3〉 : VAW1
0 .VVAW1

1W2
2 VaW2

0 VaW2
1 (X̄ Ā ā) '

λ X̄2 : T .ΠA〈Ā3〉 : ? .Π a〈ā3〉 : VAW1
0 .VVAW1

1W2
2 a0 a1 (X0 A0 a0) (X1 A1 a1)

Call the last type above Q, and let us see how its body is typable. For readability, write Ai
for VAW1

i . Ai does not equal Ai, as the length of Ā in the context is 3, which does not match
the arity 1 of this lifting. The type of VVAW1

1W2
2 is the following, again followed by several

definitionally equal types:

VV?W1
1 A0W2

2 VA1W2
0 VA1W2

1 '
VA0 → ?W2

2 VA1W2
0 VA1W2

1 '
Πx〈x̄3〉 : A0 .VA1W2

0 x0 → VA1W2
1 x1 → ?

To type the body of Q, we use rule L to simplify a positional lifting when it is nested in another
lifting. For one example, using L, we can prove that the type of (X0 A0 a0), which is VA0W1

1 a0,
equals VVAW1

1W2
0 a0. Since we have A(Ā3) : ? in the context, the positional lifting VVAW1

1W2
0 is

equal to VA0W1
1, replacing A with A0. This holds similarly for the types of ā and (X1 A1 a1),

allowing the body of Q to be typed.
Towards normalization. Developing a semantics for VCCW seems challenging, because of

liftings. One would need to define a relational semantics that can be iteratively applied, so
one could apply the semantics to an object already in the semantic domain. Instead of this
path, I propose to use the Girard projection to reduce normalization of VCCW to normalization
of Fω, as in [2]. It then becomes plausible to consider internalizing Girard projection as a type
construct, as in [5], which would allow new definitional equalities as discussed in [8].

Acknowledgments. Thanks to the anonymous reviewers for helpful comments.
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Nantes, France
3 LMF & Inria Saclay,

Saclay, France

Sort Polymorphism [1] provides a new axis for parameterizing definitions in dependent type
theory by sorts, extending universe polymorphism which allows parameterization by universe
levels and, in cumulative systems, universe constraints modeling predicative universe inclusion.
In this talk, we will present a refinement of sort polymorphism with a different kind of con-
straints to model the elimination rules from one sort to another. These constraints can model
the existing sort elimination constraints used in the Rocq Prover to specify the interactions
between: an impredicative, definitionally proof-irrelevant SProp sort, an impredicative Prop sort
with so-called “(sub)singleton” elimination, and a predicative and cumulative Type hierarchy.
Using bounded quantification on sorts with elimination constraints, we can derive a single,
most-general induction principle on each inductive type, reducing code duplication, and give
an elegant treatment to primitive record types and their projections. We will demonstrate
the usefulness of this generalization, on existing sorts and new ones. During the talk, we will
discuss the state of the implementation in the Rocq Prover and its formal verification in the
MetaRocq project.

The Need for Sort Elimination Constraints

Sort polymorphism [1] has been integrated in the Rocq Prover since version 8.19 [4]; see the
Reference Manual for an introduction. It basically provides a way to parameterize over sort
quality variables in addition to universe level variables in definitions. A sort is then thought
of as a pair of a sort quality and a universe level. This enables the definition of generic con-
nectives like the unit type/true proposition, the empty type/absurd proposition, the Cartesian
product/conjunction and sums/disjunctions, as unique inductive types, interpretable in various
sorts. For example sums can be defined as:

Inductive sum@{sl sr s | ul ur} (A : U@{sl | ul}) (B : U@{sr | ur}) : U@{s | max(ul,ur)} :=
| inl : A → sum A B

| inr : B → sum A B

Herein, sum quantifies over sort qualities sl and sr for its parameters, and over sort s for its
return type. It can thus be instantiated to the usual sum type A + B by using Type everywhere,
to disjunction A ∨ B in either Prop or SProp, or to a combination of those, mixing propositional
and computational content:

Definition decidable@{i} (A : Prop) : Type@{i} := sum@{Prop Prop Type | 0 i} A (¬ A).
Definition type_excluded_middle@{i} (A : Type@{i}) : Prop := sum@{Type Type Prop | i i 0} A (¬ A).

Sort polymorphism introduces a simple rule to determine which eliminations are allowed for
a sort polymorphic inductive type: by default only elimination for motives in the same sort

https://metacoq.github.io
https://coq.inria.fr/doc/v8.19/refman/addendum/universe-polymorphism.html#sort-polymorphism
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quality as the inductive’s type quality is allowed. For sums, this means the following constant
is derived:

sum_elim@{sl sr s| ul ur i} A B {P : sum A B → U@{s | i}} : (∀ a, P (inl a)) → (∀ b, P (inr b)) → ∀ s, P s.

This models in particular that type_excluded_middle A B may only be eliminated to Prop, re-
specting the elimination constraints of Rocq (Prop cannot be eliminated to Type except in the
particular case of singleton types). However, it sadly forbids elimination of A + B, which lives
in Type, into Prop or SProp, even though it is entirely sound: one can still explicitly define an
eliminator from A + B to Prop.

To remedy this situation, we propose to enable the definition of a single eliminator whose
instantiations are restricted depending on a set of sort elimination constraints. They are of the
form s → s′, meaning that inductive types in sort s can safely be eliminated to sort s′. This
leads to sum_elim below.

Definition sum_elim@{sl sr s s′ | ul ur u’ | s → s′} A B (P : sum@{sl sr s| ul ur} A B → U@{s′ | u’})
(fl : ∀ a, P (inl a)) (fr : ∀ b, P (inr b)) x : P x :=
match x with inl a ⇒ fl a | inr b ⇒ fr b end.

Theory

We propose to define the sort elimination relation, denoted → , as the reflexive and transitive
closure of a set of elimination constraints, defining a partial order. The motivations for such a
behavior are twofold: (i) it allows the user to define only the elimination constraints that are
strictly necessary, and (ii) it enables the checking mechanism to easily find inconsistencies, e.g.
in the case where the user wants a sort s such that SProp → s and s → Type.

Moreover, we postulate that giving an antisymmetric structure to this relation is sound,
and even quite helpful: having two sorts s and s′, such that s → s′ and s′ → s, means that the
same types (up to isomorphism) inhabit the two sorts: we do not actually want to differentiate
them.

These properties make elimination constraints akin to universe level constraints [3], and
allow us to reuse the same data-structure for both kinds of constraints: an acyclic graph.
One still has to be careful to add the ground elimination constraints Type → Prop → SProp,
something that was not needed for universe level constraints but which is necessary here to
forbid equating e.g. Prop and Type due to user-imposed elimination constraints.

Implementation

The implementation of elimination constraints inRocq was also the opportunity to refactor and
harmonize the internal handling of elimination. Indeed, previously, sort-quality-related logic
was scattered across multiple files, with ad-hoc implementations, duplication and an unclear
separation of concerns. For instance, some parts of the code used direct sort quality compar-
isons, while others used set membership checks or variables relevance to validate eliminations
between sorts. In addition, these were often mixed with orthogonal universe level checks.

To address this, we refactored the implementation into two dedicated modules: the existing
Sort module, responsible for basic sort quality manipulation, and a new quality elimination
constraint graph, which gathers elimination rules and ensures consistency through an acyclicity
check.

On top of that, we also cleaned-up the full elimination mechanism implemented in Rocq.
It is based on a finer-grained principle than the acyclicity check, and enables a more subtle
management of elimination on a match on an inductive I in sort s when the motive has sort s′.

2
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The following table summarizes it: Here, by instantiating s by SProp, Prop or Type, it is clear that

#constructors(I) Elimination constraint between s and s′

0 s → SProp or s → s′

1 (sort(arg) → s for every arg and s → Prop) or s → s′

2 or more s → s′

one finds back the expected behavior: zero-constructor inductives in SProp/Prop/Type eliminate
to any sort, while singleton inductives in Prop and Type have no elimination restriction.

Nevertheless, a special case persists in the form of elimination in fixpoints, which is still
managed in an ad-hoc way: only the acyclicity check is used, together with a rule that al-
ways allows fixpoints on inductives in Prop. A useful instance of this occurs on fixpoints on
accessibility proofs Acc (when using its projector Acc_inv).

Verification

As our design is now stabilizing, we are aiming at a mechanized formal model of elimination
constraints and the new elimination checks along with sort polymorphism in the MetaRocq
framework [2], which currently only handles Prop and Type with (sub)singleton elimination.
While parameterizing definitions with sorts and (proof-irrelevant) elimination constraints should
be a straightforward extension of bounded universe polymorphism, adapting the definition and
formalization of erasure and its correctness proof will be an interesting challenge, we hope to
report on this by the time of the conference.

Acknowledgments We are thankful to Pierre-Marie Pédrot and Gaëtan Gilbert for insightful
discussions on the sort polymorphism and elimination restriction implementations in the Rocq
Prover.
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Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025.

[2] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Nielsen, Nicolas
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Abstract

Predicativity tells us that universe polymorphic definitions should live in the universe
of level ω. We argue for an alternative rule we call IUP (impredicative universe polymor-
phism) which allows such definitions to live in a much lower universe. The conditions under
which this rule leads to inconsistencies are not yet known, so in the mean time we present
different use cases to provide some intuition about its possibilities and its limits.

1 Introduction

The predicative tower of universes is nowadays ubiquitous in proof assistants, and more often
than not it comes equipped with some form of universe polymorphism [2]. This can take vari-
ous forms, from a “simple” sort of implicit meta-level macro-expansion, through displacement
algebras [5], to something like Agda where universe levels can be manipulated explicitly and
universe polymorphic definitions can be manipulated as first-class values [10], or even systems
where universe levels are themselves first-class values [8].

In all these works, universe polymorphism is predicative, meaning that universe polymorphic
definitions are placed in a universe of level strictly above the largest level to which it can be
instantiated. Concretely, this typically means that such definitions are placed in the universe
of level ω.

We argue that, under some conditions, we could place universe polymorphic definitions in a
lower universe, making those definitions impredicative. More specifically, for a type τ of universe
level ℓ, which can depend on a universe level variable l, the accepted predicative rule places the
type ∀l.τ in the universe of level supl ℓ, i.e. ω, whereas we argue that, under some conditions,
we could place it in the universe infl ℓ, which in our case is also ℓ[0/l].

In terms of practical uses, this form of universe polymorphism would be convenient to ma-
nipulate universe-polymorphic terms without resorting to universe levels beyond ω, it could
be used as an alternative form of impredicativity which does not require a special impredica-
tive universe, and it appears to be one of the ingredients necessary for type-preserving closure
conversion of languages with a hierarchy of universes.

We do not know under which conditions we can use such a rule without breaking consistency of
the system, and it seems difficult to relate this form of impredicativity we call IUP [9, Sec 4] to
other known forms of impredicativity such the Prop universe of the Calculus of Constructions [4]
or the propositional resizing axiom of HoTT [11, Sec 3.5], so until the underlying theory is better
understood, and as a way to motivate such investigation, we present a few specific use cases
where we have reasons to think they should be accepted or not.
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2 Case Studies

We explore a few use cases, chosen for their ability to provide some intuition about the possi-
bilities and the limits of IUP.

2.1 Strong sums

One clear limit to the consistency of IUP comes if we apply it to strong sums, as in:

Γ, l :Level ⊢ τ : Typeℓ
Γ ⊢ Σl.τ : Typeℓ[0/l]

Since we can then resize any function down to universe Type1 by stuffing it in an object of
type Σl1.Σt1 :Typel1 .Σl2.Σt2 :Typel2 .t1 → t2 out of which we can easily recover the original
function, regardless of its original universe level. This also suggests that IUP is incompatible
with first-class universe levels.

2.2 Church encoding

Functions that correspond to Church encodings of inductive types are examples where the IUP
rule seems to be sound. Consider a type of the form:

∀l.∀t :Typel.t→ (τ → t→ t)→ t

Assuming that τ do not refer to l nor t, this type corresponds to a Church-style encoding of
a list of elements of type τ . If τ is in universe level ℓ, then the corresponding inductive type
would be placed in universe level ℓ, but Agda would place it in ω. The IUP rule would instead
put the above type in universe 1 ⊔ ℓ. Compared to the original Church encoding, this adds
support for strong elimination, i.e. the possibility to eliminate to any universe rather than only
to the bottom impredicative universe (i.e. Prop or Set), which is allowed for inductive types and
thus suggests the IUP rule should be sound in this case.

More generally, we can consider a type of the following form:

∀l.∀t :Typel.(τ⃗1 → t)→ ...→ (τ⃗n → t)→ t

If we assume that the τij types do not refer to l, this type corresponds to a Church-style encoding
of an inductive type. If each τij is in universe level ℓij , then the corresponding inductive type
would be placed in universe level

⊔
i,j ℓij , while our IUP rule would similarly put the above

type in universe 1 ⊔⊔
i,j ℓij .

Note that compared to actual inductive types, Church-style encodings using our IUP rule still
lack dependent elimination, which is a problem that has been tackled by Awodey et.al. [1] and
Firsov and Stump [6]. Of mention also would be the work by Jenkins et.al. [7] which tries to
support strong elimination but without a rule like our IUP rule.

2.3 Closures

In type-preserving compilers for functional programming languages, functions end up reified as
tuples that are then wrapped in an existential package so as not to expose the set of captured
variables in its type. When captured variables can come from an arbitrary universe level, we
similarly need to hide that level: For a source function of type τ1 → τ2, the closure needs to

2
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have a type of the form ∃l.∃t :Typel.t × ((τ1 × t) → τ2) where t is the type of the captured
environment. If those ∃ are weak sums, one cannot do anything with such closures that one
cannot already do with its corresponding function of type τ1 → τ2, so it supports the idea that
such existentials could live in the same universe level l1 ⊔ l2, and thus suggests that our IUP
rule is justified in this case to puts this existential type in universe level 1 ⊔ l1 ⊔ l2.
See Bowman and Ahmed [3] for more challenges with type preserving closure conversion.

2.4 Well-ordering

Girard’s paradox starts with an impredicative definition of an ordering and then exhibits an
ordering of such orderings. The ordering is a tuple of a type along with some properties:

type Ordering : Type = mk-ord (set : Type) (less-than : set→ set→ Type) ...

In a predicative setting this does not work because Ordering ends up in a higher universe level
than set. If we want to try and reproduce the paradox using IUP, we need to abstract over the
universe level of set:

type Ordering : Type1 = mk-ord (l : Level) (set : Typel) (less-than : set→ set→ Typel) ...

But since IUP is restricted to apply to weak sums only, the above definition is unusable, because
the set cannot be extracted from that tuple any more, making it difficult to compare two such
orderings to make an ordering of orderings.
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We have introduced Parametric Observational Type Theory, which is a theory with internal para-
metricity which does not use an interval. It satisfies canonicity [2]; see [4] for an indexed version. This
theory is the basis for the Narya system that we have implemented.1 We are planning to use this type
theory as a stepping stone to Higher Observational Type Theory (HOTT), a computational version of
homotopy type theory that likewise does not use an interval. POTT introduces a relation for every type
(called the bridge type [6]). The bridge type (which we will write as Br in Narya) can be seen as a baby
version of equality: it is reflexive and a congruence, but it is not symmetric or transitive. Bridge can
be heterogeneous, so given A : B → Type, we have Br A : (b0 b1 : B) → Br B b0 b1 → A b0
→ A b1 → Type. Bridge of Π types says that bridge-identical inputs are mapped to bridge-identical
outputs. The bridge of an inductive type is an inductive family with the same number of constructors, as
usual in parametricity translations [5], and symmetrically for coinductive types. Bridge of the universe
corresponds to relation space; in particular, if A2 : Br Type A0 A1, and a0 : A0 and a1 : A1, then
A2 a0 a1 : Type. Narya also supports Martin-Löf’s inductively defined equality type family (which
does not satisfy function extensionality or univalence).

Following the ideas of [8, 3] we want to construct a universe of fibrant types inside POTT, such that
bridges of fibrant types correspond to equivalences (i.e. we have univalence), and using the observation
that singletons are contractible we can derive the usual J-elimination rule (with weak 𝛽-equality). This
is similar to the approach to cubical type theory in [7].

Our goal is to define a family isFib : Type → Type in Narya; then the universe of fibrant types
will be Ufib = Σ Type isFib. HOTT will live in Ufib, and Narya can be seen as an outer layer
for a two-level type theory [1]. We define isFib as a ‘higher coinductive type’. Higher coinductive
types are the dual of higher inductive types, and come with destructors on equalities rather than equality-
constructors. In POTT and Narya, these are actually bridge-destructors. The Narya-definition of isFib
is the following; note the ‘self variable’ x through which previous fields are accessed.

def isFib (A : Type) : Type := codata [
| x .trr.p : A.0 → A.1
| x .trl.p : A.1 → A.0
| x .liftr.p : (a0 : A.0) → A.2 a0 (x.2 .trr a0)
| x .liftl.p : (a1 : A.1) → A.2 (x.2 .trl a1) a1
| x .id.p : (a0 : A.0) (a1 : A.1) → isFib (A.2 a0 a1) ]

Destructors in Narya start with a ., and higher destructors end with .p (our chosen name for the
parametricity direction) when being defined, but not when they are used. For example, given

∗Ambrus Kaposi was supported by the the HOTT ERC Grant 101170308.
†Michael Shulman was supported by the United States Air Force Office of Scientific Research under award number FA9550-

21-1-0009.
1See https://github.com/gwaithimirdain/narya/tree/2cca3d7 and more specific links in the abstract.
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A0 : Type, x0 : isFib A0,
A1 : Type, x1 : isFib A1,
A2 : Br Type A0 A1, x2 : Br isFib A0 A1 A2 x0 x1,

we have x2 .trr : A0 → A1. Also, since a higher destructor must be applied to a bridge in the type
being defined, the ‘self variable’ x and the parameter A must be replaced by such bridges when declaring
the its type; the suffixes .0, .1, .2 on the variables A and x serve to identify the three components of
these arguments of the heterogeneous bridge types.

isFib expresses that given two bridge-identical types, we can transport between them in both
directions (via .trr and .trl), these transports preserve the bridge-relation A.2 (via .liftr and
.liftl), and finally, the bridge-relation itself is fibrant (via .id; this last destructor makes isFib into
a coinductive type rather than just a record).

Higher coinductive types are terminal coalgebras; in Narya we can construct their elements via
co-pattern matching. Similarly, the bridge of a higher coinductive type is another one. This allows us to
prove that a fibrant one-to-one correspondence between fibrant types, i.e. an equivalence, gives rise to a
bridge of those types; thus we have univalence. Univalence is definitional, which means that if we turn
a function which is an equivalence into an element of the Br type, and transport along it, we get back
the function definitionally (unlike in cubical type theories such as Cubical Agda).

We can also prove using co-pattern matching and corecursion that basic type formers preserve
fibrancy. Fibrancy for the empty type is trivial using an empty match. For the unit type, we show that
bridge of unit is equivalent to unit, with the notion of equivalence using the Martin-Löf equality type.
Knowing that fibrancy is preserved by such equivalences, we prove fibrancy of unit via corecursion.
For natural numbers, we first show that bridge is equivalent to the recursively defined equality (which
only uses empty and unit, already shown to be fibrant). Then fibrancy of Nat is a simple corecursion.
Fibrancy of Σ-types, Π-types, W-types, and M-types can be shown with analogous methods, although
we need to assume as axioms that the Martin-Löf equality type satisfies function extensionality (for
W-types) and coinductive extensionality (for M-types). The more serious challenge of showing that
Ufib itself is fibrant is work in progress.

We shouldn’t forget the elephant in the room, which is a semantic justification of higher coinductive
types in POTT and an extension of the proof of canonicity to their presence. We also aim to extend the
proof of canonicity to a proof of normalization, based on the algorithm implemented by Narya. Work is
also in progress to directly implement a mode for HOTT in Narya, in which all types will automatically
be fibrant.

The above results were formalised in Narya by the third author. Note that Narya currently does
not have termination or universe-level checking; thus while our corecursive proofs of fibrancy appear
semantically productive, they have not been syntactically checked to be so.
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[4] Thorsten Altenkirch, Ambrus Kaposi, Michael Shulman, and Elif Usküplü. Internal relational parametricity,
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About the construction of simplicial and cubical sets in
indexed form: the case of degeneracies
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Abstract

We presented in [HR25] a parametricity-based construction of augmented semi-simplicial
and semi-cubical sets in indexed form. Since then, we refined the construction in two di-
rections: the addition of degeneracies and a fine-grained analysis of dependencies allowing
to replace some propositional equalities by definitional ones.

The now classical problem of defining semi-simplicial types in type theory1 popularised the
idea that semi-simplicial sets could alternatively be built in an “indexed way” as the following
coinductive family of family of sets (here for the augmented case):

X−1 : HSet
X0 : X−1 → HSet
X1 : Πx : X−1. X0(x)×X0(x)→ HSet
X2 : Πx : X−1.Πyzw : X0(x). X1(x)(y, z)×X1(x)(y, w)×X1(x)(z, w)→ HSet

. . .

This amounts to see a presheaf on a direct category as a sequence of sets fibred one over the
others and to iteratively apply the fibred-indexed correspondence2:

(fibred) (ΣT : HSet.(T → S)) ≃ (S → HSet) (indexed)

Furthermore, the category of augmented semi-simplices and the category of cubes, and
thus augmented semi-simplicial sets and cubical sets as well, can uniformly be described as
categories over ω whose morphisms between n and p are the words of length p on an alphabet
L ⊎ {0} containing n times the letter 0, where L is the one-letter set {+} in the augmented
semi-simplex case and the two-letter set {+,−} in the semi-cube case. Such description is
similar to iterating Reynolds parametricity [Rey72], resulting in [HR25, Tables 1, 2, 3, 4, 5] to a
uniform definition of augmented semi-simplicial and semi-cubical sets, that is, in the first case,
of a family X−1, X0, X1, ... as above. It relies on reformulating the type of each Xn under
the form framen(X−1, ..., Xn−1) → HSet where framen, defined recursively, decomposes the
border of a simplex/cube into n layers made of appropriate filled simplices/cubes (we will write
framen,p for the prefix of framen made of the p first layers; we will also write restrframen,pq (d)
for an auxiliary operation of the construction used to project along direction q a partial d :
framen+1,p(X−1, ..., Xn) into a framen,p(X−1, ..., Xn−1)).
Adding degeneracies. The indexed construction of augmented semi-simplicial and semi-
cubical sets can be equipped with degeneracies by asserting the existence of maps from Xn

1ncatlab.org/nlab/show/semi-simplicial+types+in+homotopy+type+theory
2A practical interest of such presentation of simplicial sets or cubical sets is to provide models of type theory

that preserve the indexed form of dependent types, and thus liable to eventually interpret bridges or univalence
definitionally.

ncatlab.org/nlab/show/semi-simplicial+types+in+homotopy+type+theory


to Xn+1, each applied to appropriate arguments reflecting the coherence conditions between
degeneracies and faces. The degeneracies we are considering are those of usual (binary) cubical
sets and of unary cubical sets as those found in parametric type theory [BCM15] (note that,
along the above uniform description of augmented simplicial sets and cubical sets, degeneracies
in simplicial sets are actually the unary case not of the degeneracies of cubical sets but of the
connections of cubical sets!). Moreover, we consider also only one degeneracy, namely the one
in the last direction of a simplicial or cubical shape (the other degeneracies could eventually
be obtained by adding permutations to the structure). For a given frame d and w : Xn(d), the
degeneracy in the last direction rn(d)(w) has to lay on an appropriate frame for Xn+1 whose
last component is w. For instance, in the first dimensions, it takes the form:

r−1 : Πx : X−1. X0(x)
r0(x) : Πy : X0(x). X1(x)(r−1(x), y)
r1(x)(y, z) : Πw : X1(x)(y, z). X2(x)(r−1(x), y, z)(r0(x)(y), r0(x)(z), w)

Each rn depends on the previous ones, so, given a sequence (X−1, X0, ...) characterised in [HR25]
by a coinductively-defined type νSet, we coinductively define an infinitely nested Σ-type νreflSet
representing the type of sequences r−1, r0, r1, ... as follows:

νreflSet(X−1, X0, ...) ≜
Σr−1 : Πd : frame−1.Πx : X−1(d). X0(reflframe−1(d), x).

Σr0 : Πd : frame0(X−1).Πx : X0(d). X1(reflframe0(r−1)(d), x).

Σr1 : Πd : frame1(X−1, X0).Πx : X1(d). X2(reflframe1(r−1, r0)(d), x).
...

where

reflframen(r−1, ..., rn−1) : framen(X−1, ..., Xn−1)→ framen+1,n(X−1, ..., Xn)

computes the n first layers of the border of rn(d)(x), knowing that the last layer is made of x it-
self, so that (reflframen(r−1, ..., rn−1)(d), x) is a full frame, that is of type framen+1(X−1, ..., Xn).

Note that the correct typing of (reflframen(r−1, ..., rn−1)(d), x), relies, for X−1, X0, ..., Xn

being given, on two familiar coherence conditions:

idrestrreflframen(r−1, ..., rn−1) : Πd : framen. restrframen,nn (reflframen(r−1, ..., rn−1)(d)) = d
cohrestrreflframenp<n(r−1, ..., rn−1) : Πd : framen,p.

restrframen,pp (reflframen,p(r−1, ..., rn−1)(d)) = reflframen−1,p(r−1, ..., rn−2)(restrframen−1,p
p (d))

where reflframen,p generalises reflframen to prefixes of framen:

reflframen,p(r−1, ..., rn−1) : framen,p(X−1, ..., Xn−1)→ framen+1,p(X−1, ..., Xn)

The full construction of degeneracies, machine-checked, can be found in Rocq syntax in
https://github.com/artagnon/bonak/blob/dgn/theories/ (file νType.v).

Getting rid of the propositional equations used in the recursive argument of [HR25].
The [HR25] construction is highly dependent. For instance, we need the definition of framen,p

to type restrframen,p and we need the definition of restrframen,p to define framen,p+1. In the
formalisation associated to [HR25], this is managed by stating the definition of framen,p and
restrframen,p propositionally in the recursive step of the construction. We are close to complete
the formalisation of a propositional-equality-free variant obtained by mutually defining the types
of all restrframen,q for q < p together with the definition body of framen,p, itself dependently
on the assumption of definitions of restrframen,q for q < p (and a similar mutual dependency
between restrframen,p and the types of their coherences cohrestrframen,p). This makes the
construction much more compact.
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Predicative Stone Duality in Univalent Foundations
Martín H. Escardó and Ayberk Tosun

University of Birmingham
Birmingham, United Kingdom

Summary. Stone duality for spectral locales [8] states that the category of spectral locales
and spectral maps is dually equivalent to the category of distributive lattices. In this work,
we construct this equivalence in the setting of constructive and predicative univalent founda-
tions (UF), by working with the category of large, locally small, and small-complete spectral
locales. This extends the authors’ previous work [1] in which a predicatively well-behaved def-
inition of the notion of spectral locale was proposed in the setting of UF. In showing that this
notion of spectrality enjoys Stone duality, we formally establish that it captures the intended
category of spectral locales.

The results presented here will soon appear in the second named author’s PhD thesis [9].

Background on Stone duality. In an impredicative setting, a spectral locale [7, p. 63] is
defined1 as a locale in which the compact opens form a base closed under finite meets. A
continuous map of spectral locales is called spectral if it reflects compact opens.

A distributive lattice (also called bounded distributive lattice in the literature) is a lattice with
finite meets and finite joins in which the meets distribute over the joins (and vice versa). Given
a spectral locale X, the collection of its compact opens (denoted K(X)) forms a distributive
lattice as the compact opens are always closed under finite joins, and also closed under finite
meets in spectral locales. Conversely, given a distributive lattice L, the collection of ideals of L
(denoted Idl(L)) forms a spectral frame. The locale defined by this frame is called the spectrum
of L and is denoted spec(L). Stone duality for spectral locales amounts to the fact that these
two maps form a categorical equivalence when extended to functors.

Foundations. We work in the context of intensional MLTT extended with univalent features.
We assume the existence of Σ and Π types as well as the inductive types of 0, 1, the natural
numbers, and lists. Furthermore, we assume univalence and propositional truncations. Instead
of assuming the univalence axiom globally, we assume specific universes in consideration to be
univalent. We define the type of families (with index type living in universeW) on a given typeA
as FamW(A) :≡ Σ(I :W)I → A. We often use the abbreviation (xi)i:I for a family x : I → A.

We work explicitly with universes. We denote the ground universe by U0, the successor of
a universe U by U+, and the least upper bound of two universes U and V by U ⊔ V.

A type X : U is called V-small if it is equivalent to a specified type in universe V
i.e. Σ(Y :V)X ≃ Y , and is called locally V-small if the identity type x =X y is V-small, for
every pair of inhabitants x, y : X. A universe U is said to be univalent if the canonical map
idtoeqv : X =U Y → X ≃ Y is an equivalence, and the univalence axiom says that all universes
are univalent. The univalence axiom implies that the type expressing that X is V-small is
a proposition, for every pair of universes U and V, and every type X : U . In fact, this can
be extended to a logical equivalence [4]: if X being V-small is a proposition for every pair of
universes U and V and every type X : U , then the univalence axiom holds.

1This notion is also called a coherent locale in the literature.
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Locale theory with explicit universes in UF. We fix a base universe U and we call
U-small types simply small in this context. A lattice is called (1) large if its carrier set lives
in universe U+ and small otherwise, (2) locally small if its order has small truth values, and
(3) small-complete if it has joins of small families. It is well known that complete, small lattices
cannot be constructed in a predicative foundational setting without using a form of propositional
resizing. This was first shown by Curi [2, 3] for CZF, and then by de Jong and Escardó [5, 4]
for predicative UF. Due to this no-go theorem, our investigation of locale theory focuses on the
category of large, locally small, and small-complete frames.

Spectral locales in a predicative setting. A family (Bi)i:I of opens in some locale X is
said to form a weak base for X if, for every open U , there is an unspecified subfamily (Bij )j:J
such that U =

∨
j:J Bij . A locale X is called spectral if it satisfies the following four conditions:

(SP1) it is compact (i.e. the empty meet is compact), (SP2) the meet of two compact opens
is compact, (SP3) the family K(X) ↪→ O(X) forms a weak base, and (SP4) the type K(X) is
small.

Compared to the standard definition, the most salient difference here is the stipulation that
the type K(X) be small. The justification for having requirement in the definition is twofold:
(1) many fundamental constructions of locale theory (e.g. Heyting implications, open nuclei,
right adjoints of frame homomorphisms) do not seem to be available in the absence of a small
(weak) base, and (2) a natural desideratum for the definition of spectrality is that it satisfy
Stone duality, and it can be shown, as we will explain soon, that every locale homeomorphic
to the spectrum of a (small) distributive lattice satisfies the above definition. We denote by
SpecU the category of large, locally small, and small-complete spectral locales over universe U .

Propositionality of being spectral. In UF, it is natural to expect that being spectral is a
property and not structure. If we assume the base universe to be univalent, we can show that
this is indeed a proposition, since this is what we need to conclude that Condition (SP4) is a
proposition. As explained previously, however, the propositionality of being small is logically
equivalent to univalence, which is to say that the use of univalence here seems to be essential.

Spectrum construction with explicit universes. A small distributive lattice (over base
universe U) is a small set L : U equipped with operations -∧- : L→ L→ L and -∨- : L→ L→ L,
which are associative and commutative, have unit elements, and satisfy the absorption laws i.e.
x∧(x∨y) = x and x∨(x∧y) = x, for every x, y : L. We denote by DLatU the category of small
distributive lattices over base universe U . By a small ideal of L, we mean a U-valued subset
S : L → ΩU that is inhabited, downward closed, and closed under binary joins. We show that
the small ideals of a lattice L form a large, locally small, and small-complete locale satisfying
the above definition of spectrality. We then extend this to a functor spec : DLatU → SpecU .

Predicative Stone duality. We show that the type K(X) is a small distributive lattice, for
every large, locally small, and small-complete spectral locale X. This exploits Condition (SP4),
stipulating the smallness of K(X). We then extend this to a functor K : SpecU → DLatU , and
show that it forms a categorical equivalence when paired with spec : DLatU → SpecU .

Formalization. Most of the work we present has been formalized using the Agda proof
assistant, as part of the TypeTopology library [6]. The object part of the categorical equiva-
lence has been completely formalized, and the extension of this to the full categorical equivalence
is work in progress at the time of writing.

2



Predicative Stone Duality in Univalent Foundations Escardó and Tosun

References
[1] Igor Arrieta, Martín H. Escardó, and Ayberk Tosun. The patch topology in univalent foundations,

2024. arXiv: 2402.03134 [cs.LO].
[2] Giovanni Curi. On some peculiar aspects of the constructive theory of point-free spaces. Mathe-

matical Logic Quarterly, 56(4):375–387, 2010.
[3] Giovanni Curi. On the existence of Stone–Čech compactification. The Journal of Symbolic Logic,

75(4):1137–1146, 2010.
[4] Tom de Jong and Martín H. Escardó. On small types in univalent foundations. Logical Methods in

Computer Science, Volume 19, Issue 2.
[5] Tom de Jong and Martín H. Escardó. Predicative aspects of order theory in univalent foundations. In

Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Computation and
Deduction (FSCD 2021), volume 195 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 8:1–8:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[6] Martín H. Escardó and contributors. TypeTopology. Agda library available at https://github.
com/martinescardo/TypeTopology.

[7] Peter T. Johstone. Stone Spaces. Cambridge Studies in Advanced Mathematics.
[8] Marshall H. Stone. Topological representation of distributive lattices and Brouwerian logics. Časopis

pro pěstování matematiky a fysiky, 67:1–25, 1937.
[9] Ayberk Tosun. Constructive and Predicative Locale Theory in Univalent Foundations. PhD thesis,

University of Birmingham, 2025. Accepted, to be published.

3

https://arxiv.org/abs/2402.03134
https://github.com/martinescardo/TypeTopology
https://github.com/martinescardo/TypeTopology


Cocompleteness in simplicial homotopy type theory
Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz

1 Introduction
Simplicial type theory (STT) was introduced by Riehl and Shulman [8] to give a synthetic
account of ∞-category theory1 based on homotopy type theory. Specifically, STT extends HoTT
with a handful of axioms to tune the theory to a particular collection of models (those based on
the ∞-topoi E∆op

) into which the ∞-category of small (internal) ∞-categories fully-faithfully
embeds [7]. The most important axiom postulates a type I which behaves like a directed interval :

Axiom 1. We assume an h-set I : U such that I is a totally-ordered bounded distributive lattice.

We may then use I to associate to any x, y : X the type of synthetic morphisms hom(x, y):

hom(x, y) =
∑
f :I→X f(0) = x× f(1) = y

Not every type admits a composition operation, so we isolate the data of a composition of two
morphisms using ∆2 =

∑
i,j:I i ≥ j. In particular, α : ∆2 → X intuitively classifies a pair of

composable morphisms in X—α(1,−) and α(−, 0)—together with their composite—λi. α(i, i).

Definition 1.1. A pre-category X is a type where the restriction X∆2 → XI ×X XI is an
equivalence. An inverse to this restriction is denoted ◦ and composes morphisms in X.

While a pre-category has composition operation, to correctly model ∞-categories we further
restrain X such that x =X y coincides with synthetic isomorphisms x ∼= y:

Definition 1.2. A pre-category X is a category if isEquiv
(
λx.(x, x, id) : X →∑

x,y x
∼= y

)
.

Definition 1.3. A groupoid is a category where all morphisms are isomorphisms.

On top of this handful of basic definitions, Riehl and Shulman [8] developed the theory of
functors, natural transformations, and adjoints within STT and since then authors [1–3, 5, 6, 10,
11] have worked to reproduce or extend ∞-category theory within STT. In particular, the recent
work by Gratzer et al. [5, 6] extends STT with a collection of modalities [4] to construct the
category of groupoids S along with the theory of presheaf categories.

We extend this line of research on modal STT with a series of results in showing that
cocompleteness may be reduced to the existence of various simpler colimits. We are then able
to provide an entirely synthetic account of (generalized) homology and cohomology theories.

Notation 1.4. While the details of the modal STT are not relevant, we note that it generalizes
Shulman [9] and, in particular, includes the ability to quantify over only the objects of categories
i.e., to treat such elements non-functorially. These non-functorial variables are annotated by ♭.

2 Colimits and cocompleteness
Our focus is to analyze conditions equivalent to the following:

Definition 2.1. A category C is cocomplete if C → CI is a right adjoint for all I :♭ U0.
1By ∞-category theory we specifically mean (∞, 1)-category theory.
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Our main results offer simpler alternative conditions for a category to be cocomplete.

Theorem 2.2. A category C is cocomplete if any of the following hold:

1. C has pushouts as well as colimits indexed by groupoids and crisp excluded middle holds
(for every h-proposition ϕ :♭ U either ϕ or ¬ϕ holds).

2. C has finite coproducts and all sifted colimits

3. C has all finite colimits and all filtered colimits.

The latter two conditions are both necessary and sufficient.

In the above, filtered and sifted colimits are defined using the notion of cofinal maps as
introduced in STT by Gratzer, Weinberger, and Buchholtz [6] and closely follow the standard
definitions from ∞-category theory: A category C is sifted if C → Cn is right cofinal for all
n : Nat and filtered if C → CK is right cofinal for all finite complexes K. In fact, in ibid. it is
shown that the category of S-valued presheaves on C is the free cocompletion.

3 Spectra and (co)homology
We apply the above results to the category of spectra Sp. If (∞-)groupoids replace the category
of sets in ∞-category theory, spectra take the place of abelian groups. We are now able to
show that Sp is stable (Lemma 3.3) and use this to construct homology theories satisfying the
Eilenberg–Steenrod axioms.

Definition 3.1. Sp is given by the limit (computed as in Book HoTT) lim←−(S∗
Ω←− S∗ Ω←− . . . ).

Lemma 3.2. Sp has all filtered colimits and all limits.

Lemma 3.3. Sp is finitely (co)complete, 0Sp
∼= 1Sp, and pushouts and pullbacks coincide.

Corollary 3.4. Sp is cocomplete.

Proof. Apply Theorem 2.2 to Lemmas 3.2 and 3.3.

A fundamental example of a spectrum is HZ, the Eilenberg–MacLane spectrum given by
the sequence of Eilenberg–MacLane spaces (K(Z, 0),K(Z, 1), . . . ). By Gratzer, Weinberger,
and Buchholtz [6], there is an equivalence between cocontinuous maps S → Sp and elements
of spectra and we write H : S → Sp for the cocontinuous functor induced by HZ. We further
write πi : Sp→ Ab for the functor sending X to π0(proji(X)).

Lemma 3.5. If X → Y and Z = Y ⊔X 1 then there is a long exact sequence of abelian groups:

πiX πiY πiZ πi−1X . . .

Theorem 3.6. The functors πi ◦H : S → Ab satisfies the Eilenberg–Steenrod axioms.

Proof. Of the Eilenberg–Steenrod axioms (homotopy invariance, excision, dimension, and
additivity), homotopy invariance and dimension follow more-or-less by definition. Excision
states that cofibers in S are sent to long exact sequences. This is a corollary of the cocontinuity
of H alongside Lemma 3.5. The additivity axiom states that that coproducts are preserved
by Hi. For finite coproducts, Lemma 3.3 implies that finite coproducts agree with finite
products and πi : Sp→ Ab sends finite products to direct sums by calculations. For the general
case, one decomposes

∐
i:I Xi for a discrete set I into the filtered colimit of finite colimits

lim−→(n,f):
∑

n:N I
n

∐
k≤nXf(i) to reduce to the finite case.
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Homotopy type theory (HoTT) has been proposed as a foundation of synthetic homotopy theory and
its usefulness was witnessed early on by e.g. Brunerie’s 2016 proof that π4(S

3) – the fourth homotopy
group of the 3-sphere – is isomorphic to Z/2Z [Bru16]. As Brunerie’s proof appeared only 78 years after
Pontrjagin’s original proof [Pon38], it is about time (if we wish to keep up with the classical homotopy
theorists) we start thinking about the next homotopy group in line: π5(S

3). In this note, we present a proof
that π5(S

3) ∼= Z/nZ for some (constructively defined) n ∈ {1, 2}. We have not yet been able to carry out a
(terminating) normalisation of this number in a constructive proof assistant such as Cubical Agda, but we
are hopeful – Pontrjagin and Whitehead only showed that π5(S

3) ∼= Z/nZ in 19501 [Pon50; Whi50], so we
can let Agda think for another couple of years before we hit the 78-year mark.

Concretely, our first key contribution – Theorem 1 – is a HoTT version of a theorem by Gray [Gra73]
which relates cofibres of certain so-called Whitehead products to the fibre of the pinch map. Using that such
cofibres are well known to be related to the homotopy groups of spheres, we are able to use Theorem 1 to
derive our second key contribution – Theorem 2 – which is a characterisation of π5(S

3). While we appreciate
that Theorem 1 is a somewhat niche result, we hope that Theorem 2 will be of interest to a broader audience
of type theorists as it presents a so-called ‘Brunerie number’. That is, it presents a constructively defined
n ∈ {1, 2} whose normalisation in a constructive proof assistant like Cubical Agda would yield a proof of a
non-trivial theorem: in this case, of the fact that π5(S

3) ∼= Z/2Z. We will discuss our struggles with actually
normalising/computing this number. While the formalisation of the proof that π5(S

3) ∼= Z/2Z is in its early
stages, the construction of our new Brunerie number is independent and can be defined in Cubical Agda

with little effort using the formalisation of π4(S
3) ∼= Z/2Z due to Ljungström and Mörtberg [LM23]. We

remark that we do also have a pen-and-paper proof of the fact that our Brunerie number is 2. Nevertheless,
we are still interested in producing a fully computer-assisted proof.

Preliminaries/notation We will not go into any detailed proofs and will not require too much knowledge
of classical homotopy theory. We do, however, rely on some basics of HoTT which we briefly rush through
here. The reader comfortable with HoTT can skim this section.

Pointed types and maps : a pointed type is a pair (A, ⋆A) where ⋆A : A. We will simply write A and leave
⋆A implicit. We use the same convention for pointed maps and write f : A→⋆ B for a pointed map from A
to B and leave the proof ⋆f : f(⋆A) = ⋆B implicit.

Loop spaces: given a pointed type A, we let Ω(A) := (⋆A = ⋆A) denote its loop space. Given a pointed
map f : A→⋆ B, we write Ω f : Ω(A)→⋆ Ω(B) for the functorial action of Ω.

Pushouts: given a span B
f←− A g−→ D, we can form its pushout. This is the higher inductive type (HIT)

Pf,g with constructors inl : B → Pf,g inr : D → Pf,g push : (a : A)→ f(a) = g(a). Pushouts are

always taken to be pointed by inl(⋆B) when B is pointed. Important instances are:

Name Notation Pushout of span Comments

Join A ∗B A← A×B → B

Cofibre (of f) Cf 1← A
f−→ B

Wedge sum A ∨B A
x 7→⋆A←−−−− 1

x 7→⋆B−−−−→ B A and B are pointed types
When A is pointed, there is a

Suspension ΣA 1← A→ 1 ‘suspension function’ σA : A→ Ω(ΣA)
given by σA(x) := push(x) · push(⋆A)−1

Recall also that the n-sphere can be defined in terms of suspension by defining it to be the (n + 1)-fold
suspension of the empty type, i.e. Sn := Σn+1⊥.

1The original proofs concerned π6(S4) but this group is isomorphic to the one in question by the quaternionic Hopf
fibration [BR18].
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Homotopy groups : given a pointed type A, we define its nth homotopy group by πn(A) := ∥Sn →⋆ A ∥0.2
Here, ∥ − ∥0 denotes set truncation, i.e. the operation which takes a type and forces it to satisfy UIP. The
type πn(A) has a natural group structure when n ≥ 1 which is abelian when n ≥ 2. Given a pointed map
f : A →⋆ B, there is an induced homomorphism f∗ : πn(A) → πn(B). This yields a long exact sequence

· · · → πn+1(B)→ πn(fibf )
fst∗−−→ πn(A)

f∗−→ πn(B)→ πn−1(fibf )→ . . . where fibf is short for fibf (⋆B), the

fibre of f over ⋆B , i.e. (a : A)× (f(a) = ⋆B).
Connectedness: a type A is n-connected if its n-truncation, ∥A ∥n, is contractible. We say that a

map f : A → B is n-connected if all its fibres are n-connected. The key thing we will need to know
about connectedness is that if f : A → B is an n-connected and pointed map, then the induced map
f∗ : πm(A)→ πm(B) is an isomorphism when m ≤ n and surjective when m = n+ 1.

The pinch map: an important map for us will be the so-called pinch map. Given a function f : A→ B,
we define pinchf : Cf → ΣA by

pinchf (inl(⋆1)) := inl(⋆1) pinchf (inl(b)) := inr(⋆1) appinchf (push(a)) := push(a).

The main results In order to state our main results, we will need a key construction from homotopy
theory called Whitehead products [Ark62]. These turn homotopy groups into a graded Lie superalgebra and
provide us with principled ways of constructing elements of homotopy groups. All you need to know for
this presentation, however, is that (just like the original Brunerie number [Bru16]), the Brunerie number
we present here will be defined in terms of a certain Whitehead product. The most bare-bones definition
of the Whitehead product is called the generalised Whitehead product : given two functions f : ΣA → D,
g : ΣB → D, we define their (generalised) Whitehead product to be the function [f, g] : A ∗B → D defined
by

[f, g](inl(a)) := ⋆D [f, g](inr(b)) := ⋆D ap[f,g](push(a)) := (Ω g)(σB(b)) · (Ω f)(σA(a))
This definition follows those of Brunerie and Ljungström & Mörtberg [Bru16; LM24].

It turns out that some homotopy groups of spheres correspond to homotopy groups of cofibres of certain
Whitehead products. Indeed, Brunerie showed that πk+1(S

n+1) ∼= πk(C[idSn ,idSn ]) for k ≤ 3n − 2.3 This

allowed him to define his (in)famous Brunerie number and, later, characterise π4(S
3). Here, we are interested

in the next homotopy group, π5(S
3) and, as it happens, this group too can be understood in terms of the

cofibre of a Whitehead product. To get there, let us state our first main theorem – it is a HoTT counterpart
of a classical theorem by Gray [Gra73] and relates the (homotopy groups of) cofibres of Whitehead products
of the form [idΣB , f ] to fibres of the pinch map.

Theorem 1. Let A be an (a− 1)-connected pointed type and B be any pointed type. Let f : ΣA→⋆ ΣB. In
this case, there is a 2a-connected map γ : C[idΣB ,f ] → fibpinchf where, recall, pinchf : Cf → Σ2A.

Assume further that B in Theorem 1 is (b− 1)-connected. In this case, we get that πn(fibpinchf )
∼= πn(ΣB)

when n ≤ a+ b for elementary connectedness reasons. Combining this information with Theorem 1 and the
long exact sequence associated with the fibration sequence fibpinchf → Cf → Σ2A, we obtain a new sequence
of the form

· · · → πn+1(Σ
2A)→ πn(Fn)→ πn(Cf )→ πn(Σ

2A)→ πn−1(Fn−1)→ . . . where

Fn≤a+b := ΣB Fa+b<n≤2a := C[idΣB ,f ] F2a<n := fibpinchf

Let us instantiate this sequence with A := S2, B := S1, f := [idS2 , idS2 ], a = 2 and b = 1. Note that this is
well-typed because the domain of f is S1 ∗ S1 which is equivalent to S3. The conflation of these spaces will
be used without comment from now on. We get

π5(S
4)→ π4(C[idS2 ,[idS2 ,idS2 ]])→ π4(C[idS2 ,idS2 ])→ π4(S

4)→ π3(S
2)→ π3(C[idS2 ,idS2 ]).

All of these groups have alternative descriptions.

• The first group, π5(S
4), is isomorphic to π4(S

3) by stability [UF13, Corollary 8.6.15], which we know
is further isomorphic to Z/2Z.

2We could equivalently have set πn(A) := ∥Ωn(A) ∥0. While this definition makes the group structure on πn(A) very clear
(it is simply path composition), it makes some other constructions (most importantly for us, Whitehead products) somewhat
more roundabout.

3Concretely, Brunerie shows in the proof of Proposition 3.4.4 that J2(Sn) ≃ C[idSn ,idSn ], where the former type denotes the

second type in the James construction on Sn – a type which, by Brunerie’s Proposition 3.2.1, has πk isomorphic to πk+1(S
n+1)

for k ≤ 3n− 2.
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• For the second group, we have that [idS2 , [idS2 , idS2 ]] = [idS2 , 2η] = 2[idS2 , η] = 0 where the first
equality is (in essence) the original Brunerie number, the second follows from bilinearity of Whitehead
products [Lju25] and the third follows from 2-torsion. Thus, C[idS2 ,[idS2 ,idS2 ]] is the cofibre of the

constant map S4 →⋆ S2 and is, as such, equivalent to S5 ∨ S2. Furthermore, we have π4(S
5 ∨ S2) ∼=

π4(S
5) × π4(S2) ∼= π4(S

2) ∼= π4(S
3) ∼= Z/2Z, where the second to last isomorphism comes from the

Hopf map [Bru16, Proposition 2.6.8].

• The third and sixth groups, πn(C[idS2 ,idS2 ]) for n ∈ {3, 4}, are isomorphic to πn+1(S
3) by (as mentioned

briefly earlier) Brunerie’s work [Bru16, Section 3.4].

• The fourth and fifth groups, π4(S
4) and π3(S

2) respectively, are well known to be isomorphic to the
integers [UF13, Theorem 8.6.17, Corollary 8.6.19].

With this information, we can rewrite this instance of the sequence as follows.

Z/2Z
d−→ Z/2Z→ π5(S

3)→ Z→ Z→ Z/2Z

It follows completely abstractly, i.e. without knowing any details about either of the maps in the above
sequence, that the second map must be surjective, and thus we have constructed our Brunerie number:

Theorem 2. π5(S
3) ∼= Z/(2− d(1))Z.

The situation we find ourselves in now should seem awfully familiar to anyone familiar with Brunerie’s
thesis... We need to compute d(1) : Z/2Z. By unfolding its definition, we see that this number can be
understood as the result of applying the isomorphism ϕ : π4(S

2) ∼= Z/2Z (in HoTT, due to Brunerie [Bru16]

and formalised by Ljungström & Mörtberg [LM23]) to the composite map S4 Ση−−→ S3 [idS2 ,idS2 ]−−−−−−→ S2 (viewed

as an element of π4(S
3)) where η : π3(S

2) is the generator. This composite map is equal to S4 Ση−−→ S3 2η−→ S2.
Although the easiest approach would be to simply compute d(1) := ϕ(2η ◦Ση) in Cubical Agda, we have not
had much success.4 It is, however, relatively easy to prove that d(1) = 0 by showing that 2η ◦ Ση = 0 by
hand. This is a consequence of the fact that the precomposition map (−)◦Ση defines a group homomorphism
π3(S

2)→ π4(S
2) and therefore must vanish on 2η due to 2-torsion in π4(S

2). Hence, we may conclude that
π5(S

3) ∼= Z/2Z.
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Rezk Completions For (Elementary) Topoi
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We continue the development of univalent category theory in univalent foundations. Recall
that the Rezk completion [2] provides a universal solution to the problem of constructing a
univalent category from an arbitrary category. In this work, we lift the Rezk completion from
categories to elementary topoi. The results presented below are formalized in (Coq-)UniMath
[6]1.

1 Introduction

Internal to univalent foundations, the “well-behaved categories” are those satisfying a cer-
tain coherence condition: univalence. For every category, one always has a canonical function
idtoisox,y from the identity type x = y, between two objects x and y, to the type x ∼= y of
isomorphisms between them. A univalent category is a category for which idtoisox,y is an
equivalence of types, for every x and y. The univalence requirement for categories can be mo-
tivated by to the variety of examples which satisfy this requirement, and by to the intended
semantics of categories in e.g., Voevodsky’s simplicial set model of HoTT/UF.

Univalent categories are particulary well-behaved. First, notions that are classically unique
up to isomorphism, such as limits, become unique up to identity when working with univalent
categories. Second, isomorphisms of categories coincide with equivalences. Hence, structures
are automatically invariant under equivalences.

Even though many occuring categories are in fact univalent, certain constructions on cat-
egories can fail to produce univalent categories. For example, in categorical logic, the con-
struction of a topos from a tripos (a.k.a., a second-order hyperdoctrine), often produces a
non-univalent topos [3, 4]. Nonetheless, for every category C, we can construct a univalent
category RC(C) and a weak equivalence ηC from C to RC(C) [2]. That is, there is a functor
ηC : C → RC(C) which is fully faithful and essentially surjective on objects; the latter condition
means that for every y : RC(C), there merely exists some x : C and an isomorphism between
F (x) and y. Furthermore, (RC(C), ηC) is universal in the sense that every functor from C to
a univalent category E can be uniquely extended to a functor of type RC(C) → E . Given a
category C, the pair (RC(C), ηC) is referred to as the Rezk completion. Motivated by the
tripos-to-topos construction, we lift the Rezk completion, from categories, to categories with
additional structure; in particular, to elementary topoi.

To prove that the Rezk completion lifts to topoi, it suffices that each of the ingredients
defining topoi suitably transports along those weak equivalences given by the Rezk completion.
This incremental proof strategy is made precise through the language of displayed (bi)categories
[1].

1https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/

DisplayedRezkCompletions.v,https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/
RezkCompletions/StructuredCats, https://github.com/UniMath/UniMath/pull/2035

https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/DisplayedRezkCompletions.v
https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/DisplayedRezkCompletions.v
https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/RezkCompletions/StructuredCats
https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/RezkCompletions/StructuredCats
https://github.com/UniMath/UniMath/pull/2035
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2 Framework

The universal property characterizing the Rezk completion states that every functor into a uni-
valent category factors uniquely through the Rezk completion. The universal property implies
that the inclusion of (the bicategory of) univalent categories UnivCat, into all categories Cat,
has a left biadjoint RC, whose action on objects is given by the Rezk completion. Hence, to
lift the Rezk completion to categories with additional structure, we lift the left biadjoint to the
bicategory whose objects are those structured categories and whose morphisms are structure
preserving functors. For simplicity, we assume that the 2-cells are all natural transformations;
an assumption shared by each of the structures characterizing elementary topoi.

Those bicategories of structured categories inherit much of the structure of the bicategory
of categories. Hence, to reuse the underlying structure, we rely on the theory of displayed
bicategories. To this end, let D be a displayed bicategory over Cat encoding some structure for
categories, whose total bicategory is denoted

∫
D. The restriction of D to UnivCat is denoted

Duniv. Then, the lifting corresponds to the construction of a left biadjoint as depicted in the
following diagram:

∫
Duniv

∫
D

UnivCat Cat

π

?

RC

To construct the left biadjoint, we use that the unit η corresponds pointwise with weak
equivalences into univalent categories. The precise properties that are to be verified are sum-
marized in the following lemma, where local contractibility of D means that every type of
displayed 2-cells is contractible.

Lemma 1. Let D be a locally contractible displayed bicategory over Cat such that

1. for every weak equivalence G : C1 → C2, whose codomain is univalent, and x : D(C1),
there is a given x̂ : D(C2) and a displayed morphism x→G x̂;

2. for every univalent category C3, natural isomorphism α : (G ·H) ⇒ F , terms xi : D(Ci)
(i = 1, 2, 3), and f : x1 →F x2, there is a given f̂ : x2 →H x3.

Then, the pseudofunctor RC : Cat→ UnivCat lifts to a biadjoint for
∫
Duniv ↪→

∫
D.

First, observe that we do not use any particular construction of the Rezk completion. The
first condition in Lemma 1 states that every structure transports to the codomain of such a
weak equivalence and that the functor preserves the structure. In particular, the first condition
also holds for C2 := RC(C1) and G := ηC1

. Hence, the Rezk completion inherits the structure
given by D and ηC1

preserves the inherited structure. The second condition expresses that
(RC(C1), ηC1

) not only lives in
∫
Duniv, but is universal w.r.t., those univalent categories which

have the structure. Furthermore, the functoriality of
∫
D →

∫
Duniv follows from the second

condition. Observe that it suffices to only provide the existence part of the universality condition
since the uniqueness follows necessarily from the local contractibility condition.

The assumptions of Lemma 1 are illustrated in the following example:

Example 2. Let D be the Cat-displayed bicategory whose displayed objects are binary prod-
ucts, and whose displayed morphisms witnesses the preservation of those binary products. Then,
condition 1 instantiates to the following statement: For G as above, and x a choice of binary
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products on C1, x̂ are binary products on C2 and G preserves those products. Condition 2 in-
stantiates to: Given such α as above, such that F preserves binary products, then H preserves
binary products.

3 Rezk Completions of Topoi

In this section, we apply Lemma 1 to lift the Rezk completion to topoi. Recall that an elemen-
tary topos is a finitely complete cartesian closed category equipped with a subobject classifier.
A morphism of elementary topoi is a functor which preserves each of the structures involved.
We denote the bicategory of elementary topoi as ElTop, and the bicategory of topoi whose
underlying category is univalent is denoted ElTopuniv. In the formalization, these bicategories
are constructed by stacking different displayed bicategories, starting with Cat, as depicted in
the following diagram:

Topoi

Subobject Classifier Exponentials

Terminal Object Finite Limits Binary Products

Categories

The main result establishes that topoi admit Rezk completions:

Theorem 3. The inclusion ElTopuniv → ElTop admits a left biadjoint.

To prove Theorem 3, we apply Lemma 1 for each of the intermediary displayed bicategories.
In particular, we construct Rezk completions for categories equipped with the structures men-
tioned above. The main challenge in constructing the left biadjoints is transporting the structure
on a category along a weak equivalence, which is the first condition in Lemma 1. In particu-
lar, the univalence of categories ensures that we can apply the essential surjectiveness of the
weak equivalence. The proof strategy for each of these structures follows the same steps as in
Example 2.

We expect our method to apply to other kinds of structure. First, a topos possesses numerous
structures, such as regularity and exactness, and local cartesian closedness, etcera. Second,
there are structures only shared by some topoi, such as the existence of a natural numbers
object. Third, there are other “structured categories” which are not topoi, but for which the
same strategy can also be applied, e.g., abelian categories.

However, Lemma 1 cannot be applied to construct Rezk completions for structures like
monoidal categories [7] and enriched categories [5]. Indeed, the contractibility assumption on
the 2-cells is not generally satisfied in these cases since the natural transformations need to
commute with the additional structure. Nonetheless, one could try to prove a more general
lemma that does apply.

A theoretical obstacle however, is that our framework operates under a crucial assumption:
that the “correct notion of univalence” for the structure in question coincides with the univalence
of the underlying category. This assumption breaks down for both dagger categories, and
enriched categories whose base of enrichment are not assumed to be univalent.
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Type theorists share interests and concerns with philosophical logicians. This isn’t surprising,
since Martin-Löf is (among other things) a philosopher, and type theory was born in philoso-
phy [46, 47, 48, 49]. Although type theory has come into its own in computer science—and,
more recently, in mathematics with the rise of assistants—the connections between type theory
and philosophical logic go beyond Martin-Löf’s original motivations. There are many fresh
points of contact with active research areas in philosophical logic. In the interest of fostering
communication between these different traditions, I will sketch some of these connections.

Modal and Substructural Logics. Modal logics (extending propositional logic with modal
operators, like 2, for necessity, and ♢ for possibility) became a focus in philosophical logic
in the second half of the 20th Century [32, 36], while its application to computer science
took some time, with the development of dynamic logic [29, 63, 64]. Substructural logics, on
the other hand, arose independently inside philosophy [2, 3, 72] with the study of relevant
logics and entailment, linguistics [38, 39, 40, 54, 55] with the Lambek calculus, and computer
science [27, 28, 80, 81], in linear logic. Recent work on modal [10, 30, 34] and substructural [45,
53] type theories provide natural areas of intersection with contemporary philosophical logic.
The vast bulk of formal work in modal logic uses possible worlds semantics [11, 14, 15], as
does philosophical work on substructural logics [43, 44, 59, 67]. These models have their use
to represent propositions (types) and the entailment between them, but provide little, to no
insight concerning the identity of the proofs or constructions that bear those types, so they
can be of only limited use in modelling a properly rich type theory. The same goes for work in
algebraic models.1

Modal and substructural algebras, on the other hand, are well understood structures [22,
25, 58] which should prove useful for type-theoretic considerations. One important insight has
been the centrality of residuation (Galois connection, adjunction) as a unifying principle [18,
21, 22, 66]. A necessity modality 2 gains its distinctive features in connection connected with
dual, possibility modality ♦, for which we have a ≤ 2b iff ♦a ≤ b. Work on the proof theory
of modal and substructural logics [7, 62] can provide a more natural point of connection with
categorical semantics for type theories [41].

Intensionality and Identity. Homotopy type theory [70, 79] and cubical type theory [4, 5,
16] bring the logic of identity into focus, by raising the prospect of different grounds for an
identity fact of the form a = b. Questions about how best to model identity in a type theory
raises questions that philosophers ask using the terms sense and reference. If a = b then the
two different terms a and b must have the same reference (or value), but the possibility remains
open that these two terms might have different senses (meanings). The extensional theory
of identity is straightforward: everything is identical to itself, and not to anything else [42,
p. 192]. Once we move from reference to sense, and consider non-extensional phenomena, such
as meaning, knowledge, proof, or construction, matters are more nuanced [20, 24, 50]. We might

1These are partially ordered structures a ≤ b iff a entails b. This is a degenerate category in which there is
at most one arrow between any two objects.
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know that Clark Kent is Clark Kent, without knowing that Clark Kent is Superman, even
though Clark Kent is Superman. The terms ‘Clark Kent’ and ‘Superman’ refer to the same
item, but do so in different ways [56, 57]. Different accounts of the semantics of identity give us
different options for understanding how terms might pick out their values, and, more generally
the space of possible semantic values of identity claims between items of each type [9].

Classical Logic. Intuitionistic type theory is constructive, and this raises the question of
the status of classical reasoning. There are different approaches to relating classical and con-
structive logic, such as embedding classical reasoning inside a constructive language by way
of a translation [78, Sect. 2.3] (which can be interpreted by way of continuations [69, 77]), or
extending the term vocabulary [60, 61] or by extending judgement forms to include positive
and negative judgements [17, 19]. These approaches parallel considerations in philosophical
logic. Some approaches to classical logic start with intuitionist natural deduction and add new
inference forms [51, 52], others are bilateral [65], encoding proofs involving both positive and
negative judgement forms [73, 74, 75]. Other approaches interpret the sequent calculus in terms
of assertion and denial [71, 68]. Recent work on assertion and denial distinguishes two forms:
strongly deny p is to rule p out; to weakly deny it is to withdraw its assertion and to keep open
the option to strongly deny it [33]. Weak and strong denial both clash with assertion2 and
when treating assertion and denial, it is important to distinguish their strong and weak forms.

Speech Acts. A type theory is an account of judgement. One distinctive features of de-
pendent type theory is that the rules governing different concepts can interleave the different
judgement forms. Whether B(a) counts as a type may depend on whether the term a inhabits
another type A. To focus on propositions, whether B counts as a prop can depend on whether
another proposition A is true.3 Traditional grammars form the syntax of the language first,
independently of truth conditions, but some contemporary theories of propositional content
mirror this structure. ‘The king of France is bald’ expresses an assertion only if there is a
King of France [76]: predication presupposes reference. Dependent type theories form a natural
context in which presupposition phenomena like this can be modelled and studied.

However, we can do more with our language than form assertions, denials, suppositions and
inferences [35]. In natural and in artificial languages, we find imperatives, promises, requests,
etc., which differ from judgement forms in many ways [6, 8]. Philosophers and linguists have
done a great deal of work on the function and logic different forms of speech acts [23, 26, 37],
which may prove salient when exploring the semantics of languages with imperatives, and other
non-assertoric forms.

Formal and Applied Theory. Beneath these points of contact, there is a deeper connection
between applied computational type theory and philosophical logic. A formal type theory is a
structural presentation of forms of judgement, which may be interpreted, as Martin-Löf showed
us, as a theory of sets, of computation, of propositions, and in other ways besides. A prop-
erly computational type theory takes the inductive presentation of types and terms to stand
atop a fundamental computational substrate [1, 31, 47]. Terms describe computations, which
are classified by types. The distinction between a formal and an applied type theory parallels

2And dually, we have strong assertion (ruling p in) and weak assertion (which merely withdraws the strong
denial of p and leaves the possibility of strongly asserting p open).

3A formation rule for the conditional ⊃ states that A ⊃ B is a proposition when A is a proposition and
requires that B is a proposition only given that A is true [49].
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Brandom’s distinction between a formal and a material account of inference [12, 13]. A prop-
erly material theory of inference describes the inferential connections between the judgements
implicit in our everyday practice. As I learn the concept ‘square’ I learn that squares are not
circles, and that squares have four sides, of equal length. These are not learned as facts we
articulate, but as capacities we exercise. To learn a language is to learn how different concepts
bear upon each other and on the world. Rules for logical concepts enable us to make explicit
these inferential relations between our more basic commitments, in that the rules governing
those concepts tie them to the underlying and preexisting communicative practice. We take
justification for a conditional claim A → B to be provided by the means to justify B in a
context where we take A as given. The formal structure of a material theory inference bears
a remarkable resemblance to the computational theory of types, where instead of the norms
governing justifications and grounds for human judgements, we have computations and their
classification into different types. So, it is not surprising that insights from one area can be
applied to the other, since there is a single formal framework that describes both domains.

A fresh challenge for research, however, is to develop a properly hybrid type theory, encom-
passing both computation and human communicative practices, in order to better understand
the possibilities for communication involving both human judgement and machine computation.
After all, two domains of application for the discipline of type theory are in (a) the design of
expressive and performant dependently typed functional programming languages, and (b) the
design of modular, expressive and natural proof assistants. Both of these tasks involve taking
both the computational and the communicative roles of the underlying type theory seriously,
so it seems appropriate to adopt a framework that helps us keep both roles in view at once.4
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[68] Greg Restall. Multiple conclusions. In Petr Hájek, Luis Valdés-Villanueva, and Dag Westerst̊ahl,
editors, Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International
Congress, pages 189–205. kcl Publications, 2005.

[69] John C. Reynolds. The discoveries of continuations. lisp and Symbolic Computation, 6(3-4):233–
247, 1993.

[70] Egbert Rijke. Introduction to homotopy type theory. ArXiV 2212.11082, 2022. Prepublication
version. To be published by Cambridge University Press.

[71] David Ripley. Bilateralism, coherence, warrant. In Friederike Moltmann and Mark Textor, editors,
Act-Based Conceptions of Propositional Content, pages 307–324. Oxford University Press, Oxford,
UK, 2017.

[72] Richard Routley and Robert K. Meyer. Semantics of entailment. In Hugues Leblanc, editor, Truth,
Syntax and Modality, pages 194–243. North Holland, 1973. Proceedings of the Temple University
Conference on Alternative Semantics.

[73] Ian Rumfitt. “Yes” and “No”. Mind, 109(436):781–823, 2000.

[74] Ian Rumfitt. The Boundary Stones of Thought: An Essay in the Philosophy of Logic. Oxford
University Press, 2015.

[75] Timothy Smiley. Rejection. Analysis, 56:1–9, 1996.

[76] P. F. Strawson. On referring. Mind, 59(235):320–344, 1950.

[77] Th. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. Journal
of Functional Programming, 8(6):543–572, 1998.

[78] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, second edition, 2000.

[79] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[80] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Programming
Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2 Working
Conference.

[81] David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 1, pages 3–44. MIT Press, 2004.

6

https://homotopytypetheory.org/book


Constructive algebraic completeness

of first-order bi-intuitionistic logic

Dominik Kirst1 and Ian Shillito2
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Background Bi-intuitionistic logic extends intuitionistic logic with the exclusion binary oper-
ator , dual to implication. This extension is mathematically natural, as symmetry is regained
in the language: each operator has a dual, even ¬φ := φ → ⊥ has ∼φ := ⊤ φ. However,
bi-intuitionistic logic is packed with surprises. First, it proves a bi-intuitionistic version of LEM
(φ∨∼φ), and is thus not constructive as it fails the disjunction property. Second, despite not be-
ing constructive it does not yet collapse to classical logic, given that it is a conservative extension
of intuitionistic logic (in the propositional case). Third, this logic bears a striking resemblance
to modal logic, as it splits into a local and global logic1 and is tightly connected to the tense
logic S4t [19, 20, 21]. Finally, the conservativity of bi-intuitionistic logic over intuitionistic logic
only holds in the propositional case: the constant domain axiom (∀x(φ(x)∨ψ)→ (∀xφ(x)∨ψ))
is provable in first-order bi-intuitionistic logic, but not intuitionistically.

Historically, bi-intuitionistic logic was developed by Cecylia Rauszer in a series of articles
in the 1970s [25, 24, 26, 27] leading to her Ph.D. thesis [28].2 She studied this logic under a
wide variety of aspects: algebraic semantics, axiomatic calculus, sequent calculus, and Kripke
semantics. Unfortunately, through time a variety of mistakes have been detected in her work.
First, Crolard proved in 2001 that bi-intuitionistic logic is not complete for the class of rooted
frames [2, Corollary 2.18], in contradiction with Rauszer’s proof which relies on rooted canonical
models. Second, Pinto and Uustalu found in 2009 [18] a counterexample to Rauszer’s claim of
admissibility of cut for the sequent calculus she designed [24, Theorem 2.4]. Finally, Goré and
Shillito in 2020 [7] detected confusions in Rauszer’s work about the holding of the deduction
theorem in bi-intuitionistic logic, as well as issues in her completeness proofs.

The foundations of bi-intuitionistic logic have therefore been in reconstruction since these
discoveries. In the propositional case serious progress has been made: sequent calculi for the
local logic were provided [18]; axiomatic calculi and Kripke semantics were connected [7, 29] and
reverse analysed in a constructive setting [30]; the algebraic treatment was recently completed
by Deakin and Shillito [4, 3]. As for the first-order case, it has received little attention until
recently, where it was shown to fail Craig interpolation [17], studied via polytree labelled sequent
calculi [13], and its soundness and completeness w.r.t. its Kripke semantics were established [10].

No reconstruction of the algebraic treatment of first-order bi-intuitionistic logic has yet been
provided. We fill this gap by proving that the local first-order bi-intuitionistic logic is sound
and weakly complete with respect to bi-Heyting algebras: ⊢ φ iff ⊨ φ. Our work is motivated
by foundational interests, but also by constructive sensitivity: these algebraic results usually
hold constructively (cf. [5]), while our previous proofs [10] for the Kripke semantics use classical
principles and certainly necessarily so, given the already established propositional analysis [30].

1This terminology comes from the Kripke semantics, in which one can define a local and a global notion of
semantic consequence [1, Section 1.5].

2While appearances of bi-intuitionistic can be detected prior to these articles, notably in 1942 in Moisil’s
work [15], in 1964 in Grzegorczyk’s work [8], and in 1971 in Klemke’s work [11], the breadth and foundational
nature of Rauszer’s work advocate for her place as founder of this logic.
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Algebraic interpretation of quantifiers The algebraic interpretation of the propositional
bi-intuitionistic connectives straightforwardly extends the one for intuitionistic logic: Heyting
algebras, i.e. bounded distributive lattices with an implication satisfying the residuation on the
left below, are extended to bi-Heyting algebras with the exclusion operator satisfying the dual
residuation on the right.

φ ∧ ψ ≤ χ
φ ≤ ψ → χ

φ ≤ ψ ∨ χ
φ ψ ≤ χ

However, the interpretation of quantifiers in algebraic semantics is famously not obvious. Some
approaches involve complex algebraically inspired structures, like hyperdoctrines [12] or cylin-
dric algebras [16]. Instead, we follow a tradition [23, 22] of grafting interpretation of quantifiers
on the base algebras (bi-Heyting in our case) via the creation of infima

d
, interpreting ∀,

and suprema
⊔
, interpreting ∃. The strikingly obvious issue with this approach is that some

bi-Heyting algebras do not have such infinite elements. We simply discard these algebras and
focus on the class of complete bi-Heyting algebras, i.e. those possessing these infinite elements.

MacNeille completion of the Lindenbaum-Tarski algebra Traditionally, one proves
(weak) completeness by building a so-called Lindenbaum-Tarski (LT) algebra for the logic, a
syntactic algebra made out of equivalence classes of formulas JφK := {ψ | ⊢ φ ↔ ψ} in which
≤ captures entailment: JφK ≤ JψK iff φ ⊢ ψ. This algebra is easily defined for propositional
bi-intuitionistic logic, constituting the ideal candidate to graft quantifiers onto to prove com-
pleteness. Sadly, we are not ensured that this algebra is complete, hence it may then be outside
of the class of complete algebras under focus. To overcome this difficulty, we complete the LT
algebra via the MacNeille completion [14], which embeds a partially ordered set (X,≤) into the
complete lattice of all its subsets A which are successively closed under upper bounds and lower
bounds ((Au)l ⊆ A). In the resulting algebra, → receives a natural interpretation giving rise
to a Heyting algebra [22, 9], leaving us with the task of interpreting to obtain completeness.
As indicated by Harding and Bezhanishvili [9], this interpretation is not natural:

X Y := {x | ∀y ∈ Y u. (y ∨ x) ∈ Xu}l

Still, we obtain a complete bi-Heyting algebra embedding the initial propositional LT algebra,
establishing weak completeness.

A Pathway to strong completeness Ideally, we would like to prove strong completeness,
i.e. Γ ⊢ φ iff Γ ⊨ φ, with respect to the following algebraic consequence relation, where φ∗ is
the interpretation of φ in A via the valuation V mapping atomic formulas to elements of X.

Γ ⊨ φ := ∀A. ∀V. ∀a ∈ A. (∀γ ∈ Γ. a ≤ γ∗) → a ≤ φ∗

To prove strong completeness, we want to generate a proof of Γ ⊢ φ from Γ ⊨ φ using the
completed LT algebra. It would then suffice to find an element below the interpretation of
all γ ∈ Γ. An obvious candidate is the (existing) infimum

d
Γ∗, which is below φ∗ under

the assumption Γ ⊨ φ. Unfortunately,
d

Γ is not a formula in our language, so we cannot
extract

d
Γ ⊢ φ from

d
Γ∗ ≤ φ∗. If the infimum of Γ∗ was compact, i.e. such that

d
Γ∗ ≤ a

entails the existence of a finite subset ∆∗ ⊆ Γ∗ with
d

∆∗ ≤ a, we would be able to close the
strong completeness proof. A way to obtain compact infima and suprema is through canonical
extensions [6]. In further work we will inspect the interplay between MacNeille completion for
bi-Heyting algebras and canonical extension, in the hope to deduce strong completeness.

Acknowledgments We thank Marco Abbadini for his help in the finding of the interpretation
of exclusion in the MacNeille-completed LT algebra.

2



Constructive algebraic completeness of FO bi-int Kirst, Shillito

References

[1] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2001.

[2] Tristan Crolard. Subtractive logic. TCS, 254:1-2:151–185, 2001.

[3] Jonte Deakin and Shillito Ian. Bi-intuitionistic logics through the abstract algebraic logic lens.
Unpublished, to appear.

[4] Jonte Deakin and Shillito Ian. Weak and strong bi-intuitionistic logics from an abstract algebraic
logic perspective. In Australasian Association for Logic 2024 Conference, 2024.

[5] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for first-order logic
analysed in constructive type theory: Extended version. Journal of Logic and Computation,
31(1):112–151, 2021.

[6] Mai Gehrke. Canonical Extensions, Esakia Spaces, and Universal Models, pages 9–41. Springer
Netherlands, Dordrecht, 2014.
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Abstract

The relationship between effect calculi and focused logics has been extensively studied
through their shared notion of polarization. We contribute another data point by extending
Zeilberger’s higher-order focused logic of delimited continuations to subsume the type
structure of the enriched effect calculus. Then, we report ongoing work on modelling the
linear usage of state via the interaction between the linear state monad and linear lenses.

Polarized calculi arise both as internal languages to adjunction models of effects [5] and
as term assignments to focused logics [3]. The former, involving an adjunction between two
categories, assigns a polarity to a type by the category from which it originates. In the latter,
polarization arises from the assortation of logical rules on the basis of (non)invertibility, i.e.,
whether their application during proof search may require backtracking. The correspondence
in type structure typically extends to terms and equational theories—for example, see Rioux
and Zdancewic [20].

To phrase the question of interest, stated in the next paragraph, let us spell out the relation-
ship between call-by-push-value (CBPV) [11] and focused intuitionistic logic [13, 21]. From the
point of view of focusing, positive and negative types are allowed to respectively be right- and
left-noninvertible. Dually, they must respectively be left- and right-invertible. This gives rise
to four judgments: either inversion or focus on the left- or right-hand side of the sequent, each
concerned with the iterated application of invertible or noninvertible rules. Modulo antecedent
polarity [10], non-complex values and computations correspond to right focus resp. inversion
terms. Non-complex stacks arising from the CK-machine semantics of CBPV [12] coincide with
the left focus terms from weakly focused [22] intuitionistic logic.

Linearity in the enriched effect calculus (EEC) [7] arises by internalizing complex stacks via
the linear function space, i.e., by reading a stack as a computation homomorphism. Unfortu-
nately, the previous analogy appears to break down with the EEC when naively presented as
a sequent calculus: the value types of (non)linear functions are not left-invertible. Moreover,
the copower and computational sum types are not right-invertible. One solution is to decouple
linearity from effects as Curien et al. [5] do with their effect calculi, which remain faithful to
the focusing properties of intuitionistic linear logic, and whose models subsume those of the
EEC. We approach the problem from a different angle: is there a judgmental reformulation of
focused intuitionistic logic that can be retrofitted with linearity as conceived by the EEC?

Zeilberger lays the groundwork for a positive answer with the higher-order focused logic
[23, 25] of delimited continuations [26]. Under higher-order focusing, inversion terms are met-
alevel maps out of focus terms. Not only are the derived logical rules trivially invertible, but
admissibility of cut and identity is immediate. From there, our contribution is to “backpatch”
into the logic the EEC connectives in question. Formally, fix right and left focus judgments [P ]
and N > P where P and N are positive and negative types. Then, the inversion judgments
Γ ⊢ P and Γ ⊢ N are defined by the top row of inference rules in Figure 1 using the metalevel
function space (⇒). In particular, a right inversion term is a stack-passing value parametric in
the positive answer type; note that a negative answer type as in weak focusing would produce a
circular definition. The formerly “problematic” connectives are given logical rules in the second
and third rows of the same figure, renaming the positive (→) to (⊃), I to 1 (not to be confused
with 1, the positive unit), (+) to (⊕), and (⊕) to (`).
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index sets S = {ℓ, k, . . .}
positive types P,Q := P ⊃ Q | 1 | P ×Q | ⊕{ℓ : Pℓ}ℓ∈S | N ⊸•P | N ⊸ O

negative types M,N,O := P → N | 1 | P ⊗N | `{ℓ : Nℓ}ℓ∈S | &{ℓ : Nℓ}ℓ∈S

types A := P | N
contexts Γ := · | Γ, P
judgments := [P ] | N > P | Γ ⊢ A | N ≫ O

[P ]

· ⊢ P

[P ] ⇒ Γ ⊢ Q

Γ, P ⊢ Q
for all P : N > P ⇒ Γ ⊢ P

Γ ⊢ N
for all P : O > P ⇒ N > P

N ≫ O

[P ] ⇒ [Q]

[P ⊃ Q]
⊃R

N > P
[N ⊸•P ]

⊸•R N ≫ O
[N ⊸ O]

⊸R
[P ]

1 > P
1L

[P ] ⇒ N > Q

P ⊗N > Q
⊗L

{Nℓ > P}ℓ∈S

`{ℓ : Nℓ}ℓ∈S > P
`L

N ≫ O O > P

N > P cut≫
N ≫ M M ≫ O

N ≫ O
cut−−

Γ ⊢ N N > P

Γ ⊢ P
cut>

Γ ⊢ N N ≫ O

Γ ⊢ O
cut≫

Γ ⊢ P Γ, P ⊢ A

Γ ⊢ A cut+ Γ, P ⊢ P id+ N ≫ N id−

Figure 1: Types, Judgments, and Selected Rules

The first step toward the linear function space is to note that the positive type ( ⊸• ), which
internalizes stacks, can be read as a generalized negation. To recover the negative codomain,
our core observation is to define a new judgment N ≫ O, internalized by the positive type
N ⊸ O, by applying contraposition, i.e., N ⊸ O ≃ (O ⊸•P ) ⊃ (N ⊸•P ) parametrically in P .
The resulting terms are stack transformers [8] related to the where construct of complex stacks
but opposite to linear continuation transformers [4].

On the one hand, this calculus subsumes the type structure of the EEC, but also diverges
in the term assignment. On the other, we also depart from Zeilberger [26] by omitting explicit
pattern variables and have the shift modalities between polarities ↓N ≜ 1 ⊸ N and ↑P ≜ P⊗1
be definable rather than be primitive. In terms of metatheory, the expected cut and identity
rules are immediately admissible—indicated by double lines, they are enumerated in the last
two rows. For example, each cut rule amounts to function composition in the metatheory. One
goal of this talk is to solicit feedback concerning the denotational and categorical semantics of
this calculus; under defunctionalization, we review an option in the related work.

One practical and initial motivation of this work concerned tying stacks to the linear usage
of state [17] by way of lenses. In particular, the type of linear lenses [19] N ⇝ O, representing
a functional reference of type O within the type N , is definable as N ⊸ ((O ⊸ N) ⊗ O). As
do Møgelberg and Staton [17], we can first define the linear state monad in P as StateN (P ) ≜
N ⊸ P ⊗ N where N is the state type with the associated operations. From there, we can
define a function of type (N ⇝ O) ⊃ StateO(P ) ⊃ StateN (P ) that lifts mutations of an O-state
into those of an N -state. However, we unsuccessfully attempted to systematically generate
linear lenses by the structure of N , i.e., by converting N ⊸•P to N ⇝ ↑P . Looking forward,
we are interested in resolving this issue as well as in determining the formal relationship of this
calculus to its contemporaries (see below).
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Related Work L-calculi [6, 18] and their descendant effect calculi [5] are related to higher-
order focusing under defunctionalization [24], dualizing the exposition: reduction is a priori
and the observation about inversion terms mapping out of focus terms is derived. Thus, it
should be possible to determine the exact relationship between the presented calculus and the
models of ops. cit. Separately, Zeilberger’s original presentation [26] included type variables
to enforce parametric use of answer types; if internalized, the resulting calculus would be
comparable to polymorphic CBPV [20] with first-class stacks and stack manipulation [16, 9].
Lastly, an extension to dependent types would draw a correspondence to eMLTT [2, 1] and
other polarized/focused dependent type theories [14, 15].
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Monadic equational reasoning. Pure functional programs can be reasoned about using
equational reasoning thanks to their referential transparency. For programs containing com-
putational effects, Gibbons and Hinze [GH11] proposed monadic equational reasoning, which
extends equational reasoning to the verification of programs designed around monads. The
interface of each monad is defined as a collection of operators and equations, that allow to
manipulate effects.

Monae. Monae [ANS19] is a library that enables verification using monadic equational rea-
sonig in Rocq. Monae consists of interfaces and models. The models guarantee the consistency
of the interfaces. Rocq guarantees the correctness of the verification, and the math library
MathComp/SSReflect [GM10] makes it possible to write concise proofs. Monae implements
a hierarchy of interfaces using Hierarchy Builder [CST20], and allows for the combination of
multiple monads and reusable lemmas. Dijkstra monads [SHK+16] also provide an alternative
formal framework to verify monadic programs, albeit using Hoare logic rather than equational
reasoning.

Non-structurally recursive functions. Proof assistants such as Rocq, which allow for the
reduction of programs, do not permit the definition of non-terminating functions to guarantee
consistency. Rocq’s Fixpoint command can only define structurally recursive functions. For
non-structural recursion, it is necessary to use an additional accessibility predicate, correspond-
ing to a well-founded order, either directly or through the Function or Equations commands.
For example, McCarthy’s 91 function mc91, which performs complex recursion, cannot be de-
fined through direct structural recursion in Rocq.

let rec mc91 m = if 100 < m then m - 10 else mc91 (mc91 (m + 11))

Moreover, functions whose termination is unknown, such as the Collatz predicate, cannot be
defined as recursive functions in Rocq.

Defining functions containing while statements by a coinductive type. Another way
of dealing with non-structurally recursive functions in such proof assistants is to use corecursive
definitions, which allow for defining infinite sequences of data. Since Rocq allows an infinite
number of constructor applications as long as the guard constraint is satisfied, it is possible to
use corecursive definitions to make recursive calls without limit.

The Delay monad proposed by Capretta [Cap05] can be used to represent such corecursive
functions as monadic programs. Interaction Trees [SZ21] are a natural generalization of the
delay monad to represent non-structurally recursive functions with events. In our work, by
defining the interface to the Delay monad as a complete Elgot monad [AMV10], we are able to
reason about functions with while statements that need not be guaranteed to terminate, such
as McCarthy’s 91 function and the Collatz predicate.
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Complete Elgot monad. The theory for complete Elgot monads corresponds to Iteration
theory [BÉ93], which deals with recursive structures algebraically.

In our study, we use the function while to define a complete Elgot monad. It is defined
using the CoFixpoint command, where the right embedded value inr x is the continuation of
iterations with value x and the left embedded value inl a is the end of the iteration with the
return value a.

CoFixpoint while {X A} (body: X -> M (A + X)) : X -> M A :=

fun x => (body x) >>= (fun xa => match xa with

| inr x => DLater (while body x)

| inl a => DNow a end).

Uustalu and Veltri [UV17] have shown, by quotienting by an equivalence relation that ignores
a finite number of computational steps, that the delay monad is a complete Elgot monad.

Combining computational effects using monad transformers. By using a complete
Elgot monad to represent a while statement, we can handle functions that contain while

statements, but only pure functions. For example, a factorial computed using references and
while statements cannot be expressed using only a complete Elgot monad.

let fact n =

let r = ref 1 in

let l = ref 1 in

while !l <= n do

r := !r * !l;

l := !l + 1;

done;

!r

Definition factdts n :=

do r <- cnew ml_int 1;

do l <- cnew ml_int 1;

do _ <-

while (fun (_:unit) =>

do i <- cget l;

if i <= n

then do v <- cget r;

do _ <- cput r (i * v);

do _ <- cput l (i.+1);

Ret (inr tt)

else Ret (inl tt)) tt;

do v <- cget r; Ret v.

We use monad transformers [AN20] to combine any complete Elgot monad with the ex-
ception monad and the typed store monad introduced to represent OCaml references [AGS25,
Section 5]. In our work, we show the exception monad transformer, the store monad trans-
former and the typed store monad transformer preserve the complete Elgot monad structure.
This allows verifying programs with multiple effects in Monae.

Contribution. Our contributions are as follows.

1. We define the interface of the delay monad as a complete Elgot monad and show its
consistency. This allows Monae to verify functions containing while statements.

2. By using monad transformers for combination and the setoid_rewrite tactic for gener-
alised rewriting, we have confirmed that verification with Monae is practical for functions
involving while statements together with other effects.

The code for this work can be found at:

https://github.com/affeldt-aist/monae/pull/147
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Abstract

Step-indexing is a semantic tool for stratifying circular, non-wellfounded definitions. The
main idea is to use sequences of successive approximations to construct objects such as types,
propositions, and functions. It can be formalised in a logical, or type-theoretical, setting,
through a modality, called later, which allows us to talk about the next approximation.

The internal logic of the topos of trees provides a full-fledged higher-order logic with
dependent types and built-in step-indexing. As in any modal logic, it is desirable to have
commuting rules for modalities and quantifiers. However, the current known such rules are
not satisfactory since they depend on an assumption on the domain of quantification.

We propose novel rules as alternatives from which the former ones can be derived. Our
insights are based on the observation that the later modality can be decomposed into two
parts. We have formalised our results in the Rocq Prover.

Step-indexing and the topos of trees. Step-indexing is a widely used semantic tool for
stratifying circular, non-wellfounded definitions [2], particularly in program logics (e.g., Iris [11])
and logical relation models of type systems with general recursive types [2] and dynamically
allocated higher-order references [1]. Noteworthy recent applications of step-indexing involve a
logical relation model of Rust [10] and a program logic based on session types [9].

The key idea of step-indexing is to use sequences of successive approximations to construct
objects such as types, propositions, and functions, where the n-th approximation describes the
object under the assumption that we only have n available computation steps to reason about
it. To avoid tedious and low-level reasoning about step-indexed arithmetic, the logical approach
to step-indexing [3, 8] employs the the later modality [12] to provide an abstraction.

The internal logic of the topos of trees [4] provides a full-fledged higher-order logic with
dependent types, extended with a later modality on propositions (▷) and a later modality on
types (▶). This rich logic is a good candidate for defining program logics and logical relation
models for complex programming languages internally.

Problem statement. Ideally, a logic should have neat and general rules for describing the
interaction of the connectives. Unfortunately, the naive rules for commuting the later modality
with quantifiers are unsound. Take the naive rule for commuting existentials and later:

▷(∃x ∶ A.P )⊣⊢ ∃x ∶ A. ▷ P

While the right-to-left direction follows from basic rules involving ∃ and ▷, the left-to-right
direction does not hold because we quantify over different approximations of the domain A.

The current solution is to demand that the domain A is total and inhabited [4, 6]. This
property can be expressed in the internal logic of the topos of trees as

TI(A) ∶= ∀y ∶ ▶A.∃x ∶ A. nextx = y.
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Then we get the following inference rule:

▷-∃-TI
⊢ TI(A) Γ, x ∶ A ⊢ P ∶ Prop

Γ ∣▷(∃x ∶ A.P ) ⊢ ∃x ∶ A. ▷ P

This rule is not ideal for two reasons. Firstly, it only works for total and inhabited types.
Secondly, the assumption TI(A) has to be proved valid without any hypotheses. The second
issue can be addressed by considering the following modified inference rule:

▷-∃-TI-2
Γ, x ∶ A ⊢ P ∶ Prop

Γ ∣ TI(A) ∧▷(∃x ∶ A.P ) ⊢ ∃x ∶ A. ▷ P

This rule is also sound in the topos of trees, and it implies ▷-∃-TI. However, the restriction on
the domain of quantification remains.

Solution. Our proposed solution rests on the observation (first made by [4]) that, semantically
speaking, the later modality ▷∶ Prop → Prop can be decomposed as ▷ = lift ◦ next, where
next∶ Prop → ▶Prop and lift∶▶Prop → Prop (here, Prop is the type of propositions, i.e., the
subobject classifier in the topos of trees). Thus, we can study the interaction of the quantifiers
with next and lift separately.

It follows from the homomorphism property of applicative functors that next commutes
with the quantifiers, in the sense that we have equalities

next (∃x ∶ A.Px) = next ex⊛ nextP and next (∀x ∶ A.Px) = next all⊛ nextP,

where ex, all∶ (A→ Prop) → Prop are defined as:

ex(P ) = ∃x ∶ A.Px and all(P ) = ∀x ∶ A.Px.

Our contributions are the following two dual rules that relate lift with the quantifiers:

lift-∃
Γ ⊢ Q ∶ ▶(A→ Prop)

Γ ∣ lift (next ex⊛Q)⊣⊢ ∃y ∶ ▶A. lift (Q⊛ y)
lift-∀

Γ ⊢ Q ∶ ▶(A→ Prop)
Γ ∣ lift (next all⊛Q)⊣⊢∀y ∶ ▶A. lift (Q⊛ y)

It can be shown that lift-∃ implies ▷-∃-TI-2 and thus also ▷-∃-TI. Hence, our new rules
really are generalisations of the previously studied rules. This can be seen as an argument for
the claim that lift is more primitive than ▷, and that step-indexed logics should focus on
axiomatising the former.

Conclusion. We have found new and more general reasoning rules in the topos of trees for
commuting the later modality with quantifiers. We proved the soundness of our new rules and
showed that previously known rules can be derived from them. To ensure confidence in our
results, we have formalised the topos of trees and its internal logic in the Rocq Prover [7].
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It remains to be investigated how to apply our rules in practice. For instance, we would
like to define a model of a step-indexed program logic (such as Iris [11]) in the internal logic of
the topos of trees and see if our new rules are of use. Furthermore, one should investigate the
interaction of lift with the other connectives in order to get a more complete axiomatisation
of the internal logic.

We note that an operation similar to lift, called ▷̂, has already been studied in the context
of guarded dependent type theory [5]. This operation is used to turn a code a for a type A to a
code ▷̂ a for the type ▶A. Under the Curry-Howard correspondence, propositions are expressed
as types in dependent type theory, and thus, ▷̂ can be seen as a generalised version of lift. In
such a setting, the rule lift-∃ corresponds to the principle that the later type former preserves
sigma types.

Finally, it would be worthwhile to investigate whether principles similar to lift-∃ and
lift-∀ also hold in other models of step-indexing. In particular, it is conceivable that these
rules are also valid in models where step-indexing is done over an ordinal larger than ω, such as
Transfinite Iris [13].

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.
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Type conversion is the central part of implementations of type theories. It is theoretically
decidable thanks to the normalisation of all well-typed terms. However, most if not all proof
assistants do not in fact normalise all terms to test for convertibility, instead trying to check if
they are syntactically equal as a shortcut. Tangentially, many languages used in proof assistants
are not proved to be normalising, and some even allow extensions which explicitly prevent
normalisation.
Without the assumption of normalisation, many properties required for the adequacy be-

tween such an algorithm and the intended specification become brittle and are left to be justified,
with the most central of these being the transitivity of the relation defined by the algorithm.
There currently exist proofs of the soundness of the algorithm for an untyped specification of
PCUIC (the idealised type theory of Rocq) [SFL+25], and with a typed specification of Pure
Type Systems (PTSs) [Ada06, SH12] with no extensionality (𝜂) rules. We present the difficulties
of replicating these proofs in the context of a typed specification, with extensionality rules, as
well as the paths we explored and why we stopped exploring some.

Specification and algorithm. Let us describe the two approaches to type conversion that
we want to link. On one end, the specification for convertibility of terms (denoted by ≡) will
include freely all reductions, 𝜂-rules and congruence rules, such that it will be an equivalence
relation. It however doesn’t satisfy any type constructor injectivity results out of the box, due
to its transitivity rule muddying everything. On the other end, we will abstract the behaviour
of an algorithm by the relation ≅, which does repeated head-reductions and (typed) head-𝜂-
expansions on both sides arbitrarily, and at any point when the head constructors are the same
can it stop and resume the operation on the subterms instead (i.e. apply term constructor
congruence rules).
With these definitions, inclusion of ≅ in ≡ is immediate and, for the converse inclusion, most

rules are also already present. Reflexivity and symmetry are both obtained by simple inductions,
leaving only transitivity remaining. One should first notice that transitivity cannot be proven
with a simple induction, for the same reason that confluence of λ-calculus cannot be derived by
induction using simply its weak confluence property, because of an increasing reduction length
issue: when you do deal with the case Γ ⊢ (𝜆(𝑥 ∶ 𝐴0), 𝑡0) 𝑢0 ≡ (𝜆(𝑥 ∶ 𝐴1), 𝑡1) 𝑢1 ∶ 𝑇 (by
congruence) against Γ ⊢ (𝜆(𝑥 ∶ 𝐴1), 𝑡1) 𝑢1 ≡ 𝑡2[𝑥 ∶= 𝑢2] ∶ 𝑇, you can derive Γ ⊢ 𝑡0[𝑥 ∶= 𝑢0] ≡
𝑡1[𝑥 ∶= 𝑢1] ∶ 𝑇, but since it isn’t a structurally smaller derivation than the one you start with,
the induction cannot go through.

How to prove transitivity. In a context where we intend to prove normalisation and can
afford to work only with normalising terms (e.g. [AÖV17, HJP23, ALM+24]), there is a simple
proof of transitivity for ≅. It relies on the observation that only congruence rules are applicable
to normal forms, which makes the relation transitive on such terms. It then only remains to
show that all shortcuts that can be taken are admissible.
However, in our context where no proof of normalisation is accessible, we need another

approach. Since our issue at hand is similar to what happens in λ-calculus, we can resort to the
solution that is used there and was already extended to work for PCUIC and PTSs: parallel
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reduction [Tak89] and the Hindley-Rosen technique [BKv98]. We will split the rules of ≅ into
multiple relations which will be parallel reduction (⇛, reduction rules and congruences), parallel
𝜂-expansion (⇛𝜂, 𝜂-expansion and congruences) and syntactic equality (=s, 𝛼-equivalence and
type-annotation irrelevance). Our complete conversion relation will now be (⇛ + ⇛𝜂)∗; =s
; (⇚ + 𝜂⇚)∗ (arbitrary reductions on both sides using both parallel reduction and parallel
𝜂-expansion, closed by syntactic equality).
The idea behind this split is that, starting from a concatenation of two conversions, we

reorder the individual steps using some swapping lemmas and hope to reach a state where
it has a the shape of a single conversion. Since we’re working with parallel relations, we are
looking for simulations between these relations (𝑅; 𝑅′ ⊆ 𝑅′; 𝑅 or sometimes 𝑅; 𝑅′ ⊆ 𝑅′; =𝑠; 𝑅)

Compatibilities, constraints on type conversion. The proofs of the different swapping
lemmas will require establishing some properties on terms, themselves further requiring some
properties on the type conversion used in the parallel relations (abstract until now).
First, during the inversions that happen on the examined parallel relations, we need to

relate the types of corresponding subterms, so we require that terms have principal types and
that type conversion be reflexive and transitive. Second, since typing is based on the left term,
our relations have to be stable under type and context change (for the equivalent context-level
relations), which means that typing and type conversion has to be stable under such changes;
here on top of that, type conversion also needs to be stable on both sides by all relations in
both directions (e.g. both ⇛ and ⇚).
For the proof of the strong confluence (self-simulation) of ⇛, we observe that it has to be

stable under substitution, which means in turn that both typing and type conversion have to
be stable under substitution.
For the simulation between ⇛ and ⇛𝜂, we must disallow for a term 𝑡 to have both 𝑡 ∶ 𝔹

and 𝑡 ∶ Π(𝑥 ∶ 𝐴), 𝐵, or for a term 𝑡 ∶ Type to have either 𝑡 ∶ 𝔹 or 𝑡 ∶ Π(𝑥 ∶ 𝐴), 𝐵. Since we
also assume that terms have principal types, this translates into a requirement of non-confusion
of type conversion for type formers, that is, no two among 𝔹, Π(𝑥 ∶ 𝐴), 𝐵 and Type should
be convertible. Simultaneously, we require that all possible 𝛽- and 𝜄-redexes may be reduced,
i.e. any redex well typed as a term has its additional redex typing constraints satisfied. These
typing constraints are all provable if we require the injectivity of type conversion for type
formers (when two function types are convertible, then so are their domains and so are their
codomains).
However, this whole proof sketch of transitivity is not structural, so we can’t use a simple

induction hypothesis to satisfy both our transitivity requirement and our stability under reduc-
tion requirements. This means we have to find an existing relation which satisfies all of our
constraints, yet the list is long enough that our needed conversion is already what we want to
find.

Side-stepping some constraints. In the talk we will report on ongoing investigations and
here present the current status of our research for a conclusive proof. Let us first focus over
the requirements we can fulfil. For type principality, two ways exist which don’t require any
previous results: using a bidirectional type system [Len21] or using over-annotated terms (where
for instance an application (𝑓) 𝑎 becomes (𝑓){(𝑥 ∶ 𝐴 ∶ 𝑠0), 𝐵 ∶ 𝑠1} 𝑎 to add type annotations for
all subterms). While the former approach looks simpler, the latter approach allows for context
changes which do not influence principal types (thanks to the type annotation on variables), so
we will focus on that one.
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Working with principal types also helps reduce the requirements on type conversion we need:
when one term reduces to another (through either ⇛ or ⇛𝜂), then the same is true of their
principal types. On the one hand, this means that our relations now work on two types instead
of one; we also need redexes to preserve principal types, so we may need to introduce explicit
definitional casts in some reductions, and a specific reduction relation to erase them. On the
other hand, this waives the requirement of both reflexivity and stability by ⇚ and 𝜂⇚ for type
conversion. At this stage, this means that instantiating type conversion with the false relation
would be sound (but obviously not complete).
The requirements for transitivity become located to a certain number of redexes (namely,

𝜂-expansions and cast erasing), where it can be assumed locally instead of globally, with hopes
of transporting the assumption instead of reconstructing it when needed).
This leaves only the requirements of non-confusion and injectivity of type constructors, and

stability under substitution and all parallel relations. Once more, neither ≡ nor ≅ satisfy
both properties out of the box, so we need another solution. The currently envisioned solution
would be to devise an induction with a very strong predicate, such that it can satisfy all of our
requirements at the same time. We first need to make sure that we won’t need to construct
any proofs of it, which is the reason why we tried to eliminate the requirement of reflexivity in
the first place. A lot of work remains to be done to conclude the proof nonetheless.
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Background. An elementary topos can be seen as a model of a version of the Calculus of
Constructions with an impredicative universe of propositions, where any two elements of a
proposition are definitionally equal. There is an extensive literature on topos theory (see, for
example, [10, 8, 9]) and many properties of this type theory can be proved using its topos-
theoretic semantics.

An important class of such toposes is the one obtained from locales. A locale L is a complete
poset in which the following distributive law holds:

a ∧
∨

b∈B
b =

∨

b∈B
a ∧ b,

when a ∈ L and B ⊆ L. Every topological space gives rise to a locale by considering its poset
of open subsets ordered by inclusion.

Whenever you have a locale, you can obtain a topos from it by taking the category of
sheaves over the locale: the result is called a localic topos. This category of sheaves over the
locale L is equivalent to a category that has a description in terms of logic. Indeed, there is an
equivalent category of L-sets, which are sets with an L-valued equality relation on them, where
this equality relation is required to be symmetric and transitive; the morphisms of L-sets are
L-valued functional relations.

The latter category can be understood as the result of a two-step process. First, one builds
a tripos out of the locale L and then one turns this tripos into a topos by the tripos-to-topos
construction [6]. Importantly, there are triposes that do not arise from locales, for instance,
the effective tripos, whose associated elementary topos is Hyland’s effective topos, a non-localic
(even non-Grothendieck) topos [5]. The effective topos and their subcategories are important
as models of polymorphic type theories [4, 7].

Contribution. The aim of this talk is to introduce arrow algebras and explain the work of
my former MSc students Marcus Briët and Umberto Tarantino [1, 15]. Arrow algebras are
algebraic structures generalising locales. The point is that they still allow you to construct a
tripos, an arrow tripos, and hence also an arrow topos by the tripos-to-topos construction.



These arrow toposes include the localic toposes, but also Hyland’s effective topos. Indeed,
many realizability toposes can be shown to be arrow toposes, because every pca (partial com-
binatory algebra) gives rise to an arrow algebra: this includes also “relative, ordered” pcas as
in, for example, Zoethout’s PhD thesis [16] (see also [3, 13]).

Crucially, Umberto Tarantino has developed a notion of morphism of arrow algebras which
correspond to geometric morphisms between the associated triposes. This has allowed us to
understand the following in purely arrow algebraic terms:

1. Every arrow morphism factors as a surjection followed by an inclusion, inducing the
corresponding factorisation on the level of triposes and toposes.

2. Every subtripos of an arrow tripos coming from an arrow algebra L is induced by a nucleus
on L. Given this nucleus, there is a simple construction of a new arrow algebra inducing
the subtripos.

As a result, arrow algebras provide a flexible framework for constructing and studing new
toposes.

Related work. Arrow algebras can be defined as follows:

Definition 0.1. An arrow algebra A is a complete lattice (A,4) with an implication operator
→:Aop ×A→ A and a separator S ⊆ A such that:

1. if a ∈ S and a 4 b, then b ∈ S.

2. if a, a→ b ∈ S, then also b ∈ S.

3. S contains the following combinators:

k : =
k

a,b

a→ b→ a

s : =
k

a,b,c

(a→ b→ c)→ (a→ b)→ (a→ c)

a : =
k

a,(bi)i∈I ,(ci)i∈I

(k

i∈I
a→ bi → ci

)
→ a→

(k

i∈I
bi → ci

)

Arrow algebras were directly inspired by Alexandre Miquel’s work on implicative algebras
[12]. His implicative algebras can be defined as arrow algebras in which the following axiom
holds:

a→
k

b∈B
b =

k

b∈B
a→ b.

We felt it was worthwhile to drop this axiom, because there are many natural examples of arrow
algebras that do not satisfy it: this includes arrow algebras obtained from pcas and the arrow
algebras obtained from nuclei. While it follows from Miquel’s work that every arrow algebra is
equivalent to an implicative algebra [1, 11], the equivalent implicative algebra is rather unwieldy
and for doing concrete calculations, working with the original arrow algebra is easier.

Implicative algebras are closely related to evidenced frames, as in [2]. Another framework
which subsumes both realizability and localic toposes is the work by Pieter Hofstra on BCOs



(basic combinatory objects) [3] (see also [14]). While every implicative algebra is a BCO, it is
not clear how to obtain a BCO from an arrow algebra in such a way that the associated triposes
are isomorphic. However, a more thorough investigation of these connections is left to future
work.
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Introduction In type theory, there are two primary kinds of equality: judgemental equality,
and propositional equality. The former is definitional and takes the form of equality judge-
ments Γ⊢ a = b : A, where as the latter inhabits the theory’s internal logic wherein you can
have proof objects to associate an identity or equality between two objects, e.g. of the form
p : IdA(a, b). Equality reflection is a statement about the relationship between these two no-
tions of equality: strong equality reflection allows for judgemental equality to be derived from
propositional equality within a system, whereas weak equality reflection simply asks whether
these two different notions of equality coincide. A theory with strong equality reflection, such
as an extensional type theory, may have an inference rule such as

Γ⊢ p : EqA(x, y)
Γ⊢x = y : A

whereas a system with weak equality reflection is defined to be one such that at least one of
the following rules1

⟨⟩ ⊢ p : IdA(x, y)
⟨⟩ ⊢x = y : A

⟨⟩ ⊢ p : x =A y

⟨⟩ ⊢x = y : A

is admissible within the system for the empty context, but not necessarily derivable. Weak
equality reflection holds in systems such as MLTT [6, 8] and UTT [3], but fails to hold in
systems such as traditional homotopy type theory2 [2].

Some developed applications of type theory, such as program specification/analysis and
modern type theory semantics for natural language [9, 1, 5], have been developed with the use of
weak equality reflection in mind. For example, weak equality reflection in program specification
is critically used to define what is expected from definitional and computational equality. Some
applications allow for various system to serve as a sufficient foundation - however, MLTT
presents issues for some of applications in natural language semantics due to the counting
problem [11]. This work analyses a proposed solution in MLTTh - the type theory MLTT
extended with propositional truncation - and examines weak equality reflection within this
system.

The Counting Problem For a sentence such as ‘the number of black cats in the gar-
den is one’, one may provide type-theoretic semantics for the adjectival modification as a
dependent pair type, as first proposed and studied by Mönnich [7] and Sundholm [10]. as

1Id is the identity type as found within MLTT [8], and =A is Leibniz equality as found within Luo’s UTT
[3].

2Consider the mere proposition Σ(x : S1). Id(S1, base, x), where S1 is the higher inductive type of the circle
as typically defined.
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|Σ(x : Cat).black(x)| = 1. However, as theories such as MLTT use a propositions-as-types logic
and lack proof irrelevance, it may be the case that there exist multiple distinct proofs that a cat
is black, and so the above semantics would be incorrect. As such, MLTT alone is not adequate
as a foundational system for these purposes - but MLTT extended with the proper features can
be. It was proposed that MLTTh - the extension of MLTT with propositional truncation [2]
- could serve as an adequate system for formalising modern type theory semantics for natural
language [4].

Propositional Truncation MLTTh is defined3 as MLTT extended with propositional trun-
cation - a type-level operator ∥−∥ such that

Γ⊢ a : A

Γ⊢ |a| : ∥A∥
Γ⊢A type

Γ⊢ p : isProp(∥A∥)
Γ⊢ isProp(B) true Γ⊢ f : A→ B

Γ⊢κA(f) : ∥A∥ → B

where the elimination operator κA satisfies the definitional equality κA(f, |a|) = f(a). Im-
portantly, this introduces a kind of higher inductive type to the theory by mandating that any
two objects of ∥A∥ must be propositionally equal.

This allows us to define the traditional logical operators for this system’s internal logic as
follows:

- true = 1

- false = 1

- P ∧̇ Q = P ×Q

- P ∨̇ Q = ∥P +Q∥

- P ⊃̇ Q = P → Q

- ¬̇ P = P → 0

- ∀̇(x : P ).Q = Π(x : P ).Q

- ∃̇(x : P ).Q = ∥Σ(x : P ).Q∥

Weak Equality Reflection This new internal logic replaces MLTT’s propositions-as-types
logic with a system built on proof irrelevance, allowing for MLTTh to serve as a foundational
system for e.g. natural language semantics. However, it is easy to show that this system no
longer has weak equality reflection. For two terms a : A and b : B, we can consider the example
of ∥A+B∥; we can conclude that |inl(a)| and |inr(b)| are propositionally equal as objects of a
mere proposition, yet judgementally distinct due to their constructors.

However, because of how MLTTh is constructed, there is a subtheory of it that resembles
MLTT. Weak equality reflection holds for MLTT, so this subtheory of MLTTh should preserve
weak equality reflection, even if it does not hold for MLTTh as a whole. In this case, MLTTh

could still be suitable for the applications discussed earlier.
One method for proving this being considered is through showing that MLTTh is a con-

servative extension of MLTT. In particular, one would want to show that, for every context
Γ and type A obtained in MLTT, if there exists some term a in MLTTh such that Γ⊢ a : A,
then there exists some term a′ in MLTT such that Γ⊢ a′ : A. If one is able to prove this then,
because weak equality reflection holds for MLTT, it follows that the MLTT-like subtheory of
MLTTh must also preserve weak equality reflection.

Conclusion Our work on extending MLTT with propositional truncation and analysing its
properties shows that MLTTh is able to function as a foundational language for applications

3Some other works by the second author also refer to this system as MLTT with h-logic [4].
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such as in natural language semantics, even if the theory as a whole does not necessarily preserve
weak equality reflection. It also shows that some subsets of homotopy type theory are not able
to fully preserve weak equality reflection, which suggests that it may not be possible for a
notion of higher inductive types and weak equality reflection to exist within the same system.
Our currently in-progress work aims to refine these results, and to further explore expanding
MLTTh with features which are useful but may not have been fully developed yet for homotopy
type theory in general, such as with coercive subtyping.
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Quotient Inductive Types (QITs) are a family of inductive types supporting not only the
declaration of generators but also equations. A well-known example of QIT is the following
type of finite multisets, whose elements are basically lists considered up to permutation.

Inductive MSet (A : Type) : Type :=

| [] : MSet A

| :: (x : A)(m : MSet A) : MSet A

| MSet= (x y : A)(m : MSet A) : (x :: y :: m) = (y :: x :: m)

QITs are a special case of Higher Inductive Types (HITs) in which the defined type is implic-
itly declared to be an hSet. Such types has been gaining much interest in the last years [Uni13].
Notably, Altenkirch and Kaposi have proposed the use of Quotient Inductive-Inductive Types
(QIITs), an extension of QITs with induction-induction, to formalize the metatheory of type
theory in an intrinsic fashion [AK16].

QI(I)Ts have been investigated in works by Kovács et al. [KKA19, KK20] and Fiore et
al. [FPS22], in both cases by proposing universal types which can be used for encoding other
QI(I)Ts. However, they only focus on the case of extensional type theory (ETT), which is hard
to implement in proof assistants due to its undecidable conversion. On the other hand, it is also
known that the intensional type theories of proof assistants such as Rocq, Lean and Agda do not
behave well with QITs. Indeed, the equality axioms that are added when declaring a QIT break
canonicity, given that J does not reduce when eliminating them. Thankfully, we can instead shift
the focus to Observational Type Theory (OTT) [AMS07, PT22], in which the eliminator for
equality does not inspect the equality proof but instead computes using its endpoints. Because of
this, (consistent) equality axioms can be safely added to the theory without breaking canonicity.

This work We report a work in progress metatheoretic study of OTT with QITs. In order
to achieve this, many directions seem possible. Pujet and Tabareau have recently justified
extensions of OTT with both quotient types Q [PT22] and inductive types [PLT25]1, therefore
it can seem tempting to justify QITs by encoding them as regular inductive types quotiented
by Q. Unfortunately, this encoding does not yield an eliminator with the proper definitional
equalities, and for infinitary QITs this construction does not seem even possible [LS20]. Another
approach would be to directly extend OTT with an inductive scheme for QITs and try to
prove its metatheory, yet inductive schemes are hard to study in a formal manner due to the
proliferation of indexes and vector notations. Therefore, we instead take a similar approach
as the previous work on QITs, and extend OTT with a universal type which can be used to
encode (non-indexed) QITs, by proposing an adaptation of Fiore et al.’s QW types.

1A version of OTT with Q and inductive types was actually already implemented in the Epigram 2 proof
assistant, though, to the best of our knowledge, their metatheory had not yet been studied.
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A universal QIT We now present a finitary version of our universal QIT, an infinitary version
can also be found in the formalization.2 Similarly to QW types, our definition goes in two steps:
we start by defining a (unquotiented) type Tm, required to formulate the equations used for the
quotient later. To do this, let signatures Sig be the record type with a field C : Type to represent
the type of constructors, and a field arity : C→ Nat which maps each constructor to its number
of recursive arguments. We then define Tm in the following way. Here, the parameter Γ : Type
should be seen as a context which adds a new inhabitant var x for each x : Γ.

Inductive Tm (Σ : Sig)(Γ : Type) : Type :=

| var (x : Γ) : Tm Σ Γ

| sym (c : Σ.C) (t : Vec (Tm Σ Γ) (Σ.arity c)) : Tm Σ Γ

Using the above type, we define equational theories EqTh Σ to be the record type with a
field E : Type for the type of equations, a field Ctx : E→ Type mapping each equation to a type
representing its context, and fields lhs, rhs : (e : E) → Tm Σ (Ctx e) mapping each equation to
its left- and right-hand sides. We then define our universal QIT in the following manner. In
the type of eq, we write ⟨ ⟩ : Tm Σ Γ → (Γ → Tm Σ E) → Tm Σ E for the “substitution”
function defined by (sym c [t1 . . . tk])⟨γ⟩ := sym c [t1⟨γ⟩ . . . tk⟨γ⟩] and (var x)⟨γ⟩ := γ x.

Inductive Tm (Σ : Sig) (E : EqTh Σ) : Type :=

| sym (c : Σ.C) (t : Vec (Tm Σ E) (Σ.arity c)) : Tm Σ E
| eq (e : E .E) (γ : E .Ctx e → Tm Σ E) : (E .lhs e)⟨γ⟩ = (E .rhs e)⟨γ⟩

The above type can be used to define other (non-indexed) QITs. For instance, in the
formalization we use it to define the type of finite multisets as well as the untyped SK calculus.
We also provide the example of countably-branching trees, using the infinitary version of Tm.

Compared with QW types, our type is designed to employ a first-order representation of
recursive arguments (an approach notably promoted by Dagand and McBride [Dag13]), by
using vectors instead of functions. This aspect seems essential if we want encodings of QITs
to satisfy canonicity: for instance, the encoding of the boolean type using QW types would
have infinitely many normal inhabitants in the empty context.3 Moreover, unlike with W and
QW types, encodings using our type do not require functional extensionality or fancy tricks like
[Hug21]: they work directly in intensional type theory, as witnessed by our Agda formalization.

The plan We plan to provide a metatheoretic justification of OTT with QITs using the
above universal type, in three steps. (1) First, we will give an inductive scheme for non-indexed
QITs and prove that all types can be encoded using our universal QIT. Importantly, we aim
at obtaining eliminators that compute definitionally, and types that satisfy canonicity (eg., the
encoding of the boolean type should only have two normal forms in the empty context). (2)
Then, the second step will be to prove normalization of OTT extended with our universal QIT.
While a pen-and-paper proof seems within reach, we expect that a formalization would require
some important effort. Indeed, to the best of our knowledge, even the simpler W types lack a
formalized normalization proof. (3) Finally, because in OTT consistency is not a consequence
of normalization, we will adapt the set-theoretic model of Pujet and Tabareau to handle our
universal QIT. Putting (2) and (3) together, we will then conclude canonicity of the type theory,
from which we can also deduce canonicity of the encoded QITs.

2https://github.com/thiagofelicissimo/universal-QITs
3In the case of ITT, this can be fixed using Jasper Hugunin’s trick [Hug21], however this is not sufficient in

the case of OTT because equality does not satisfy canonicity in this setting.
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Based on the above metatheoretic justification, we plan in the future to add QITs to the
Rocq implementation of OTT [PLT25, Section 7]. We would of course also like to consider
more complex classes of types, such as indexed QITs and QIITs. A promising direction would
be to consider the universal type of Kovács et al. [KKA19]. However, because of the size of its
definition, we are worried that a normalization proof would be harder to achieve. A different
approach would be to justify this type using more basic type formers [Kov23, Section 4.6],
however we are not sure this can be made to yield an eliminator with the proper definitional
equalities.

Finally, an alternative approach to the one we propose here would be to instead consider
Cubical Type Theory [CCHM18], which also behaves well with QITs, and whose implementation
in Cubical Agda supports HITs in general [VMA19]. Although canonicity and normalization are
known to hold in the presence of some specific HITs [Ste22, Hub19], to the best of our knowledge
a full metatheoretic treatment of QITs in Cubical Type Theory is also lacking. A possible way
to address this could be to use van der Weide and Geuvers’s construction of finitary QITs
from quotient types and proposition truncation in HoTT [vG19], yet the elimination principles
they obtain only satisfy the expected equalities propositionally. Alternatively, one could try to
adapt the strategy we propose here, by first constructing QITs from Tm and then studying the
metatheory of Cubical Type Theory with Tm. Yet here we chose to focus only on the case of
OTT, because we want a type theory for set-level mathematics.
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Matching (Co)patterns with Cyclic Proofs
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Overview. We investigate connections between cyclic proof theory and recursive functions
defined by (co)pattern matching. Cyclic proof systems replace (co)induction rules with sound
forms of circular reasoning. For example, by adding a cycle between the green nodes we get a
cyclic proof:

+0
0 + 0 = 0

+suc
0 + sucx′ = suc(0 + x′)

0 + x′ = x′
congsuc

suc(0 + x′) = sucx′
trans

0 + sucx′ = sucx′
casex,

0 + x = x

This proof is sound because the variable x is decreased to its predecessor x′ before we cycle
back, and so it represents a proof by infinite descent. The advantage of these systems lies
in proof search: to apply (co)induction we need to guess the right (co)induction hypothesis,
whereas with cycles we can start generating the proof until our current goal matches one that we
have seen before. Under the Curry-Howard correspondence, such cycles correspond to recursive
function calls, while the soundness condition ensure that the function always terminates:

cyclic proof recursive function
fixpoint formula (co)inductive type

cycle recursive function call
soundness condition termination checking

In this way, recursive functions defined with dependent (co)pattern matching can be seen as
a proof-relevant and dependent generalisation of cyclic proofs. In addition, there is a corre-
spondence between type-based termination checking, in the form of sized-types, and ordinal
approximations of fixpoint formulas. Our goal is to explain these correspondences and to use
these connections to extend type theoretic conservativity results.

Proof Assistants. Proof assistants like Agda, Dedukti, Rocq, and Lean allow the user to
define functions using recursive calls. Which functions are accepted depends on a unification
algorithm, and this determines in particular whether we can prove axiom K. For both cases —
with and without K — we have conservativity results: we can already implement these functions
using the primitive rules (turn these cyclic proofs into (co)inductive proofs) [GMM06, CDP16,
Thi20]. Such a reduction is needed to show that any function accepted by the proof assistant
has an interpretation in any model of the type theory. However, these conservativity results
only cover ‘simple cycles’: there is one inductive input that is decreased in every recursive call,
or one coinductive output that is productive before every recursive call. Some proof assistants,
like Agda and Dedukti, allow more complex interleaving of recursive calls. To implement
these functions using primitive (co)induction rules, we need to apply induction and coinduction
multiple times, and often in a specific order. For example, for the Ackermann function we need
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a lexicographical order on inputs:

ack : N→ N→ N,

ackmn := casem

{
0 7→ sucn,

sucm′ 7→ casen

{
0 7→ ackm′ 1,

sucn′ 7→ ackm′ (ack (sucm′)n′).

While the following example mixes induction and coinduction:

complog : N→ N→ StreamN,

complog t r := case t





0 7→ record

{
head 7→ r,

tail 7→ complog r r,

suc t′ 7→ complog t′ (r!).

And this one uses induction on both inputs simultaneously:

aggr : N→ N→ N,

aggrmn := casem

{
0 7→ 0,

sucm′ 7→ casen

{
0 7→ suc 0,

sucn′ 7→ aggrm′m′ + aggr n′ n′.

In addition, there are more complicated examples using dependent types and mutually recursive
functions. The general soundness condition is the following: for any infinite sequence of function
calls that might occur, there should eventually be an input/output that we can track, where
progress is made infinitely often. This can either be an inductive input that is decreased
infinitely often, or a coinductive output that is productive infinitely often. This is known as
the size-change termination principle [LJBA01, Wah07], which can be implemented both with
and without sized-types. Although this problem refers to infinite sequences, it can be shown
to be PSPACE-complete, and can be solved using ω-automata or call graphs. This principle
ensures termination, but it is no longer clear how the accepted functions can be implemented
using primitive (co)induction rules.

Cyclic proofs. A similar problem has been studied in the cyclic proof theory literature
[SD03b, CD23]. Here the setting is non-dependent and proof-irrelevant, but we see the same
complex interleaving of cycles. Instead of tracing inputs and outputs for functions, we are
tracing formulas through an infinite sequent calculus derivation, which is obtained by unfolding
the cyclic derivation. We then have a similar PSPACE-complete soundness condition: for every
infinite branch of the derivation, we can eventually trace a fixpoint formula that makes progress
infinitely often [SD03a]. By a well-known strategy from cyclic proof theory, one can turn this
global soundness condition into a local one by adding so-called annotations to formulas [Sti14,
Jun10, DKMV23, LW24]. These annotations are based on Safra’s determinisation construction
[Saf88] for ω-automata.

Outlook. Inspired by the proof-theoretic picture, we hope to extend the current type theoretic
conservativity results by allowing more complex interleaving function calls. Our hope is that
by annotating the call graph, we can move from a global to a local soundness condition. These
annotations then inform us on the order of (co)induction, which in turn should allow us to
turn cyclic proofs into inductive proofs, following a similar approach to Sprenger and Dam
[SD03b].
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Abstract

This extended abstract provides an overview of a long-term collaboration aimed at ex-
tending the Curry-Howard-Lambek correspondence to the realm of quantum computation.
I will introduce the Lambda-S calculus, a (partial) dual to intuitionistic linear logic whose
proof terms serve as a foundation for a quantum programming language. Additionally,
I will discuss the LS calculus, a proof language for intuitionistic linear logic, which also
enables the construction of quantum programming languages. These frameworks offer a
logical and computational foundation for reasoning about quantum programs and provide
a glimpse into the structure of a potential quantum logic as the dual of linear logic.

Introduction. Quantum logic is a formal system inspired by the structure of quantum theory,
originally developed by Garrett Birkhoff and John von Neumann [BvN36]. Unlike classical
logic, which is based on Boolean algebra, quantum logic weakens the distributive law, leading
to an orthocomplemented lattice structure. This formulation aligns with the mathematical
properties of quantum mechanics, where propositions correspond to projections on a Hilbert
space. However, while quantum logic has been explored as a foundational system for reasoning
about quantum mechanics, its connection to computation has been less explored. Indeed, the
connection between intuitionistic logic, typed lambda calculus, and Cartesian closed categories
has been a fruitful area of research, with the Curry-Howard-Lambek correspondence [SU06,
Cro93] providing a deep connection between these areas. If we are to extend this correspondence
to quantum computation, we need to start from a logical foundation that captures the structure
of quantum computation. In this extended abstract, I will provide an overview of a research
program aimed at developing a computational quantum logic, which will serve as a foundation
for quantum programming languages. This program is based on two main frameworks: the
Lambda-S calculus, which is an extension of the lambda calculus to quantum computing, and
the LS calculus, which is a proof language for intuitionistic linear logic whose proof terms can
be used to construct quantum programs. The idea was to start from computing to logic (the
Lambda-S calculus), and then from logic to computing (the LS calculus), in order to meet in
the middle.

The Lambda-S Calculus. From Computing to Logic. Lambda-S [DCDR19] and
Lambda-S1 [DCGMV19] are quantum lambda calculi designed to handle quantum superpo-
sitions and control while preserving computational properties such as strong normalization
and subject reduction. Both calculi extend the lambda calculus with algebraic linearity and
type-based constraints to enforce quantum mechanics principles, particularly the no-cloning
theorem.

Lambda-S is an extension of simply typed lambda calculus with linear combinations of terms,
it incorporates a type constructor S(A) where a simple type A denotes a set of basis vectors

∗A longer version of this abstract will appear at [DC25].
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(terms) and S(A) its span. This system ensures that terms in A are duplicable, whereas terms
in S(A) are not, reflecting the impossibility of cloning unknown quantum states. Lambda-S
has been given a categorical semantics through an adjunction between Cartesian and additive
symmetric monoidal categories, where S is a functor transforming sets into vector spaces, and
its adjoint forgets the vectorial structure [DCM23,DCM20].

Lambda-S1 extends Lambda-S by enforcing norm-preserving constraints on superpositions,
making it a stricter model suitable for representing unitary transformations explicitly. It has
been obtained via a realizability model in [DCGMV19]. The categorical semantics of Lambda-
S1 [DCM22] is structured around adjunctions but diverges from Lambda-S by ensuring that
all terms maintain a unitary norm, addressing the long-standing issue of preserving quantum
unitarity in quantum control lambda calculi.

Both calculi serve as foundations for quantum programming languages and categorical mod-
els of quantum computation, bridging classical and quantum computational paradigms through
rigorous mathematical structures.

One of the most notable results of this side of the research program, is the fact that we proved
the model of Lambda-S to be a (partial) dual of known models for intuitionistic linear logic
(ILL). Partial, because it favors a computational basis, but some preliminary results suggest
that it can be extended to a proper dual [Mon25]. Usually, ILL is interpreted in a monoidal
closed category, using an adjunction with a Cartesian closed category to interpret duplicable
data. Lambda-S, on the other hand, is interpreted in a Cartesian closed category, using the
same adjunction, but the other way around, to interpret non-duplicable data. This duality
is a strong indication that the structure of quantum computation is the dual of linear logic,
and that the Curry-Howard-Lambek correspondence can be extended to quantum computation,
with this linear logic dual as the logical side and Lambda-S as the computational side.

The LS Calculus. From Logic to Computing. The LS calculus extends intuitionistic
multiplicative additive linear logic (IMALL) with algebraic structures, incorporating sum and
scalar multiplication within proof terms. It builds on the ⊙-calculus [DCD23], which intro-
duced an algebraic connective for quantum superpositions, and refines this idea within a fully
linear framework [DCD24]. In a recent draft, we replace the ⊙ connective with an alterna-
tive rule for disjunction introduction, enabling a structured representation of the quantum
measurement [DCD25]. Its categorical semantics formalizes this approach, aligning it with
monoidal structures that preserve linearity [DCM24]. Moreover, the calculus has been ex-
tended [DCDIM24] with !, that is, from IMALL to ILL, and polymorphism, ensuring expressive
power suitable for quantum programming languages.

The LS calculus provides a logical foundation for quantum programming languages, enabling
the construction of quantum circuits and algorithms through proof terms. Its algebraic structure
aligns with quantum mechanics principles, allowing for a direct representation of quantum
superpositions and measurements. The calculus serves as a bridge between linear logic and
quantum computation, providing a formal framework for reasoning about quantum programs.

The fact that both languages, Lambda-S and LS , use the same adjunction

Lambda-S LS

(S,×, I) ⊥ (V,⊗, 1)

(F,m)

(G,n)

where S is a Cartesian closed category, V is a monoidal closed category, but with Lambda-S
being interpreted in S, using the monad GF to interpret the non-duplicable terms, and LS
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being interpreted in V, using the comonad FG to interpret the duplicable terms, is a strong
indication that the structure of quantum computation can be seen as the dual of linear logic,
and that the Curry-Howard-Lambek correspondence can be extended to quantum computation
following this path.

Several open challenges remain. On the one hand, while preliminary results suggest a dual-
ity between quantum computation and linear logic, a complete characterisation of this duality,
both syntactically and categorically, is still an open question. On the other hand, extending
the Lambda-S and LS calculi to fully capture quantum measurement processes, particularly in
the presence of multiple bases and dependent types, demands further development. Addition-
ally, establishing a formal correspondence between the algebraic structures of the calculi and
graphical languages such as the ZX-calculus, and exploiting this link for program verification
and optimisation, represents another promising but challenging direction.

This ongoing research program is advancing steadily, and the promising results so far suggest
that computational quantum logic is a viable and interesting direction.
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iron. Realizability in the unitary sphere. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019), pages 1–13, 2019.
doi:10.1109/LICS.2019.8785834.

3

https://doi.org/10.2307/1968621
https://doi.org/10.1017/CBO9781139172707
https://arxiv.org/abs/2504.07609
https://doi.org/10.1016/j.tcs.2023.113840
https://doi.org/10.1017/S0960129524000197
https://arxiv.org/abs/2502.19172
https://doi.org/10.1007/978-3-031-62687-6_2
https://doi.org/10.1016/j.biosystems.2019.104012
https://doi.org/10.1109/LICS.2019.8785834


Towards a Computational Quantum Logic A. Dı́az-Caro

[DCM20] Alejandro Dı́az-Caro and Octavio Malherbe. A categorical construction for the compu-
tational definition of vector spaces. Applied Categorical Structures, 28(5):807–844, 2020.
doi:10.1007/s10485-020-09598-7.

[DCM22] Alejandro Dı́az-Caro and Octavio Malherbe. Quantum control in the unitary sphere:
Lambda-S1 and its categorical model. Logical Methods in Computer Science, 18(3:32),
2022. doi:10.46298/lmcs-18(3:32)2022.

[DCM23] Alejandro Dı́az-Caro and Octavio Malherbe. A concrete model for a linear algebraic
lambda calculus. Mathematical Structures in Computer Science, 34(1):1–44, 2023.
doi:10.1017/s0960129523000361.

[DCM24] Alejandro Dı́az-Caro and Octavio Malherbe. The sup connective in IMALL: A categorical
semantics. arXiv:2405.02142, 2024.

[Mon25] Nicolás Monzón. Extension of Lambda-S for different measurement bases. Master’s thesis,
Universidad Argentina de la Empresa, March 2025.

[SU06] Morten Heine Sørensen and Pawe l Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Elsevier, 2006. doi:10.1016/S0049-237X(06)80499-4.

4

https://doi.org/10.1007/s10485-020-09598-7
https://doi.org/10.46298/lmcs-18(3:32)2022
https://doi.org/10.1017/s0960129523000361
https://arxiv.org/abs/2405.02142
https://doi.org/10.1016/S0049-237X(06)80499-4


Internal Proofs of Strong Normalization

Cody Roux

AWS

Strong normalization (henceforth SN) is a useful property for a type theory to have. Among
other things, it usually provides

1. consistency of the system under scrutiny

2. the existence of canonical forms for every term

3. decidability of type checking

of course, this is not the only way to provide such guarantees. For consistency, any model will
suffice, and decidability of type checking, while quite nice in theory, is generally accompanied
by potential runtimes that strain the meaning of the word. Canonicity can also be achieved
nowadays via more subtle methods, like normalization-by-evaluation (NbE), which may be
available in cases where SN may not hold, e.g. in the presence of certain η-laws.

However, SN does have the advantage of being straightforward to state, and very effective,
leaving to the implementer the choice of normalization strategy, which is mostly delegated to
the meta-theory in the case of NbE. We also regard the proof of normalization to have a certain
combinatorial charm, with certain questions around it, notably the Barendregt-Geuvers-Klop
conjecture (see, e.g. Barthe & al [2]), being still open.

Most proofs of normalization involve a certain kind of model construction, the so-called
logical relations model. This is unsurprising based on point 1 above, for Gödelian reasons, as
the proof SN ⇒ consistency can often be carried out in a very weak system (and therefore
the ”tough bit” must be in the proof of normalization). This construction feels very similar to
the classic realizability interpretation t ⊩ P of Kleene which relates certain kinds of program
encodings t to propositions P , and indeed may be seen as a generalization of it.

It is a classical fact that, in Heyting arithmetic HA, any theorem P has a realizer t, and
that HA ”knows” that it is a realizer:

HA ⊢ P ⇒ HA ⊢ ⌜t ⊩ P⌝

This is nice, but the richness of HA allows for a lot of mess in this proof, e.g. there may
be some instances of induction required to carry out the second proof that are not obviously
related to the first, to deal with encoding issues.

We show that this is not necessarily the case, by working in a setting potentially much
poorer than HA, at least in terms of expressiveness, and adding only the requisite tools to
express and prove the strong normalization theorem (for a given well-typed term) without any
additional meta-theoretic tools.

It’s worth noting that such a proof translation will not really guarantee normalization,
of course: we need an additional fact, namely existence of normal forms. This may seem
redundant, but it is worth noting that existence of normal forms is actually weaker than strong
normalization! In essence our strategy is to bootstrap this stronger property from the weaker
one.

Our proof is quite similar to that of Berger & al [3] with the main difference being that
we aim to identify exactly which type theoretic mechanisms are required in the target logic,
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with the aim of identifying a natural map from theories to theories which can encode their own
normalization proof.

To translate the proof, move from a source type theory T to a richer theory T̂ which can
express facts about syntax.

We will need a new sort which we call Syn. This sort will contain a number of types (Term,
Var, . . .), which themselves contain symbols for terms, variables, substitutions etc. as well as
constructors for the normalization predicates, SN and neutral terms NE essential to the proof.
We do not need eliminators for any of these types, since induction shall (and must!) remain at
the meta-level.

We further extend the target type systems with a dependent product Πx : T.U in the case
that T : Syn is a syntax form and U is a well typed type in the original system, e.g. has type
Type or Prop. The resulting product is in the sort of T , allowing us to chain such products.
We note here that the fact that SN and NE eliminate into that sort as well requires us to have
at least a non-dependent function type of that sort, that is, if T, U : Type then T → U : Type.

Finally we extend the normal conversion rule of the theory, by adding rewrite rules over the
inhabitants of Syn to encode substitution, which can be taken, e.g. to be the σ-rules of Abadi
& al [1]. However, we do not add a β-rule for syntactic terms. Intuitively, these rules allow us
to reason modulo substitutions, as they are confluent and terminating in the absence of β.

Now we can translate term derivations in the source theory into derivations of computability
in the target theory. The idea is to translate each type T : Type (or any other sort) into a
predicate [[T ]] : Term→ Type, and prove, by (meta-)induction on the type derivation,

Γ ⊢T t : T ⇒ [[Γ]] ⊢T̂ (|t|) : [[T ]] ⌜to⌝
where ⌜to⌝ is the open syntactic form of t, containing variables of type Term appearing in

[[Γ]] which correspond to the original t variables. Predictably, the translation of non-dependent
arrow types will be the ”realizability arrow”

[[A→ B]] := λt : Term.Πu : Term.[[A]] u→ [[B]] (t u)

but type variables X will need their own variable predicates X , along with additional con-
structors

ne : Πt : Term.NE t→ X t

sn : Πt : Term.X t→ SN t

wh : Πt u t′ : Term.SN u→WHExp t t′ u→ X t′ → X t

The predicate WHExp expresses that t is the weak head expansion of t′ by u, that is, t =
(λx.t1) u t2 . . . tn and t′ = t1[u/x] t2 . . . tn.

These conditions are exactly the Girard conditions (at least, the so-called ”saturated sets”
form), and sadly, we must add with them some common sense reductions. Thankfully these
conversions do not interact with β-reductions, and so do not threaten weak normalization.

Finally, from there we build a proof G ⊢ snt : SN ⌜t⌝ for a well chosen G (closely related to
Γ), a surprisingly non-trivial task in the absence of induction over syntax! This time, ⌜t⌝ is the
actual syntax of t, variables and all. From there we may conclude, if the original type theory
admits normal forms, that t is indeed strongly normalizing. This relies on a simple induction
on normal forms of terms of type SN t, along with the following meta-theorem:

Theorem 1. If T admits normal forms, so does T̂ .

2
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The feasibility of our translation, and of course, the correctness of our final conclusion (that t
is strongly normalizing) will depend on exactly which constructors we give for SN, and whether
they are true in the meta-theory. Here, again, we proceed similarly to Berger & al [3] and add
the (folklore) inductive characterizations of strong normalization using weak-head expansions,
and an additional fact: SN t holds if SN (t x) holds for any variable x.

We give, as illustration, a representation of the normal form of the proof of SN for (λx.x) y,
which, while not eminently surprising, may illustrate the strategy.

A : Term→ ∗,
neA : Πt : Term.NE t → A t, snA : Πt : Term.A t→ SN t,

whA : Πt t′ u.WHExp t t′ u→ SN u→ A t′ → A t,

⊢
whSN ⌜(λx.x) y⌝ ⌜y⌝ ⌜y⌝ (neSN (neVar⌜y⌝)) (neSN (neVar⌜y⌝)) : SN ⌜(λx.x) y⌝

here whSN, neSN, neVar etc. are part of the constructors for the type families SN and NE, and
as a result the normalization of the top-level term can simply be read off of the proof, and the
occurrences of whA were reduced away as the semantic variable y was replaced by its syntactic
counterpart ⌜y⌝.

As a conclusion, we note that the idea of conducting a logical relations argument within
its own type theory is not new; our work is inspired from Bernardy & Lasson [4], where they
introduce, for a given type theory, an enriched theory capable of expressing logical relations
between the terms of the original theory.

There are many similar such categorical investigations (see e.g. Bocquet & al [5, 6]), though
the author is at the moment incapable of determining the exact relationship with this more
syntactic argument. The main novelty here is to carry out the combinatorial argument for
normalization internally, including the last step of ”extracting” the normal form.
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[5] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the metatheory of type theory, internal
sconing is enough, 2023.

[6] Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical
Type Theory. PhD thesis, Carnegie Mellon University, 2022.

3



Compositional memory management in the λ-calculus
Sky Wilshaw1 and Graham Hutton2

1 School of Computer Science, University of Nottingham
sky.wilshaw@nottingham.ac.uk

2 School of Computer Science, University of Nottingham
graham.hutton@nottingham.ac.uk

1 Motivation and overview

Type systems can be used in programming languages to guarantee memory safety. This idea
has been developed in many different directions, for example with borrowing from the Rust
language [6, 3], the reachability types of Bao et al. [1], and the fractional uniqueness types of
Marshall and Orchard [5]. In order to create new type systems of this form in a principled way,
we would like a simple untyped system that supports a basic form of memory management,
so that type systems can be built on top of it. However, existing untyped languages of this
kind typically suffer from two major problems. First, they often introduce many new primitives
for concepts such as memory cells, allocation, freeing, pointers, and stores, complicating the
semantics. Second, they are usually non-compositional, as we need to thread the state of the
memory store through all derivations; this is a particular weakness when our goal is to design
type systems.

In this work, we identify a fragment of manual memory management, which we call explicit
naming. Under this paradigm, names are first-class citizens in a language, with explicit primi-
tives for creating, using, and freeing names. These primitives correspond to simple operations
on memory, interpreting names as pointers to the values they are bound to. We will introduce
a lambda calculus with explicit naming, with a stateful semantics that keeps track of the value
assigned to each name. Then, to address the lack of compositionality, we will develop a compo-
sitional semantics for the same language, and show that it is equivalent to its non-compositional
counterpart. This language, with its two equivalent semantics, provides a framework that can
be used to develop type systems for explicit naming.

2 Modifying the lambda calculus

We will start with a simple call-by-value lambda calculus, with standard reduction rules and
notation inspired by Launchbury’s semantics for lazy evaluation [4]. We use the standard syntax
for lambda terms, writing expressions with the letter e and values with the letter v. Judgments
are of the form H1 : e ⇓ H2 : v, where H1 and H2 are heaps, finite partial functions from names
to values. This can be read as ‘expression e can be evaluated with heap H1 to produce a value
v and a resulting heap H2’.

Our initial rules are as follows. Problems relating to name collisions and α-equivalence will
not be discussed here in order to focus on the key ideas of this contribution. Colours are not
syntactically important.
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(H,x 7→ v) : x ⇓ (H,x 7→ v) : v
Var′

H : λx. e ⇓ H : λx. e
Lam

H1 : e1 ⇓ H2 : λx. e H2 : e2 ⇓ H3 : v (H3, x 7→ v) : e ⇓ H4 : v
′

H1 : e1 e2 ⇓ H4 : v
′ App

Here, the variable rule Var′ tells us that a name x evaluates to the value v bound to it in
the heap. This means that every mention of a name is a use of it, or alternatively, that we
cannot have a pointer without dereferencing it. This prevents us from using names as first-class
citizens. Therefore, to make a lambda calculus with explicit naming, we need to divide the
variable rule into the following two rules:

H : x ⇓ H : x
Var

H1 : e ⇓ (H2, x 7→ v) : x

H1 : !e ⇓ (H2, x 7→ v) : v
Read

We have introduced a new operator, written ‘!’, for looking up the value bound to a name.
With these new rules, names are already values, and do not reduce; a name must be explicitly
dereferenced using ‘!’ in order to access its value.

To model explicit naming, it remains to provide a method to free names. This allows us to
model one of the key challenges with memory management, namely, that dereferences might fail
after a deallocation. To do this, we add in a second new primitive, which evaluates an expression
and then frees a name (which itself may be the result of evaluating some other expression).

H1 : e1 ⇓ H2 : v H2 : e2 ⇓ (H3, x 7→ v′) : x

H1 : e1; free e2 ⇓ H3 : v
Free

3 Recovering compositionality
The main disadvantage of the presented semantics is its non-compositionality, as the heap
state must be threaded through each derivation. This prevents us from building type systems
on this language. To combat this, we will describe a new semantics which calculates the
denotation of an expression separately from computing the effect on the heap of evaluating this
expression. Crucially, we do not need to compute intermediate heap states in order to calculate
denotations or effects of compound expressions; it is in this sense that our effect-based semantics
is compositional.

In order to do this, we need to reduce our dependence on the heap state, by moving some
of the information from the heap into the values. In particular, abstractions now evaluate to
closures, and variables now keep track of their assigned values. These new values are called
denotational values and written with the letter w. Rather than in a heap, denotational values
are stored in a context Γ, a finite partial function from names to denotational values.

To be precise, a denotational value is either a closure of the form (λΓx. e) or a variable
binding (x 7→ w). Such a denotational value can be thought of as a value in the usual sense,
together with all of the data that it could ‘see’ in the heap at the time of its creation. We define
denotational values coinductively to allow for loops in variable bindings and stored contexts.

Our big-step reduction relation will now have the form Γ ` e ⇓ f : w, where f is the effect,
a partial function from heaps to heaps, and w is a denotational value. We may view f as the
effect on the heap of evaluating Γ ` e ⇓ w. Such partial functions evidently form a monoid
under composition.

2
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(Γ, x 7→ w) ` x ⇓ id : (x 7→ w)
F-Var

Γ ` λx. e ⇓ id : λΓx. e
F-Lam

Γ ` e1 ⇓ f1 : λΓ
′
x. e Γ ` e2 ⇓ f2 : w Γ′, x 7→ w ` e ⇓ f3 : w′

Γ ` e1 e2 ⇓ f3 ◦ (x := w) ◦ f2 ◦ f1 : w′ F-App

Γ ` e ⇓ f : (x 7→ w)

Γ ` !e ⇓ readx ◦ f : w
F-Read

Γ ` e1 ⇓ f1 : w Γ ` e2 ⇓ f2 : (x 7→ w′)

Γ ` e1; free e2 ⇓ freex ◦ f2 ◦ f1 : w
F-Free

Here, (x := w), readx, freex denote partial functions that perform the given operation. For
instance, (x := w) adds the binding x 7→ w to any heap where x is not in its domain, and is
undefined elsewhere. Similarly, readx is the identity on heaps that contain x in their domain,
and undefined elsewhere. In these rules, effects of subexpressions are only used to compute
the composite effect of the expression, and are not applied to contexts or used serially between
subexpressions. We do not use the full flexibility of partial functions between heaps, and various
simpler presentations of our effects are possible, for example using effect quantales [2].

4 Equivalence
We can show that the two semantics are equivalent. To formalise this equivalence, we need to
set up some conversions between heaps and contexts. First, we can ‘forget’ the extra data of
a denotational value w to recover a value v = w. This operation is defined by (λΓx. e) = λx. e
and (x 7→ w) = x. In the other direction, we can translate a heap H into a context Γ = tr(H)
defined by the following coinductive rules.

H(x) = y tr(H)(y) = w

tr(H)(x) = (y 7→ w)

H(x) = λy. e

tr(H)(x) = λtr(H)y. e

We can then prove the following result.

Theorem. Let e be an expression and H be a heap. We define inductively that a variable x is
reachable from e in H if it is free in e or is reachable from H(y) where y is free in e. If all
variables reachable from e in H occur in the domain of H, then

H : e ⇓ H ′ : v ⇐⇒ (∃w f, w = v ∧ f(H) = H ′ ∧ tr(H) ` e ⇓ f : w)

where the derivations on the left and right sides of this equivalence pull from the same stream
of fresh names.

The hypothesis of this theorem is a minor generalisation of the usual notion of an ‘expression-
in-context’, ensuring that tr(H) contains all of the free variables of e.

This equivalence theorem allows for more compositional reasoning about memory-sensitive
computation. As an example, we can show that if two expressions e1 and e2 have disjoint sets of
reachable names in H, then they can be evaluated in either order without affecting the overall
computation. This is because the effects f1 and f2 of evaluating these expressions in tr(H)
operate on disjoint sets of names and therefore commute past one another: f1 ◦ f2 = f2 ◦ f1.

We hope that this compositional framework is suitable for developing interesting type the-
ories that are capable of encapsulating some of the challenges of memory management.

3
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Anel and Barton [1] define a family of generalized forms of the axiom of countable choice, and
discuss their relationship to Postnikov completeness and the hypercompletion operation in∞-
toposes. This talk will discuss the translation of their work into HoTT and a formalization in
Cubical Agda. In particular, we will present a construction of the hypercompletion operation
in HoTT under the assumption that any one of those forms of the axiom of countable choice
holds.

Working in intensional Martin-Löf type theory with a univalent universe, we say that a type is
(−2)-truncated if it is equal to the unit type. A type is called (n + 1)-truncated (−2 ≤ n < ∞)
when its identity types are n-truncated. For any n <∞, there is an operation λX.‖X‖n sending
a type to its n-truncation – which is a universal n-truncated type with a map | · |n : X → ‖X‖n.

We say that a modality is any operation© : U → U together with a unit η : (X : U) → X →
©X , which satisfy certain conditions (see [4] for the definitive account). If ηX is an equiv-
alence, we say that X is a modal type for the modality (©, η). The n-truncation operation,
together with the universal map, is a modality, its modal types are precisely the n-truncated
types.

A type X is called n-connected if ‖X‖n is equal to the unit type. A type Y is n-truncated if and
only if, for all n-connected types X , the canonical map Y → (X → Y ) is an equivalence. We
say that a type is∞-connected if ‖X‖n is equal to the unit type for all n. By analogy with the
finite case, we say that a type Y is∞-truncated if, for all∞-connected types X , the canonical
map Y → (X → Y ) is an equivalence.

An important construction in ∞-topos theory is the hypercompletion operation, which sends
each object in an ∞-topos to an ∞-truncated reflection of that object [2]. Since HoTT has
semantics in∞-toposes [5], it is desirable to construct such an operation in the type theory. In
particular, this ought to be a modality whose modal types are precisely the∞-truncated types.
However, the authors of [4] remark that it is unknown how to construct such a modality in
HoTT without additional assumptions. As far as I am aware, little subsequent progress has
been made on the problem.

That said, we clearly can construct this modality under particular assumptions. In particular –
if we assume that each type is already∞-truncated, then the hypercompletion agrees with the
trivial modality. However, as we’re going to see, this is not the only condition which allows us
to construct this modality.

Postnikov towers

A formal Postnikov tower is a family of types A : N→ U, with a family of maps a : (n : N)→
An+1 → An, such that for each n : N, An is n-truncated and an has n-connected fibers. For
every type X there is a canonical Postnikov tower with An := ‖X‖n and an := | · |n. For any
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tower (Postnikov or otherwise) we can define its limit:

lim(A, a) := (x : (n : N)→ An)× ((n : N)→ an(xn+1) = xn)

There is a canonical morphism from a type X into the limit of its canonical Postnikov tower.
Postnikov convergence is the statement that these canonical morphisms are always equiva-
lences. Meanwhile, if (A, a) is a Postnikov tower, there is a canonical family of maps εn :
‖ lim(A, a)‖n → An, and Postnikov effectiveness is the statement that for every Postnikov
tower, each εn is an equivalence. The conjunction of Postnikov convergence and Postnikov
effectiveness is called Postnikov completeness.

Postnikov convergence implies that every type is∞-truncated – so, again, the hypercomple-
tion modality agrees with the trivial modality if Postnikov convergence holds. Postnikov ef-
fectiveness also allows us to construct a hypercompletion modality and in this case (so long as
Postnikov convergence does not also hold) it is non-trivial – the operation sends a type to the
limit of its canonical Postnikov tower:

λX. lim(‖X‖n, | · |n)

So far so good, but actually we can get away with a simpler assumption, one which does not
refer to Postnikov towers. Anel and Barton [1] define countable choice of dimension ≤ d for
a fixed∞-topos to be the principle stating that if X1, X2, . . . form a family of d+ k-connected
objects, then their product ΠNXn is k-connected. They show that each one of these principles
implies (an external version of) Postnikov effectiveness for the topos. They observe that their
definitions and most of their arguments can be reformulated in HoTT. For a formalization in
Cubical Agda see the repository: [3]. All of this allows us to conclude in HoTT that for any d,
countable choice of dimension ≤ d allows us to construct a hypercompletion modality.
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Introduction Inductive types are ubiquitous building blocks in many programming and the-
orem proving languages. An inductive type is a closed set of constructors from which values of
the type can be created. That set of constructors cannot be extended though once a type is de-
fined. This limits extensibility, reuse, and modular separation of concerns when defining types
and functions operating over their values. The expression problem [13] is one manifestation of
this limitation, where extending an expression language with new syntactic constructors while
reusing existing ones without having to modify or re-compile them is a challenge in almost all
programming languages.

This extended abstract briefly presents a set of syntactic extensions to the Lean program-
ming language that allow the modular compositions of inductive types1. Lean 4 [7] includes
meta-programming constructs that allow developers to extend the syntax of the language, and
provide user-defined elaborators of the extended syntactic constructs. We utilize those meta-
programming facilities to allow the definition of inductive types that are built from clones of the
constructors of constituent types. In addition, we automatically generate coercion operators
that allow passing values of constituent types to functions expecting values of the extended
type, and vice versa when applicable.

namespace Boolean

inductive T where

| Bool

inductive Term where

| True
| False
| If (c t1 t2: Term)

inductive TRel: Term → T → Prop

| TT: TRel .True .Bool
| FF: TRel .False .Bool
| If: TRel c .Bool → TRel t1 τ → TRel t2 τ

→ TRel (.If c t1 t2) τ

end Boolean

(a) Boolean type definition.

namespace Nat

inductive T where

| N

inductive Term where

| Zero
| Succ (t: Term)
| Pred (t: Term)

inductive TRel: Term → T → Prop where

| Z: TRel .Zero .N
| S: TRel t .N → TRel (.Succ t) .N
| P: TRel t .N → TRel (.Pred t) .N

end Nat

(b) Nat type definition.

Figure 1: Separate definitions of Boolean and Nat types, syntactic terms, and type relation.

1Prototype implementation can be found at https://github.com/qualgebra/LeanToolkit/tree/TYPES2025

https://github.com/qualgebra/LeanToolkit/tree/TYPES2025
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inductive T := Boolean.T + Nat.T

⇓

inductive T : Type
| Bool : T
| N : T

(a) Composing Boolean.T and Nat.T.

inductive Term := Boolean.Term + Nat.Term
| isZero (t: Term)

⇓

inductive Term : Type
| True : Term
| False : Term
| If : Term → Term → Term → Term

| Zero : Term
| Succ : Term → Term

| Pred : Term → Term

| isZero : Term → Term

(b) Composing Boolean.Term and Nat.Term.

inductive TRel: Term → T → Prop := Boolean.TRel + Nat.TRel
| iz: TRel t T.N → TRel (.isZero t) T.Bool

⇓

inductive TRel : Term → T → Prop

| TT: TRel Term.True T.Bool
| FF: TRel Term.False T.Bool
| If: ∀{c t1: Term} {τ :T} {t2: Term}, TRel c T.Bool → TRel t1 τ → TRel t2 τ → TRel (c.If t1 t2) τ
| Z: TRel Term.Zero T.N
| S: ∀ {t : Term}, TRel t T.N → TRel t.Succ T.N
| P: ∀ {t : Term}, TRel t T.N → TRel t.Pred T.N
| iz: ∀ {t : Term}, TRel t T.N → TRel t.isZero T.Bool

(c) Composing Boolean.TRel and Nat.TRel.

Figure 2: Composing Boolean and Nat using the ‘+’ operator on inductive types.

Example This example is inspired by the Typed Lambda Calculus (TLC) presentation from [8].
We assume we are defining TLC with two native types: Boolean (Fig. 1a), and Nat (Fig. 1b).
Each of the two separate definitions includes inductive types for the set of relevant types (T),
the set of valid syntactic terms (Term), and a type relation (TRel) between terms and types.

Now we would like to compose the two sets of definitions into a language with both
Boolean and Nat native types. We use Lean meta-programming to extend the Lean syntax
with a new construct for summing up multiple inductive types. Fig. 2 shows three exam-
ples: composing Boolean.T and Nat.T (Fig. 2a), composing Boolean.Term and Nat.Term,
while adding an extra constructor isZero (Fig. 2b), and finally composing Boolean.TRel and
Nat.TRel, adding the extra constructor iz (Fig. 2c). The ‘+‘ operator (implemented and
elaborated using Lean meta-programming) is used in all three examples to compose multiple
inductive types, and optionally adding extra constructors like in the cases of Term and TRel.
Each of the examples shows the Lean definition automatically generated as a result.

In addition, instances of the Coe typeclass are also generated to allow safe automatic coer-
cion from values of the constituent types to the newly defined composite type. For example,
the following code snippet typechecks because the automatically generated coercion operator
converts Boolean.T.Bool into T.Bool:

2
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def x := Boolean.T.Bool
def y: T := x

Coercion in the opposite direction (e.g., from T.Bool to Boolean.T.Bool) is possible only
for values known at compile time. The Lean standard library includes the dependent coercion
typeclass CoeDep. We generate instances of this typeclass for each of the constructors of the
summed up type, coercing them back to their respective constituent types. As a result, the
following Lean definition typechecks:

def z: Boolean.T := T.Bool

Related Work Previous work tried to reuse proofs on modular definitions in Coq [2, 9], by
extending an inductive type by individual extra constructors, and functions with individual
pattern matching cases. Modular composition of definitions and theorems into feature-based
product lines was presented in [3]. Inspired by the data types a-la-carte work for Haskell [11],
similar approaches to solving the expression problem in theorem provers include Meta-theory
a la carte [4], Coq-a-la-carte [5], and extensible metatheory mechanization [6]. Other attempts
at solving the expression problem include four different solutions relying on generic data types
in Java-like languages are presented in [12], and a symmetric view of algebraic data types and
codata types [1].

Our approach of composing constructors is similar to that of Boite [2] with three main
differences that we know of.

1. Boite’s approach incrementally adds constructors to an existing type, while we focus on
composing multiple types, and also support adding extra constructors if needed. We also
rely on coercion operators for interoperation between composed and constituent types.

2. We heavily leverage Lean metaprogramming to simplify the implementation, while Boite’s
work predates MetaCoq [10].

3. This is more of a limitation on our side at this point, we do not support composing proof
objects. This is one of our future work directions.

Acknowledgments The author would like to thank anonymous reviewers for their feedback
and insightful suggestions.
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[5] Yannick Forster and Kathrin Stark. Coq à la carte: a practical approach to modular syntax with
binders. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2020, page 186–200, New York, NY, USA, 2020. Association for Computing
Machinery.

3



Towards Modular Composition of Inductive Types Using Lean Meta-programming R. Shahin

[6] Ende Jin, Nada Amin, and Yizhou Zhang. Extensible metatheory mechanization via family poly-
morphism. Proc. ACM Program. Lang., 7(PLDI), June 2023.

[7] Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Lan-
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Introduction

Session types are a channel typing discipline ensuring that the communication patterns of
concurrent programs abide by a shared protocol. A meta-theoretical analysis of the typing
discipline can then ensure that the communicating processes will have good properties e.g.
deadlock-freedom. We show how to use a linear dependently typed programming language to
define a direct and type-safe embedding of expressive binary session types.

Expressive Session Types

p, q, . . . ::= x | µx. p | νx. p
| !A. p | ?A. p | end
| p& q | p⊕ q

init

eval

more

stop

false

true

recv N

send N

ready

done! greet

adder

false

true send S

send N

Our session types are closed under nested smallest (µx. ·)
and largest (νx. ·) fixpoints, typed sends (!A. ·) and
receives (?A. ·), the empty protocol (end) and binary
branch offerings (·& ·) and selections (· ⊕ ·).

The session νi. ((!N. end)&(?N. i)) types a server for
the ‘adder’ protocol represented as a finite state machine
on the right hand side. The server accepts an arbitrar-
ily long sequence of natural numbers (sent by a client
repeatedly selecting the more = (?N. x ) branch) before
sending back their sum as a single number (when the eval
= (!N. end) branch is selected) and terminating. The en-
coding of the server’s type uses a largest fixpoint because
the client is the one responsible for ensuring the process
terminates by eventually selecting the eval branch.

We can use nested fixpoint to describe more com-
plex protocols. For instance, the session described by
νr. (end&(!S. νi. ((!N. r)&(?N. i))))) informally corre-
sponds to the finite state machine shown on the right
hand side. It types a server repeatedly offering to han-
dle the adder protocol described above after greeting the
user with a string. We replaced adder’s end with r to let
the protocol loop back to the ‘ready’ state once the adder
is done (in the state machine, that corresponds to merg-
ing ‘stop’ and ‘ready’ hence the bottom ‘send N’-labeled
arrow from the ‘adder’ sub-machine back to ‘ready’).

Type-safe Implementation

Pairs of Unityped Channels We represent a bidirectional channel parametrised by a session
type as a pair of unityped unidirectional channels. The key idea behind this safe implementation
is to collect all the received (respectively sent) types used in a protocol and to manufacture
a big sum type in which we can inject all of the received (respectively sent) values. Because
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the received types of a protocol are equal to the sent types of its dual (and vice-versa), we can
prove that the directed channels of two communicating parties are indeed type-aligned. The
definition of this sum type is a type safe realisation of Kiselyov and Sabry’s open union type [5]
using the encoding of scope-safe De Bruijn indices [4] introduced by Brady in Idris 2’s core [3].
We include its definition below: given a list ts of values of type a and a decoding function
elt turning such values into types, (UnionT elt ts) defines a union type. Its one constructor
named Element takes a natural number k functioning as a tag, a proof of type (AtIndex t

ts k) that the value t is present at index k in ts and injects a value of type (elt t) into the
union. By picking elt to be the identity function, we recover the usual notion of tagged union
of types.

data UnionT : (elt : a -> Type) -> (ts : List a) -> Type where

Element : (k : Nat) -> (0 _ : AtIndex t ts k) -> elt t -> UnionT elt ts

Note that the proof of type (AtIndex t ts k) is marked as erased through the use of the
0 quantity which means this datatype compiles down to a pair of a GMP-style Integer (the
optimised runtime representation of the tag of type Nat) and a value of the appropriate type.
This gives us an encoding that has constant time injections and partial projections (via an
equality check on the Nat tag) in and out of the big sum type.

Dealing with Changing Sessions The session type, by design, changes after each commu-
nication but the big sum types used when communicating across the unityped channels need
to stay the same. Our solution is to record an offset remembering where we currently are in
the protocol and thus allowing us to keep injecting values into the initial shared sum types.
Our offsets are proven correct using a gadget that can be understood as a cut down version of
McBride’s one hole contexts [8]. Instead of recording the full path followed by our programs in
the finite state machine describing the protocol, we merely record a de-looped version.

Types of the Primitives We include code snippets showing the types of the primitives
dealing with communications. Note that Idris 2’s funny arrow (-@) denotes a linear function
space, and consequently all of these primitives are linear in the channel they take as an input
(ensuring it cannot be reused after the protocol has been stepped) and systematically return,
wrapped in a linear IO monad called IO1, a channel indexed by the updated protocol. First,
send and recv, the primitives dealing with sending arbitrary values back and forth. send takes
an argument of type ty while recv returns one as the Result of the communication.

send : Channel (Send ty s) e -@ (ty -> IO1 (Channel s e))

recv : Channel (Recv ty s) e -@ IO1 (Res ty (\ _ => Channel s e))

Second, offer and select, the primitives dealing with branching. Both involve a choice in the
form of a Bool named b that is used to compute the next channel state. offer gets it from
the other thread as a Result of some communication while select requires the caller to pass it
and will forward the decision to the other party.

offer : Channel (Offer s1 s2) e -@

IO1 (Res Bool (\ b => ifThenElse b (Channel s1 e) (Channel s2 e)))

select : Channel (Select s1 s2) e -@

((b : Bool) -> IO1 (ifThenElse b (Channel s1 e) (Channel s2 e)))
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Third, unroll and roll, the primitives dealing with the iso-recursive nature of our (co)inductive
protocols. The types of these primitives reveal the role of Channel’s second parameter: it is
a stack of open session types corresponding to the bodies of the nested fixpoints encountered
during execution. unroll opens a fixpoint and thus pushes a new entry onto the stack e while
roll does the opposite.

unroll : Channel (Fix nm s) e -@ IO1 (Channel s (s :: e))

roll : Channel s (s :: e) -@ IO1 (Channel (Fix nm s) e)

Last but not least, rec steps a channel that has reached a recursive call to a fixpoint by looking
up the open session and environment associated to the specified position in the stack and
reinstating them.

rec : {pos : _} -> Channel (Rec pos) e -@

IO1 (Channel (Fix nm (SessionAt pos e)) (EnvAt pos e))

Example Server Omitting the somewhat horrifying types, we include the implementation of
the server repeatedly offering to greet the user and execute the adder protocol that we sketched
earlier. We use Idris 2’s named argument syntax to explicitly pass the name nm to the unroll
and rec calls in order to clarify what step of the protocol is being reached.

server id ch = do

ch <- unroll {nm = Nu "ready"} ch

b # ch <- offer ch

if b then close ch else do

let msg = "Hello n°\{show id}!"
ch <- send ch msg

ch <- adder 0 ch

server (1 + id) ch

adder acc ch = do

ch <- unroll {nm = Nu "adder"} ch

b # ch <- offer ch

if b then do

ch <- send ch acc

rec {nm = Nu "ready"} ch

else do

(n # ch) <- recv ch

ch <- rec {nm = Nu "adder"} ch

adder (acc + n) ch

On the left-hand side we are acting as a server parametrised by a client id number. We
first unroll the largest fixpoint corresponding to the ‘ready’ state repeatedly offering the adder
protocol, and wait for the client to choose one of the branches we offer. If they are done we
close the channel and terminate, otherwise we send a greeting, call the adder routine, and
eventually continue acting as the server with an incremented id number.

On the right-hand side we are acting as the adder parametrised by an accumulator acc.
We unroll the largest fixpoint corresponding to the ‘adder’ protocol and offer the client a
choice between getting the running total or sending us more numbers. If they are done, we
send back the value in the accumulator and, having reached a Rec variable in the protocol, use
rec to jump back to the ‘ready’ state. Otherwise we recv an additional number, add it to the
accumulator, use rec to jump back to the ‘adder’ state and continue acting as the adder.

Limitations and Future Work

Encoding Uniqueness via Linear Types Unlike Brady’s prior work in Idris 1 [2], we are
using Idris 2 which does not currently have uniqueness types. We are forced to use the linearity
granted to us by Quantitative Type Theory (QTT) [9, 1] to emulate uniquess via a library-wide
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invariant. This adds a degree of noise and trust to the implementation. We would ideally want
a host system combining both linearity and uniqueness to benefit from enhanced expressivity
and efficiency as described by Marshall, Vollmer, and Orchard [7].

Small Runtime Overhead In the current version of our library, we compute a handful of
key offset values by induction over the protocol. Correspondingly the protocol is not marked as
erased anymore and, if compilation does not specialise the relevant combinators agressively, then
we may very well be evaluating these relatively small computations at runtime. As far as we
understand, directly adding typed staging to Idris 2 through the use of a two-level type theory
à la Kovács [6] would not be enough to solve our issue: for typing purposes, the protocol does
need to persist through staging. But it should be possible to move it from QTT’s unrestricted
to its erased modality.

Ergonomics We found writing the types of inner loops of programs with non-trivial commu-
nication patterns to be tedious as they expose quite a lot of the powerful but noisy encoding of
syntaxes with binding we use. Figuring out a more user-friendly surface syntax for our protocols
is left as future work.

Totality Checking Our lightweight embedding does distinguish smallest and largest fixpoints
but Idris 2’s productivity checker does not currently take advantage of the knowledge that the
user is making steady progress in a potentially infinitely repeating protocol (νx. P ) to see that
a program is total. Experiments suggest we may be able to introduce a lightweight encoding
of a Nakano-style modality [10] for guarded programming to let the user justify that their
co-recursive calls are all justified by regular progress.
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Abstract

Dependently typed proof assistants offer powerful meta-programming features, which users can
take advantage of to implement proof automation or compile-time code generation. This paper
surveys meta-programming frameworks in Rocq, Agda, and Lean, with seven implementations of
a running example: deriving instances for the Functor type class. This example is fairly simple,
but sufficiently realistic to highlight recurring difficulties with meta-programming: conceptual
limitations of frameworks such as term representation – and in particular binder representation
–, meta-language expressiveness, and verifiability as well as current limitations such as API com-
pleteness, learning curve, and prover state management, which could in principle be remedied. We
conclude with insights regarding features an ideal meta-programming framework should provide.
A full experience report in paper form is accessible at https://hal.science/hal-05024207.

All proof assistants support user-extensible tactics and code generation through different meta-
programming frameworks. Meta-programs are programs which produce or manipulate other programs
as data. They can in particular be used to generate boilerplate code, i.e. code that can be mechani-
cally derived from definitions, thereby increasing the productivity of proof assistant users. Common
examples are induction principles [25, 12], equality deciders [25, 10], finiteness proofs [5], countability
proofs [5], or substitution functions for syntax [22]. Naturally, the default meta-programming language
of a proof assistant is its implementation language, and several proof assistants even come with mul-
tiple independent meta-programming frameworks. However, we can observe that meta-programming
is not wide-spread on the example of boilerplate generation tools which often fall into one of the
following. Either proof assistants come with built-in boilerplate generation support (such as induc-
tion principles or type class instances) which is widely used, or tools for generating boilerplate are
developed, but not adopted by the community [25, 10, 3]. Lastly, many papers remark that automatic
boilerplate generation would be feasible and interesting, but do not carry it out [27, 29, 9, 7]. Further-
more, subcommunities often seem to be split into silos regarding frameworks and we are not aware of
scientific comparative work between different frameworks and proof assistants. The notable exception
is Dubois de Prisque’s PhD thesis [6], using several meta-programming frameworks in Rocq, but not
coming with one central example implemented in different frameworks and focusing solely on Rocq.

An additional barrier for adoption is that most frameworks are organically grown and documenta-
tion is not accessible to non-experts: pros and cons are often implicitly known by developers but not
readily accessible. In fact the situation is so chaotic that, at times, in order to generate boilerplate
code authors create ad-hoc meta-programming facilities from scratch [22, 13, 23, 11] instead of taking
advantage of existing meta-programming facilities.

On the other hand, the vast choice of meta-programming frameworks also hints that we are at
the point where enough evidence is available to evaluate the state of the art and suggest future de-
velopments. In this paper, we focus on three major dependently typed proof assistants based on the
Calculus of Inductive Constructions (CIC) [4, 17]: Rocq [26], Agda [15, 16], and Lean 4 [14]. We survey
their respective meta-programming frameworks: for Rocq we cover OCaml plugins, MetaRocq [20, 21],
Ltac2 [19], Elpi [24, 25], and furthermore Agda’s Reflection API [28] and Lean 4’s meta-programming
API.1 We furthermore explain a novel approach to use Rocq’s OCaml API with locally nameless
syntax. This means that we focus on systems which are designed as proof assistants with consistent
meta-theory, rather than dependently typed programming languages, and focus on those with con-
ceptual similarity and shared foundations. In particular, we do not consider Idris [1, 2], HOL-based
systems such as Isabelle, HOL4, or HOL light, or LF-based systems such as Beluga.

We evaluate the different meta-programming frameworks on a simple yet realistic example: au-
tomatically deriving instances of the Functor type class for a simple family of inductives, covering,

1We are not aware of a dedicated publication about meta-programming in Lean 4, but there exists a collaborative
book draft [18]. Lean 3’s meta-programming was surveyed by Ebner et al. [8].
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amongst many other types, options, lists, and trees. For Rocq we e.g. want to generate the following
for the list type:

Fixpoint fmap {A B : Type} (f : A -> B) (l : list A) : list B :=

match l with [] => [] | x :: l => f x :: fmap f l end.

Many tasks involving automatic boilerplate generation follow the same model as this example:
take an inductive as input and produce a term as output. We choose this example because it is
simple enough for code to be readable and explainable, yet complex enough to expose issues that
arise in more realistic meta-programs, and makes use of common meta-programming features such as
type-class search or the ability to extend the global environment.

Paper summary Our paper at https://hal.science/hal-05024207 can be seen as a first step
towards a suggested rosetta stone project for meta-programming in Rocq project:

https://github.com/coq-community/metaprogramming-rosetta-stone.

We conclude in the paper that there are conceptual and current limitations to existing frameworks.
Conceptually, we observe that:

• Binder representation was a recurring issue in the paper,
• Term quotations allow to use user syntax directly when constructing and pattern matching on
terms, thereby removing the need to spell out fully qualified constant names, implicit arguments,
type-class instances, or universe levels,

• Recursive function generation is crucial, which became especially apparent for the example in Lean 4,
where the need to fall back on primitive recursors prevented us from implementing a plugin with
the same features as in the other systems,

• State is inherent to meta-programs, which can read and modify the global environment, local
environment, and unification state,

• Verifiability is a desirable property of frameworks, where ideally formal verification is possible.
Verification is not so attractive for users of meta-programs because properties such as well-typedness
can be checked a posteriori by the kernel, but implementors of meta-programs might be interested
in (partial) correctness guarantees. Indeed, formal specifications can partly replace documentation
– which is lacking for all considered frameworks anyways – and can help in writing correct meta-
programs, which is far from an easy task considering the complexity of the underlying systems.

Currently, we observe that:

• The learning curve of a meta-programming framework is crucial, and writing meta-programs in a
different language than that of the underlying proof assistant leads to a steeper curve.

• A proper meta-programming language benefits from adequate tooling, such as a language server,
a documentation generator, a package manager, an optimising compiler or an efficient interpreter,
and a good integration with the proof assistant’s build system.

• Precise performance considerations are outside the scope of this paper, although we do comment
on performance when relevant.

Overall, two meta-programming approaches emerge: meta-programming directly in the proof as-
sistant, or using a domain specific language (DSL).

The first option allows the possibility of verifying meta-programs, which is relevant for authors of
meta-programs. Verifying meta-programs requires both a specification of the basic meta-programming
operations provided by the framework, and adequate means to use these basic specifications in order
to derive guarantees about complex meta-programs. The second option does not allow certifying
meta-programs, but enables using domain-specific programming language features.

In both cases, one needs a feature-complete meta-programming API, which stays up to date with
the evolution of the proof assistant. As implementors of a meta-programming framework, bootstrapping
the proof assistant gives a feature-complete API for free, but requires significant work a priori (for
instance Lean 4’s elaborator is bootstrapped). An alternate approach, which MetaRocq and Agda
follow, is to do meta-programming directly in the proof assistant, without bootstrapping. Interfacing
with the elaborator and kernel is done using a meta-programming monad, which from a user’s point
of view is very similar to bootstrapping, but requires more work from the implementors.
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Negativity is Important for Proving and Programming Dependently typed program-
ming languages, such as Idris2 [2] and Agda [3], provide expressive environments in which we
can reason about and run our programs. Consider, for example, the following Idris2 definition
of natural numbers (Nat) and two predicates (NonZero & IsZero) that state if a given natural
number is non-zero or not:

data Nat = Z | S Nat data NonZero : Nat -> Type
where NZ : NonZero (S n)

data IsZero : Nat -> Type
where IZ : IsZero Z

Decision procedures support reasoning about the correctness of NonZero and IsZero, by eviden-
cing the construction of valid instances of the predicates or supplying a proof of falsity if not.
These proofs are then repurposed as verified functions for programming. For example, consider
the following ‘proof’ (nonZero) that NonZero is correct:

nonZero : (n : Nat) -> Dec (NonZero n)
nonZero Z = No absurd

where
absurd : NonZero Z -> Void
absurd NZ impossible

nonZero (S x) = Yes NZ

data Dec : a -> Type where
Yes : (prf : a) -> Dec a
No : (contra : a -> Void) -> Dec a

Our proof (NonZero) will produce an inhabitant of NonZero if the input is non-zero (NZ), or
a proof of void if not (absurd). The generic datatype Dec encapsulates the result of NonZero,
where Yes represents the positive result and No the negative result. If we wish, however, to use
the negative result of nonZero at runtime then we cannot do so and determine why the function
failed. Although it is self-evident that a negative result for nonZero implies that the input was
non-zero, more complex predicates can fail for a variety of reasons.

Runtimes are Positive; Negativity is not Generally speaking, predicates are positive
pieces of information and construction of decision procedures using Dec only enables runtime
evidence to be produced when the ‘happy’ (positive) path is taken. All traces of negative
information (i.e. falsity) are now a (careless) compile-time whisper. If we are theorem proving in
dependently-typed languages, runtime reports of failure are not important; our code is proven
correct. If we are programming in a dependently-typed language then knowing why a decision
procedure failed is important; errors need to be reported. If we start to think more positively
about being negative, we can start to report negative information more positively.

Being Constructive about Negation is a Positive The MSFP 2022 talk ‘Data Types with
Negation’ discussed the idea of using Constructive Negation to rethink how we can work positively
with negative information when programming [1]. Within dependently typed languages we can
exploit constructive negation to rethink how we represent decidable decisions. For instance,
consider the following positive definitions:
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record Decidable where
constructor D
Positive : Type
Negative : Type
0 Cancelled : Positive -> Negative -> Void

0
Dec : Decidable -> Type
Dec (D positive negative no)

= Either negative positive

Decidable is a datatype encapsulating the runtime irrelevant proof (identified by the 0 quantifier)
that two positive pieces of information cancel each other out. Instances of Decidable are the
input to a positive Dec which is translated to an instance of Either, where the positive truth is
made Right and the positive evidence of falsity is Left. With Decidable and Dec, are decision
procedures are now positive. We can illustrate our positive decisions by pairing our definitions
of IsZero and NonZero together to produce ISZERO:

ISZERO : Nat -> Decidable
ISZERO n = D (IsZero n) (IsSucc n) prf

where prf : IsZero n -> NonZero n -> Void
prf IZ NZ impossible

isZero : (n : Nat) -> Dec (ISZERO n)
isZero Z = Right IZ
isZero (S k) = Left NZ

The function prf evidences that a number cannot be simultaneously zero and non-zero: our
proof of falsity. The function ISZERO constructs the decidable predicate for a given natural
number, and isZero is proof that we can decide if a number is non-zero or not. We can even
reuse the same predicates, albeit flipped, to produce a decision procedure for NONZERO:

NONZERO : Nat -> Decidable
NONZERO n = D (IsSucc n) (IsZero n) prf

where prf : NonZero n -> IsZero n -> Void
prf NZ IZ impossible

nonZero : (n : Nat) -> Dec (NONZERO n)
nonZero Z = Left IZ
nonZero (S k) = Right NZ

Being Positive is Hard Through careful selection of our datatypes, we can develop the
foundations of a ‘positive’ library for decision procedures. If we are not careful with our
constructions we can easily end up with incorrect decisions being made. Take for example,
quantifying over lists using ‘All’ and ‘Any’ predicates. The opposite of the All quantifier is the
Any quantifier. Either all elements satisfy the positive predicate, or we will traverse the list until
a positive instance of the negative predicate is found. The opposite of Any is, unfortunately, not
a simple swapping of predicates as we saw with NONZERO and ISZERO. For the Any quantifier, we
need to reverse the polarity of the predicates as well. A positive Any requires us to traverse the
list and build the negative predicate until we find our positive one. The opposite of Any is that
all items in the list produced negative predicates.

This Talk is about Positively Negative Programming In this talk, I will report work-
in-progress that explores what it means to be positively negative when programming with
dependent types. I will report how constructive negation re-frames not only the construction
of a library1 of positive decision procedures, but my experience using these procedures when
programming. Specifically, I will report on reasoning about standard datatypes (natural numbers,
lists, pairs, and strings) including their decidable equality, as well as their use when elaborating
concrete syntax to intrinsically-typed terms for the Simply-Typed Lambda Calculus. Finally,
I will examine how being so positive in one’s negativity can reshape existing approaches to
dependently-typed programming and report our decision procedures negativity more positively.

1https://github.com/jfdm/positively-negative
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The type theory Catt [FM17] is a dependently typed language which models weak ∞-
categories [Ben20]. Recent work has introduced Cattsu [FRVR22] and Cattsua [FRV24], which
extend Catt with a non-trivial definitional equality relation and respectively model strictly
unital ∞-categories and strictly unital and associative ∞-categories. Normalisation algorithms
for both of these theories are given by demonstrating the existence of a reduction system which
is both strongly terminating and confluent. Naively implementing a typechecker based on such
a system can be inefficient, due to the overhead of generating each intermediate term produced
by these reductions.

The reductions found in these systems are non-standard, with neither theory containing
lambda abstraction, application, or beta reduction, preventing techniques from existing litera-
ture (e.g. [Abe13, GSB19, GSA+22, AHS95]) from being directly applicable. These reductions
are also syntactically complex, and have non-trivial interactions, which motivates further study
of normalisation procedures for these theories.

In the talk I will introduce an implementation of Catt, Cattsu, and Cattsua, which can
be found at:

https://github.com/alexarice/catt-strict

Instead of delving too heavily on the specifics of the languages being typechecked, the
talk will instead focus on the overall structure of the tool, some of the decisions made in its
construction, and more generally my experience and the lessons learnt on the way.

When implementing a typechecker, there are multiple fundamental design decisions with
different tradeoffs. The chosen design was optimised to achieve the following objectives, which
don’t necessarily fall within the core remit of a typechecker or interpreter.

• Type Inference: type information can be omitted in places where it can be inferred.

• Efficient evaluation: by utilising Normalisation by Evaluation (NbE) [Abe13, BSV91],
evaluation of larger terms is near instantaneous.

• Preservation of variable names: variable names are often chosen by the user to convey
content, but named variables are problematic to deal with due to alpha equivalence. Our
tool utilises de Bruijn levels to represent variables but stores the original variable names
in the context.

• Top-level bindings: Terms can be bound to global symbols. Furthermore, the tool is
careful not to eagerly replace a top-level symbol by its definition, as similarly to the
above point, the name of a top level symbol often conveys the intent of the user, making
the term easier to read.

• Detailed error reporting: The majority of a user’s interaction with a typechecker will likely
be receiving error messages while debugging. The errors in our tool take the following
form:

https://github.com/alexarice/catt-strict
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Error: Given term "x" does not match inferred term "y"
╭─[examples/test.catt:19:34]
│

19 │ def error_test x{f}y = comp ⟨x{f}x⟩
│ ┬
│ ╰── Given term

────╯

Displaying such errors requires a correspondence between parsed terms in the memory of
the tool and their location in the text.

While these problems, in particular the first two, have been individually studied, figuring out
how to combine these into a single tool can be difficult. This is amplified when working on a
non-standard language, as much of the existing literature focuses on the lambda calculus and
its extensions.

The core of the typechecker is based on a bidirectional typechecking algorithm (see [DK21]),
which splits the various typing rules into inference rules and checking rules. Contrary to more
familiar type theories, all types in Catt are inferable, and we instead find a split between rules
where the context can be inferred or checked.

The form of NbE implemented in the tool is largely inspired by the paper “Implementing
a modal dependent type theory” [GSB19], although we note that the theory Catt is vastly
different to the type theory they present.

The tool contains 3 main representations of syntax:

• Raw syntax: the raw syntax is intended to match the written syntax of the language as
closely as possible, and represents variables by their names. Its primary purpose is to be
the target of parsing and the source of printing; terms are only displayed by converting
them to raw syntax first.

The data structure implementing the raw syntax has a generic type parameter which
can be used to add optional annotations to each constructor. We instantiate this type
parameter to a type of “text locations” when the syntax arises from parsing and can
otherwise instantiate it to the unit type. These (optional) text locations enable more
informative error information.

• Core syntax: this syntax represents typechecked terms, and uses de Bruijn levels. Our
typechecking procedure takes raw syntax and produces core syntax.

• Normal form syntax: this represents the possible normal forms of evaluation within the
theory. The NbE evaluation algorithm converts a core syntax term to a normal form
syntax term, and these terms can be quoted back to core syntax terms.

In practice, the use of all three types of syntax are heavily intertwined, due to the nature of
dependent typing. During the talk, I will explain how this split simplifies various stages of the
typechecking algorithm.

I will also explain what I believe is the largest flaw of this setup, the difficulty of debugging;
core and normal form syntax is hard to print in an informative way, and implementation errors
were often not caught early, making it difficult to implement the non-trivial reductions of these
theories.
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As a foundation for mathematics, type theory is affected by a long-dated and pervasive ten-
sion between intensional and extensional representations of mathematical entities. Intuitively,
mathematicians want type theories able to consider mathematical objects independently of
their particular presentations, while computer scientists are more bound to these when looking
for theories with good computational properties. This dichotomy has practical consequences
in the proof-assistant world, with many relying on the easier-to-implement intensional theories
(such as Agda, Coq, or Lean), and fewer implementing full extensional theories supporting the
reflection rule (such as Nuprl or the more recent Andromeda).

In [MS05], a way out of the intensional vs. extensional impasse has been advocated through
the notion of two-level foundation1. According to this paradigm, a type-theoretic foundation
for mathematics should consist of two distinct type theories, each assigned with a precise role in
agreement with its nature: an extensional type theory as the actual system for the foundations
of mathematics, and an intensional type theory as a functional programming language in which
to implement the former through a suitable interpretation. The problem of modeling full
extensional type theories using intensional ones has been notably addressed in the case of
Martin-Löf’s type theory by Hofmann in [Hof95] in the search of conservativity results, which
led to add some specific axioms to the considered intensional theory.

Always in [MS05], the authors conceived the Minimalist Foundation, a two-level foundation
which can be considered either as a predicative version of the Calculus of (Inductive) Con-
structions [CH88, PM15], or as a version of Martin-Löf’s type theory enriched with a primitive
notion of proposition. The Minimalist Foundation has then been fully formalized in [Mai09]
as consisting of: an extensional level emTT (for extensional minimal type theory) which ex-
tends the extensional version of Martin-Löf’s in [Mar84] in particular with a power constructor,
quotient sets, and proof-irrelevance; an intensional level mTT (for minimal type theory) which
extends the intensional version of Martin-Löf’s in [NPS90]; and an interpretation of the for-
mer in a setoid model built on the latter. The Minimalist Foundation was introduced to serve
as a common-core foundation in which to develop mathematics agnostically, since it can be
interpreted in many of the most relevant set-theoretic and type-theoretic foundations for math-
ematics; in particular, both its levels are interpretable in Homotopy Type Theory [CM22].

Here, we extend a fragment of the Calculus of Inductive Constructions CCML supporting
the basic inductive types of Martin-Löf to a two-level foundation, by taking the impredicative
version emTTimp of emTT as its extensional level. More in detail, the theory emTTimp is
obtained by adding to emTT an impredicative universe of propositions quotiented by logical
equivalence or, equivalently, by adding a powerset constructor; we claim that such a theory pro-

1This has not to be confused with the notion of two-level type theory 2LTT [ACKS23], introduced later for
a different purpose.
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vides the internal language of Penon’s quasitoposes and show that the results for the Minimalist
Foundation proved in [Mai09] and [MS24] can be extended to it.

Firstly, we prove that emTTimp and CCML are mutually interpretable. The main obstacle
comes from the fact that, whilst resembling closely the two-level structure of Martin-Löf’s type
theory, where the extensional level is obtained as an extension of the intensional one with the
addition of an equality reflection rule, the presence of a universe of propositions quotiented by
logical equivalence does not make emTTimp a direct extension of CCML. Whether CCML can
be interpreted into emTTimp is therefore not trivial. We will answer it positively using the
canonical isomorphisms technique applied to a bridge theory obtained by extending emTTimp

with the axiom of propositional extensionality. As a byproduct, we will also conclude that
the assumption propext of propositional extensionality is conservative over emTTimp, in the
sense that any proposition expressible in emTTimp and provably true in emTTimp + propext is
already true in emTTimp.

Secondly, we prove that emTTimp is equiconsistent with its classical version through a
double-negation translation. Thanks to the possibility of doing impredicative encodings in
emTTimp, this result includes also the translation of inductive and coinductive predicates,
and therefore, according to the results in [MS23, Sab24], of (co)inductively generated formal
topologies; in the predicative setting of emTT this is still an open problem; likewise, it is an
open problem to determine if such double-negation translation can be extended to support the
(co)inductive schemes of the full Calculus of Inductive Constructions.

Finally, we show how to extend the results in [Mai05] to prove that emTTimp provides the
internal language of quasitoposes. The only notable change with respect to the cited work is
that logic in a quasitopos must be interpreted through strong monomorphisms, which only in
a genuine topos coincide with all monomorphisms.
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Abstract

Our society strongly depends on critical information infrastructures such as autonomous
vehicles, blockchain applications, IoT infrastructures, etc. Because of the complexity of
these systems, guaranteeing that they operate in a correct and timely fashion is hard to
achieve. In this abstract, we present a logical framework that allows reasoning about timing
properties of such systems, and demonstrate its applicability through a series of examples.

Temporal Logic Temporal logic is used to describe and reason about the behavior of sys-
tems over time. A prominent example of such a logic is Timed Propositional Temporal Logic
(TPTL) [4, 1, 2], an extension of Linear Temporal Logic (LTL) [6] with explicit clock variables
that facilitates reasoning about time-bound properties. TPTL has notably been extended with
past operators (TPTL + Past) in [5], which allows for reasoning about both past and future
events, as well as quantifiers in [1]. Other “timed” temporal logics have been proposed such
as Timed CTL [3, Sec.9.2], which most notably extends CTL with clocks and constraints on
clocks, and for which model checking algorithms exist. We focus here on designing a calculus
for a variant of TPTL + Past with quantifiers, which is fully formalised in Agda.

The syntax of TPTL is as follows, where U and ⃝ are the usual “until” and “next” LTL
operators; p is an atomic proposition; x is a clock variable; c ∈ Q; ∼ ∈ {≤, <,=, >,≥} allows
comparing two time expressions; and the “freeze” formula x ·φ binds the current time to x in φ:

φ ::= p | φ ∧ φ | ¬φ | φUφ | ⃝φ | x ∼ c | x · φ

Temporal operators such as “eventually” and “always” are defined as usual: ♢φ := trueUφ
and □φ := ¬♢¬φ. Using the “freeze” operator, one can then capture that the formula φ
eventually occurs by “time” c: x·♢(x ≤ c ∧ φ). To understand this, let us consider the semantics
of a subset of TPTL, given in terms of a mapping ρ = (σ, τ) from N to states, where a state is
the pair of a valuation on atoms and a timestamp, a i ∈ N, and a variable valuation v:

ρ, i, v |= φUψ ⇐⇒ ∃j > i.(ρ, j, v |= ψ) ∧ ∀k ∈ [i, j).(ρ, k, v |= φ)
ρ, i, v |= x ∼ c ⇐⇒ τi − v(x) ∼ c
ρ, i, v |= x · φ ⇐⇒ ρ, i, v[x 7→ τi] |= φ

The semantics of x · ♢(x ≤ c ∧ φ) w.r.t. ρ, i, v states that there exists a time τj at which φ is
true, for some j > i such that τj ≤ τi + c.
Our Calculus We now present an extension of TPTL + Past, with quantifiers, a more general
comparison operator, a “discrete” semantics, and a sequent calculus.

The syntax of this calculus is as follows (some operators are omitted for space reasons),
where S and Y are the “since” and “yesterday” past counterparts of U and ⃝; the Data
type is used to capture the information exchanged between agents; i ranges over a set of agents
Agent; d ranges over a set of data Data; A ranges over a set of sets of agents Agents; an atom
a is either an atomic proposition p, or a “send” atom send(i, d, A) stating that agent i sent the
data d to the set of agents A, or a “receive” atom recv(i, d, j) stating that agent i received
the data d from agent j, or an “internal event” atom inter(i, d) stating that d happened at
agent i. It can be observed that the set of comparison operators only includes strict less-than



J. Enríquez Mendoza

and equality, unlike TPTL’s operators. This is because the remaining operators can be defined
using these two along with conjunction and disjunction, thanks to the fact that our comparison
operators are not dependent on the current time.

φ ::= a | φ ∧ φ | φ ∨ φ | ¬φ | φUφ | ⃝φ | φSφ | Yφ | t ∼ t | x · φ | ∀u : T.φ | ∃u : T.φ
T ::= Agent | Agents | Data
t ::= x | 0 | t • t | s(t)

∼ ::= < | =
a ::= p | send(i, d, A) | recv(i, d, j) | inter(i, d)

Let us now adapt and extend TPTL’s semantics to our calculus. There, formulas are
interpreted w.r.t.: (1) a timestamp t; (2) a function r from timestamps to states, called a run;
(3) an interpretation function π, which given a state and an atom, captures whether the atom
is true in that state; and (4) a variable valuation (we only present a subset for space reasons):

π, r, t, v |= a ⇐⇒ π(r(t))(a)
π, r, t, v |= φSψ ⇐⇒ ∃t′ < t.(π, r, t′, v |= ψ) ∧ ∀t′′ ∈ (t′, t].(π, r, t′′, v |= φ)
π, r, t, v |= Yφ ⇐⇒ t > 0 and π, r, t− 1, v |= φ
π, r, t, v |= t1 ∼ t2 ⇐⇒ Jt1Kv ∼ Jt2Kv
π, r, t, v |= x · φ ⇐⇒ π, r, t, v[x 7→ t] |= φ
π, r, t, v |= ∀u : T.φ ⇐⇒ π, r, t, v[u 7→ z] |= φ for all z ∈ JT K
JxKv := v(x)
J0Kv := 0
Jt1 • t2Kv := Jt1Kv + Jt2Kv
Js(t)Kv := JtKv + 1

JAgentK := Agent
JAgentsK := Agents
JDataK := Data

Thanks to the more general comparison operator, a time bounded version of the ♢ operator
can now be defined in a more straightforward way: ♢tφ := x ·♢(y · y ≤ x • t ∧ φ), stating that φ
happens sometime in the future by “time” t (where t1 ≤ t2 stands for t1 < t2 ∨ t1 = t2).

Several proof systems have been proposed for LTL-like logics. However, the until operator is
known to pose difficulties. A labeled Natural Deduction system was proposed in [7] to circum-
vent those difficulties. Simplifying and generalizing that system, we propose a labeled sequent
calculus that allows reasoning about until and timing properties using the same machinery. We
show below the until rules, which illustrate key aspects of our calculus:

Γ ⊢t t < t1 Γ ⊢t1 ψ Γ, t ≤ x, x < t1 ⊢x φ
Γ ⊢t φUψ

UR
Γ, t < x, (ψ)x, (φ)[t,x) ⊢t1 γ

Γ, (φUψ)t ⊢t1 γ
UL

A sequent is of the form Γ ⊢t φ, stating that φ holds at time t in the context Γ. An hypothesis
is of the form (ψ)r, where r is a time annotation, which can either be: (1) a time expression t,
(2) a time interval such as [t1, t2] or [t1, t2), or (3) an “empty” annotation stating that the
hypothesis holds at all times. The UR rule states that for φUψ to be true at time t it must
be that there exists a time t1 greater than t at which ψ holds, and that φ holds between t
and t1. The UL rule states that if φUψ is true at time t then there must be a time x (a
variable) greater than t at which φ holds, and φ must be true between t and x.

Let us illustrate this calculus through a straightforward example where all nodes are correct
and communication is synchronous, ensuring that all sent messages are received within a time
interval T , captured by the following formula (if an agent sends a message d at time t to a
group, all members of that group will receive the message by time t+ T ):

∀a : Agent.∀d : Data.∀A : Agents.∀b : Agent.□(send(a, d,A)→ ♢T (b ∈ A→ recv(a, d, b)))
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Additionally, we assume that any information received by a node is immediately shared with
other node (whenever an agent b receives a message, it immediately sends it to the set of nodes
containing only c):

∀a : Agent.∀d : Data.∀b : Agent.∀c : Agent.□(recv(a, d, b)→ send(b, d, {c}))

Using our calculus, from the above assumptions, one can then derive the following formula,
stating that if a node a sends a message d to node b, then c will also receive d before 2T :

∀a : Agent.∀d : Data.∀b : Agent.∀c : Agent.send(a, d, {b})→ ♢2T (recv(b, d, c))

Based on this calculus, we now plan on designing a type system tailored to the unique de-
mands of distributed systems, aligning type-based constraints with the above logical framework.
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Ensuring the correctness of safety-critical systems, such as in railway control systems, is as
important as ever. To achieve this, machine-assisted theorem proving is increasingly used in
the railway domain. Tools such as Z3 [12] are employed to formally prove that such systems
meet the required standards (see e.g. the papers by our group [1, 7]). However, any of these
solvers may have flaws or implement optimisations that produce incorrect results. To increase
trust, proof checking offers an independent check of the Z3 output. We are developing a verified
proof checker for Z3 using its new Reverse Unit Propagation (RUP) format. As a first step, we
have focused on propositional formulae in conjunctive normal form (CNF) [17]. The new RUP
proof format was introduced to the Z3 theorem prover in September 2022, replacing resolution
[2]. Proof checking for other proof formats for SAT and SMT solving has been performed in,
e.g., [3, 5, 4, 8, 26, 11, 27, 13, 9].

The notion of a RUP proof was introduced by van Gelder [15, 14] in 2008. It addresses
the issue that resolution proofs can be too lengthy to store feasibly while still allowing efficient
checking. The underlying concept is proof verification by Goldberg and Novikov [16], where unit
propagation checks unsatisfiability without storing full resolution proofs. Van Gelder refined
this into RUP, requiring each derived clause to cause a contradiction when added, making proofs
more compact and efficient.

RUP takes logical statements written in CNF, where each clause is a disjunction of literals
tx1, . . . , xnu. Negation of a literal xi simply switches from xi to ␣xi, or vice versa. A formula
is a conjunction of clauses. Z3 deals with formulae not in CNF by translating them using the
Tseitin transformation [25, 22, 20].

The goal of a SAT or SMT solver is to decide whether clauses Γ are unsatisfiable, which
means Γ entails falsity. Intermediate steps of a proof of unsatisfiability derive from Γ a set
of clauses ∆, such that the conjunction of the clauses in Γ entails all clauses in ∆, with the
ultimate proof including the empty clause in ∆.

A RUP inference of a clause C “ tx1, , . . . , xnu from assumptions (clauses) Γ is correct, if
from Γ1 :“ Γ, t␣x1u, . . . , t␣xnu we can derive the empty clause tu using unit-clause propagation
only. A RUP proof from an initial clause set Γ0 is a sequence of clauses Ci, for i ě 1, such that
for all i Ci is a RUP inference from Γi´1, where Γj “ Γj´1 Y tCju, for j ě 1. If some Cj is
the empty clause tu, the sequence is called a RUP refutation [15]. Checking a RUP inference is
done as follows: Divide Γ1 into non-unit clauses Γnunit (clauses of length ě 2) and unit clauses
Γunit (clauses of length 1). If an empty clause is found, then we have derived falsity, and hence
Γ was already unsatisfiable. Then, we repeatedly do the following, as long as Γunit “ H: pick
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one unit clause txu P Γunit and remove it from Γunit. Next, we carry out unit clause resolution
with all clauses c in Γunit Y Γnunit. If c contains x, then it is implied by txu and is therefore
removed. Otherwise, if c contains ␣x, then a unit resolution of c with txu derives c1 :“ czt␣xu.
We replace c by c1; if it has length ě 2, it will be in Γnunit, and if it has length 1, in Γunit. If it
has length 0, then we have derived tu, so the RUP inference is verified, and we exit the loop. If
c does not contain x or ␣x, it is kept. Once we have applied unit resolution with txu to all the
clauses in Γunit Y Γnunit, we repeat the process. After each step, the literal x and its negation
do not occur anymore in Γunit Y Γnunit, and no new literals have been created, so eventually
the loop terminates because Γunit is empty. If we have not derived tu by then, then tu is not
derivable by unit clause propagation, thus the verification of the RUP inference fails.

At each step, all formulae in ΓunitYΓnunit are derivable from Γ using unit clause resolution;
therefore, they are entailed. If the procedure succeeds, then Γ1 entails falsity and is therefore
unsatisfiable. Thus, by classical logic (we have tertium non datur for the Boolean variables) it
follows that Γ entails tx1, . . . , xnu. We leave the full proof of completeness to a future article.

We have formalised the logic in Rocq [23] (formally called Coq [10]) and written a procedure
that checks the proofs from Z3 and ensures that all RUP inferences are correct. For examples
using more complex logical formulae or involving other data structures, such as integers sup-
ported by Z3, our checker verifies their correctness as well. However, verification of these rules
is left for future work. For CNF formulae, Rocq creates only assumptions, deletions, subsump-
tions, and RUP inference rules. For RUP inferences, our system currently creates proofs which
derive falsity from the assumptions and negated unit clauses using unit resolution. We have
a proof in Rocq that if this proof is correct, the assumptions plus the negated unit clauses
entail falsity and, therefore, the assumptions entail the formula in question. If all the generated
proofs are correct, we have a proof in Rocq that the Z3 proof is correct. Therefore, if Z3 returns
unsatisfiable, the assumptions are shown to be unsatisfiable.

Functions to check RUP inferences can be extracted from Rocq [23] into executable code
using Rocq’s extraction mechanism [21], typically to OCaml or Haskell. Extraction to other
languages is possible, for example, C using the Codegen package [24]. Extraction to C sup-
ports basic types like numbers and lists, but complex types need extra handling or may not
be supported. This is problematic for dependent types or higher-order functions lacking C
equivalents.

Currently, proofs of correctness for RUP rely on generating all intermediate resolution proofs
for each RUP inference. In fact, generating these proofs may be desirable when working with
critical systems. Although having a proof that the checker is correct provides a high level of
trust, there remains a remote possibility that an inconsistency in Rocq was used. Genuine
bugs are occasionally detected in theorem provers. Therefore, having independently verifiable
proof logs would allow for an even higher level of trust. The additional generated intermediate
resolution proofs make it easier and therefore more trustworthy to verify the RUP proofs.

As a prototype, we are working on the verification of RUP inferences and Z3 proofs in Agda
(see the GitHub repository [6]). Induction-recursion, as supported by Agda, is very beneficial
in this project: we define proofs inductively while recursively deriving their conclusion. As a
first step, we created a resolution proof of falsity from the assumptions and negated literals,
provided that the RUP inference is correct. Therefore, these assumptions and negated literals
are unsatisfiable. Although it is not of direct use for the industrial application – Agda does not
allow compiling into C – the verification in Agda will, once completed, enable the integration
of Z3 proofs into Agda. This advances our effort to incorporate automated theorem proving
into Agda for verifying railway interlocking systems, a collaboration between Setzer and Kanso
[19, 18].
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Introduction

Modern software applications are often implemented as networks of (micro)services that com-
municate via message-passing. Many common protocols rely on forms of remote procedure
calls (RPC), where services (acting as RPC clients) perform external calls by sending requests
to other services (acting as RPC servers) and then awaiting a response. For example, the
Open Telecom Platform (OTP) and languages like Erlang and Elixir provide widely-used be-
haviours (like gen server and gen statem) to the development of RPC-based services [6]. Such
behaviours offer what we dub single-threaded RPC (SRPC), where each service handles one re-
quest at a time and remains idle while waiting for a response to a request that it sent; similar
SRPC patterns can be found in popular actor frameworks like Akka/Pekko [7].

S1

S3

S2
1

2

34

Figure 1: Deadlock example.
The numbers show the order in
which requests are sent.

Such systems can run into deadlocks if a group of services end
up waiting on each other in a circular dependency. Correctly iden-
tifying and fixing such deadlocks can be hard: in large distributed
systems with high traffic, observers may see that part of the system
is unresponsive and some requests time out, but these symptoms can
be mistakenly attributed to performance issues. Deadlocks can be
potentially prevented via static analysis [11, 15, 12, 13] — although
this requires access to the source code of the whole system (which
may not be available) and can produce false positives (which may be undesirable). In these
cases, runtime verification via monitors [2, 8] can be a more practical method for identifying
deadlocks as they occur.

A monitor is a process that oversees a service in order to identify faulty states. We are inter-
ested in developing distributed deadlock detection monitors that do not introduce centralised
bottlenecks; moreover, we require our monitors to be black-box and outline, i.e., they can only
observe the incoming/outgoing messages of each service without access to its internals.

In this work, we present the Coq mechanisation1 of a theory that formalises networks of
SRPC services with and without monitors, and a distributed black-box deadlock detection
monitoring algorithm (inspired by [5, 14]) which we prove sound and complete. We also provide
a framework (with an API inpired by Erlang and Elixir gen servers) to conveniently model
SRPC-based distributed applications for which we automatically construct correct deadlock
monitors. To the best of our knowledge, we provide the first mechanised correctness proof of a
distributed deadlock detection algorithm.

1https://github.com/radrow/dlstalk-coq

https://github.com/radrow/dlstalk-coq
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Mechanisation and Results

CoInductive Proc := (* Service implementation *)

| Recv (select : Name → option (Val → Proc))
| Send (to : Name) (msg : Val) (P : Proc)
| Tau (P : Proc).

Record Serv := (* service *)

{ i_que : list Msg; proc : Proc; o_que : list Msg}.
Record MServ := (* monitored service *)

{ m_que : list Msg; state : MProc; serv : Serv}.

Figure 2: Service DSL as defined in Coq.

We define networks as functions from a set of names
to states of services. In our model, communication is
asynchronous, meaning that services never block when
sending a message. Services are programmed directly
in Gallina[10] via a coinductive DSL providing prim-
itives for sending and receiving messages, inspired by
process calculi: see fig. 2, where the option continua-

tion in Recv allows the selective reception of messages
based on senders. This design makes our model remarkably expressive while keeping our for-
malisation focused on communication semantics. Moreover, Coq entirely covers bindings and
substitutions, which can notoriously complicate proofs if otherwise embedded [3, 1, 4]. On top
of this DSL, we specify SRPC as a coinductive property that classifies service states as either:
Ready while the service awaits requests, Work -ing when it actively processes a request, and

Lock -ed if it awaits a response from another service.

| M |⟨ q̂ ⟨ qi | P | qo⟩ ⟩
1

2
3 4

5
6

Figure 3: Journey of messages in a moni-
tored service: (1) a message from the network
reaches the monitor buffer q̂; (2) the message

is forwarded to the service’s input queue qi;
(3) the service process P receives the mes-
sage; (4) the service sends some message via
its output queue qo; (5) the output message
reaches the monitor queue q̂; (6) the mes-
sage is forwarded to the network. The dotted
arrows mean that the monitor observes mes-
sages (2) and (6), but it cannot observe the
other message exchanges.

We implement monitoring by instrumenting each ser-
vice with a monitor process M and a monitor mes-
sage buffer q̂. Our monitors are intercepting, i.e., they
act as proxies between their services and the network.
Consequently, all incoming and outgoing messages pass
through the monitor and its buffer, allowing the moni-
torM to observe the service’s communication, update its
state, and exchange messages with other monitors. Fig-
ure 3 illustrates how a monitored service interacts with
the rest of the network.

Instrumentations ( instr ) are functions that trans-
form unmonitored SRPC networks (of type Net ) into
monitored ones (of type MNet ) by equipping each service
with a monitor process and buffer. Vice versa, deinstr “strips” monitors from a monitored
network. We prove that instrumentation is transparent, i.e., it does not introduce nor suppress
behaviours w.r.t. the original network. We formalise transparency as an operational correspon-
dence [9] (proving soundness and completeness) between monitored and unmonitored networks:
see Coq theorems in fig. 4a, where a path is a sequence of reduction steps.

Variable apply_instr (i : instr) : Net → MNet.
Coercion apply_instr : instr >-> Funclass.

Theorem transp_sound :
∀ (N0 : Net) (i0 : instr) path’ (MN1 : MNet),
(i0 N0 =[ path’ ]⇒ MN1) →

∃ path, (N0 =[ path ]⇒ deinstr MN1).

Theorem transp_complete :
∀ (N0 N1 : Net) path (i0 : instr),
(N0 =[ path ]⇒ N1) →

∃ path’ (i1 : instr), (i0 N0 =[ path’ ]⇒ i1 N1).

(a) Transparency of monitoring.

Definition detect_sound (N0 : Net) (i0 : instr) :=
∀ path’ MN1, (i0 N0 =[ path’ ]⇒ MN1) ∧ reports_deadlock MN1 →
∃ path, (N0 =[ path ]⇒ deinstr MN1) ∧ has_deadlock (deinstr MN1).

Definition detect_complete (N0 : Net) (i0 : instr) :=
∀ path N1, (N0 =[ path ]⇒ N1) ∧ has_deadlock N1 →
∃ path’ (i1 : instr),
(i0 N0 =[ path’ ]⇒ i1 N1) ∧ reports_deadlock (i1 N1).

Theorem gen_net_instr_correct : ∀ dapp,
detect_sound (gen_instr (gen_net dapp))

∧ detect_complete (gen_instr (gen_net dapp)).

(b) Correctness of deadlock detection.

Figure 4: Key statements of the project as formalised in Coq.

Concretely, each monitor M implements a deadlock detection algorithm that, based on the
incoming/outgoing messages it observes, estimates the current state of the service it oversees.
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In particular, if it infers that the service is awaiting a response, it sends probes (in the style
of [5, 14]) to the monitors of all services from which it receives a request. Monitors communicate
by forwarding such probes; if a monitor receives back a non-outdated probe that it has previously
emitted, then it concludes that there is a dependency cycle and reports a deadlock.

Following runtime verification standards, we define correctness of monitors in fig. 4b as
soundness (every reported deadlock is real) and completeness (all deadlocks are eventually
reported, assuming fairness of components [16]). We finally prove that any distributed appli-
cation modelled with our Erlang/Elixir gen server-inspired framework ( gen net dapp ) can

be correctly instrumented ( gen instr ) and monitored; we achieve this by finding and proving
invariants that characterise correct instrumentations. All proofs are successfully mechanised in
Coq.
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Active object systems [13, 14, 6] are the object-oriented instantiation of the actor model [2].
They provide a useful abstraction of distributed systems with asynchronous communications,
which are represented as collections of objects (actors) interacting through asynchronous
method calls. This means that a method invocation corresponds to sending a message to
the receiver object that will eventually handle it, by running the method body. Thus, the invo-
cation does not block the execution of the caller, but immediately returns a future, which can
be subsequently used for synchronizing with the receiver and accessing the result of the call.

Among other applications, this model provides the formal basis for workflow modelling
and analysis [3, 4], where models capture the behaviour of the internal (resource-sensitive)
workflows of organisations. Workflows are processes that handle business cases and are primarily
demanded to be terminating, hence resolve the business case (a customer order, a service ticket,
etc.). In particular, the modelling language proposed in [3] is based on the ABS language [14],
an active object language with multithreaded actors and a future-based cooperative scheduling
paradigm. This means that each actor can handle multiple messages at a time, by explicitly
yielding control on future await statements.

Besides this interaction mechanism, a workflow modelling language also needs to take into
account passive/informational resources [19]. These resources move through processes while
performing a workflow, undergo transformations, can be created or destroyed and crucially
have a limited availability according to the specification domain. The interplay of asynchronous
message passing, cooperative multithreading and resource management makes it challenging to
ensure that a system can complete its task. For instance, if a thread tries to access a resource
that is not available, it remains stuck as it cannot yield control, thus preventing the whole
system from successfully terminating.

The contributions of this work are the development of a core calculus for resource-aware
active objects together with a type system ensuring that well-typed programs are fairly
terminating [9], that is, all their fair executions terminate, under a suitable fairness as-
sumption. To achieve this, we combine techniques from graded semantics and type sys-
tems [7, 1, 8, 15, 5, 18], which are quite well understood for sequential programs, with those
for fair termination [10, 11, 9, 12] , which have been developed for synchronous sessions.

More in detail, we model resources as graded constants rg where r is a name identifying the
resource and g is a grade describing the availability of the resource and thus constraining its
usage. For instance, a resource can be used a fixed number of times or in a private or public
mode. In our calculus, each actor owns a resource environment ρ, containing graded resources
which can be accessed by threads of that actor. The language provides constructs through which
a thread of an actor can hold and release resources from its resource environment. Notably,
the reduction of a hold statement asking for rg , i.e., “g copies” of the resource r , is stuck if
the amount, i.e., the grade, of the resource r in the environment ρ of the actor is not enough
to produce rg . Finally, it is important to note that the introduction of graded resources has
an impact also on the synchronization mechanism. Indeed, typically futures can be accessed
an arbitrary number of times [17, 16, 14]. However, this is not the case in our setting because
futures may contain graded resources and so, by copying the future, we would copy its content



as well, leading to a violation of the constraint on the resource usage expressed by the grade.
To overcome this issue, we treat futures linearly, allowing for them to be read only once.

In order to ensure the correct use of resources, we endow our calculus with a graded type
system [7, 1, 8, 15, 5, 18]. Besides basic types, we have graded types for resources and future
types. Then, the typing judgment for expressions has the following shape: Φ; Σ; Γ ⊢ e : T ; Φ′,
where the resource context Φ tracks the resource requirements the expression poses on each actor
and it is handled like a graded context, the future context Σ tracks, in a linear way, the futures
that the expression will read, and an almost standard variable context Γ where each variable is
handled in a linear, graded or unrestricted way depending on its type. An expression is assigned
a type T and a “release context” Φ′ with the resources that the expression will release into
the system. This judgment allows us to “chain” resource production and consumption in the
sequential composition, enabling a form of reuse of resources, and also expose this information
on the method type. Thus, given that the body of a method is an expression, its return type
will be T , corresponding to the return value of the body, plus the resources released into the
system Φ′. Then, on account of all methods being asynchronous, the type of a method call will
be a Future Fut⟨T ,Φ′⟩. Hence, an await expression on a future of such type will have type T
and release context Φ′, so that the resources released by the method call can be reused by the
process accessing its result.

Futures are the lone communication mechanism of processes. To avoid circular dependencies
on futures we enforce a left to right future dependency on configurations by typing processes
with judgments of shape: Φ; Σ ⊢ P :: Σ′, where there is a left-hand side resource context Φ for
the required resources of the process, a left-hand side future context Σ for used futures, and a
right-hand side future context Σ′ for the produced futures. Processes are composed by parallel
composition, whose typing rule sums up the resource contexts of the two parallel processes and
checks that the process on the right only reads futures produced by the process on the left, thus
ensuring that the dependency graph on futures is acyclic.

The main result of this work is a proof that well-typed configurations are fairly terminating.
This is achieved applying a proof technique from [9] ensuring that to obtain fair termination it
is enough to prove the standard subject reduction and weak termination of well-typed configu-
rations. The latter means that every well-typed configuration admits a terminating execution.
Note that, since our calculus supports a non-deterministic choice operator, this property does
not forbid non-termination, but it ensures that termination is always possible. To prove this
result, following [9], we annotate typing judgments with a measure, taken from a well-founded
poset, and prove that there is always a reduction step making such measure decrease. The
proof of subject reduction poses some challenges as well. Indeed, it does not hold for standard
graded semantics and type systems [8, 5] because resource consumption in graded semantics
usually is non-deterministic, hence only a form of “may subject reduction” can be proved, where
well-typedness after a step is not guaranteed. Therefore, in order to recover subject reduction,
we need to define a semantics where resources are consumed in a deterministic way and this
requires an extension of the usual algebraic structure of grades adopted in the literature. Fi-
nally, by fair termination we guarantee that every well-typed system can always successfully
terminate and so it is resource safe and never stuck.

This work is a first step towards integrating resource-awareness by grading in active objects
systems, ensuring strong behavioural properties like fair termination. Notably, we would like
to relax the linearity constraint on futures by treating them in a graded way as well. Moreover,
it would be interesting to investigate a system where threads can yield control also on hold
statements, so that they could be paused until the required resources are available, thus reducing
the possibility for an actor of being stuck.
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Mechanized safety of Jolteon consensus in Agda
Orestis Melkonian, Mauro Jaskelioff, and James Chapman

Input Output, Global (IOG)

Introduction. Consensus protocols for distributed systems ensure that all participants agree
on some state, which is often realised as a common order of blocks on a chain. They are at
the core of blockchain technology, where any mistake in the protocol design or implementation
could result in huge economic losses. Therefore, it is of utmost importance to provide strong
guarantees of its correctness.

At the same time, the area of consensus protocols is rapidly moving, as evidenced by the
amount of new and improved protocols that have appeared in the last few years [4, 9, 6, 3, 1, 5,
to cite a few]. Hence, it might not be possible to aim both for a complete formally proven
implementation and stay at the forefront of technological development. A good compromise
is to formally verify the design of the protocol, and use this formalization as an oracle for
testing. The formalization becomes the ground truth, and all implementations should follow it.
However, this approach entails an additional requirement: the formalization should be readable
by engineers which might not be well versed in the formalization language or its abstractions.

We present a formalization of the Jolteon consensus protocol [6], a modern consensus pro-
tocol of the BFT (Byzantine Fault Tolerance) family [2], and we mechanize its proof of safety.
Safety for a consensus protocol means that consistency is always maintained (i.e. there are no
diverging chains). The formalization is written with readability in mind, and aims to stay close
to the paper description. All of our results are mechanized in the Agda proof assistant [7].

A formal definition of the Jolteon protocol. We present a readable Agda specification
of the Jolteon consensus protocol [6], with the aim of mechanizing its pen-and-paper proofs
of important properties such as safety, as well as having a rigid ground truth against which we
can test actual implementations.

First, we assume the usual cryptographic primitives (hash functions, signatures) and the
BFT-specific setup of a fixed number n of replicas/participants which contains an honest ma-
jority [2]. Our further formal development is parameterised over these assumptions.

Each participant, honest or not, has an identifier Pid = Fin n.
The description of the protocol takes the form of a binary step relation that formally ex-

presses valid transitions between states of the global system. This global level mostly deals
with generic scaffolding that every BFT consensus protocol would have to provide, such as the
message-passing Deliver rule that enables communication between participants, the WaitUntil
rule that advances time (as long as it does not break the assumption of the underlying net-
work model of message delays having an upper bound Δ), and the DishonestStep rule which
gives dishonest participants freedom to send any message as long as it doesn’t involve forging
signatures.

data _—→_ (s : GlobalState) : GlobalState → Type where
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Deliver : ∀ {tm} →
tm ∈ s .networkBuffer
──────────────────────
s —→ deliverMsg s tm

WaitUntil : ∀ t →
∙ All (λ (t′ , _) → t ≤ t′ + Δ) (s .networkBuffer)
∙ currentTime s < t
─────────────────────────────────
s —→ record s { currentTime = t }

DishonestStep : ∀ m →
∙ NoSignatureForging m s
──────────────────────
s —→ broadcast m s

…

Apart from handling the message-passing aspect of the network, the global state also keeps
track of each honest replica’s local state, which contains all protocol-specific information such
as the current round, the most recent certificate the replica has seen, etc. The behaviour of
honest replicas is modelled with another step relation where the specific rules of the protocol
manifest, such as how each epoch’s honest leader proposes a block, or under which conditions
a replica considers a chain to be final:

data _⦂_⊢_—_—→_ (p : Pid) (t : Time) (ls : LocalState) : Maybe Message → LocalState → Type where
ProposeBlock : ∀ txs →
let L = roundLeader (ls .r-cur)

b = mkBlockForState ls txs
m = Propose (sign L b)

in
∙ p ≡ L
─────────────────────────
p ⦂ t ⊢ ls — just m —→ ls

Commit : ∀ b b′ ch →
∙ b -certified-∈- ls .db
∙ b′ -certified-∈- ls .db
∙ (b′ ∷ b ∷ ch) ∙∈ ls .db
∙ length ch > length (ls .final)
∙ b′ .round ≡ 1 + b .round
──────────────────────────────────────────────
p ⦂ t ⊢ ls — nothing —→ record ls {final = b ∷ ch}

…

Proving safety. Taking the reflexive-transitive closure of the global step relation —→ above
leads to a notion of execution trace for such a protocol. That way, we can prove state invariants
that hold for every reachable state in those traces, that is all states for which there is a valid
sequence of steps from the initial state.

Once we have proven several state invariants, e.g. expressing a certain connection between
different pieces of the state, we were able to faithfully transcribe the original paper proof of
safety (otherwise known as consistency) in Agda. Safety states that two honest participants
never have diverging chains that they both consider final:

safety : ∀ s b p b′ p′ →
∙ Reachable s
∙ b ∈ (s ＠ p) .final
∙ b′ ∈ (s ＠ p′) .final
───────────────────────
(b ←—∗ b′) ⊎ (b′ ←—∗ b)

Testing. We further prove several decidability results in Agda about all the logical construc-
tions we used thus far to define the protocol, such as the chain finalization conditions.

The purpose of these proofs is two-fold. First, they allow us to construct and type-check
example traces without manually providing proofs for each rule hypothesis, since our model
is computable and therefore one can leverage proof-by-computation [8] to automate proofs on
closed examples that contain no variables.
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Moreover, once extracted/compiled to a target general-purpose language, these proofs of
decidability become decision procedures that can be utilised by a conformance testing pipeline
that aims to ensure that a given replica’s protocol implementation conforms to the formal
specification.

Future work. We plan to proceed with also proving liveness, a crucial property to ensure
the protocol makes progress in a timely fashion. Apart from having to model some additional
aspects that relate to the notion of time, we expect the methodology we previously employed
for safety to also extend adequately to liveness.

Finally, we plan to investigate different testing approaches (e.g. testing a local honest replica
against the local step relation versus testing the whole testing environment against the global
step relation), as well as variants of the protocol that have more optimal characteristics which
we would prove “equivalent” to the original protocol (i.e. the original properties of safety and
liveness still hold in the optimized protocol).
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1 Abstract

What is the relationship between polarity and bidirectional typing? It has long been observed
that there is a connection between the two[Kri], but the precise relationship has remained
unclear. Moreover, it has been argued [McB] that the link itself is a red herring, and that
bidirectional typing is better explained not by polarity but by chirality - the duality between
producers and consumers.

Polarised System L [Dow17] is a type theory that combines both dualities - the positive
fragment is driven by a cut between a primitive producer and a pattern, and the negative
fragment is driven by a cut between a primitive consumer and a co-pattern.

Remarkably, linear System L admits a canonical bidirectional typing discipline based on a
combination of ideas from both standard and co-contextual typing, giving us a ”bi-contextual”
typing algorithm.

This lets us equip a type system based on classical linear logic - containing all four con-
nectives and derivable implication and co-implication - with a bidirectional discipline where all
typing annotations are exclusively limited to shifts between sythesisable and checkable expres-
sions.

2 Introduction

Bidirectional typing has established itself as an effective approach to developing type-driven
type-checking algorithms[DK21], however equipping a type system with a bidirectional disci-
pline can still be more of an art than a science. This is especially true when it comes to
type systems with non-trivial elimination forms, such as those involving binding. Prior work
[MRK22] on polarised approaches to bidirectional typing has shown that utilising polarity in
algorithmic type-checking can significantly simplify the type inference algorithm. We show how
using System L rather than CBPV allows us to take this even further and give a decidable
type-inference algorithm for a type-system based on full linear logic.

The advantage of System L over CBPV is that while both calculi have a notion of polarity,
CBPV’s split between values and computations is tied to the polarity of each type - value judge-
ments correspond to positive types, and computation judgements correspond to negative types.
On the other hand, in polarised System L both positive and negative types each have a pair
of judgements corresponding to their own notion of producer and consumer terms. Moreover,
each polarity has its own notion of focused judgement, which we call its ’principal chirality’ -
positive types are focused on producer terms, while negative types are focused on consumers.

3 Principal Chirality

The key idea of our approach is that each polarity has a ’principal chirality’ corresponding to
the focused judgement, and the ’auxiliary chirality’ corresponding to the unfocused judgement.
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Type-checking each polarity proceeds by first synthesizing the type of the judgement corre-
sponding to the principal chirality, then checking the type of the judgement of the auxiliary
chirality against the synthesized type. The crucial difference between the two phases is in the
way that information gets propagated in the principal and auxiliary contexts. The principal
context is built-up bottom-up using the co-contextual [EBK+15] approach (which means that
positive variables and negative co-variables are both checkable), while the auxiliary contexts
are built-up top-down (so negative variables and positive co-variables are synthesised). This
combination of contextual and co-contextual typing is why we call this a ’bi-contextual’ typing
discipline.

4 Typing Algorithm

Remarkably, once we adopt the bi-contextual typing discipline, we discover that System L
requires almost no further modifications to make it fit into this framework. The checkable/syn-
thesisable discipline of each connective is fully determined by its canonical place in polaraised
System L, and the only modification that we need to do is to add annotations on two shifts.

To type-check the positive fragment, we start with a cut between a producer and a pattern.

Γ ⊢ producer ⇐ A|∆ Γ′|pattern⇒ A ⊢ ∆′

<producer|pattern> : (Γ,Γ′ ⊢ ∆,∆′)
(Cut)

We first synthesise the type of the pattern, then check the type of the producer against the
synthesised type, after which we are done. This covers all rules in the positive fragment.

Dually, to type-check the negative fragment, we start with a cut between a consumer and a
corresponding co-pattern.

Γ, copattern⇒ A ⊢ ∆ Γ′ ⊢ consumer ⇐ A,∆′

<copattern|consumer> : (Γ,Γ′ ⊢ ∆,∆′)
(Cut)

We first synthesise the type of a co-pattern, then check the type of the producer against the
synthesised type, after which we are done. This covers the entirety of the negative fragment.

Finally, in order to type the full calculus, we need to say what happens to negation and
the shifts. Curiously, negation inverts the polarity of each connective, but it does not change
their principal chirality - so a value becomes a covalue and vice-versa, and patterns swap
with copatterns. This requires no additional annotational burden as it means that checkable
judgements remain checkable, and synthesisable judgements remain synthesisable.

The most interesting thing happens when we consider the shifts. The shifts amount to
swapping *both* the polarities and principal chiralities of a judgement. On one side, a copattern
embeds into a value, and a pattern embeds into a covalue. This corresponds to embedding a
synthesisable judgement into a checkable one, and can be done with no issue. But the other
way around - embedding a (co)value into a (co)pattern requires us to synthesise the type of a
checkable judgement, which is precisely the only two places where we need to place a typing
annotation.
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Abstract

We introduce an existential-free theory of arithmetic in all finite types. The theory is
sufficient for the soundness of the modified realizability interpretation, and hence, it can
be regarded as a constructive foundational theory.

The study of arithmetic in all finite types emerged as a response to foundational problems
in so-called Hilbert’s program, which was an attempt to show the consistency of (formalized)
mathematical theories using only “finitistic” reasoning about finite mathematical objects. By
the achievement of Gödel’s second incompleteness theorem, however, it was found that any con-
sistent recursively enumerable theory which contains elementary arithmetic, does not prove its
own consistency. Since finitistic reasoning (no matter what it may be) about finite mathemati-
cal objects can be formalized in elementary arithmetic, Gödel’s second incompleteness theorem
suggests that Hilbert’s program is unattainable. Then Hilbert’s program was modified to show
the consistency of arithmetical theories in a manner which is as finitistic as possible. In partic-
ular, Gödel himself worked on this modified Hilbert’s program. In [2] (while it is known that
Gödel had the idea already in late 1930’s), he introduced a quantifier-free theory of arithmetic
in all finite types and reduced the consistency of first-order arithmetic PA to the consistency
of a quantifier-free theory, which is known as Gödel’s T . Gödel’s T is a natural extension of
primitive recursive arithmetic PRA which is regarded as a finitistic theory for functions over
natural numbers, to functionals in all finite types, and is (more or less) acceptable as a theory
which reflects finitistic standpoint in an extended sense.

On the other hand, another controversial standpoint in foundations of mathematics is con-
structivism. Constructivism asserts that it is necessary to construct a witness (a mathematical
object) in order to prove that something exists. In the viewpoint of constructivism, a mathe-
matical object does exist only when one can give a construction of the object. On the other
hand, in the standard finitism, a mathematical object does not exist unless it can be constructed
from natural numbers in a finite number of steps. Then finitism can be seen as an extreme
form of constructivism. In [2], Gödel devotes a lot of space to argue that his ground of his
consistency proof of arithmetic (namely, the consistency of the above mentioned T ) is more
plausible than Heyting’s justification of his arithmetic HA, which is a counterpart of PA based
on intuitionistic logic.

From a modern perspective, what Gödel established in his papers [1, 2] can be regarded as
follows: In [1], he gave a translation, which is called the “negative translation” nowadays, of
formal proofs of PA into formal proofs of HA. In [2], he gave a translation, which is called the
“Dialectica (or functional) interpretation” nowadays, of formal proofs of HA into formal proofs
of his quantifier-free theory T in all finite types. By these two steps, the consistency of PA
can be reduced to the consistency of T finitistically. If one considers classical and intuitionistic
arithmetic in all finite types, Gödel’s achievements show the following:

1. The consistency of classical arithmetic in all finite types PAω is finitistically reducible to
the consistency of intuitionistic arithmetic in all finite types HAω.

2. The consistency of HAω is finitistically reducible to the consistency of T .
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On the other hand, in connection with constructivism, many kinds of realizability interpre-
tation have been studied and investigated for extracting programs from proofs. In particular,
Kreisel’s modified (or generalized) realizability interpretation (cf. [4, 5]) is a sort of direct for-
malization of the notion of constructive proofs in the language of arithmetic in all finite types.
In this work, we introduce an extensional theory of arithmetic in all finite types E-HAω

ef , whose
language is ∃-free (also called negative), namely, the language does not contain disjunction and
existential quantifiers (of any finite types). Our theory E-HAω

ef is similar to Kreisel’s verifica-
tion theory HAω

NF in [5] for the soundness of the modified realizability interpretation. However,
our theory E-HAω

ef is consistent with classical logic, while HAω
NF contains some axiom scheme

on continuity which is inconsistent with classical logic, In fact, E-HAω
ef is a subtheory of the

extensional variant E-HAω (see [3, Chapter 3]) of HAω, and T can be seen as a subtheory of
E-HAω

ef . In this sense, E-HAω
ef is a theory in between E-HAω and T . Now let E-PAω be a classical

extension of E-HAω. With respect to the Gödel-Gentzen negative translation [7, Section 1.10.2]
and the modified realizability interpretation [3, Chapter 5], by induction on the length of given
derivations, one can show the following:

Theorem 1. Let A be an arbitrary E-PAω-formula and ∆ be an arbitrary set of E-PAω-formulas.
If E-PAω +∆ proves A, then E-HAω

ef +∆N proves the Gödel-Gentzen negative translation AN

of A, where ∆N is the set of the negative translations of the formulas in ∆.

Theorem 2 (Soundness of the modified realizability interpretation). Let A be an arbitrary
E-HAω-formula and ∆ef be an arbitrary set of ∃-free formulas of E-HAω. If E-HAω + ACω +
IPω

ef +∆ef proves A, then one can extract a tuple of terms t of E-HAω
ef such that E-HAω

ef +∆ef

proves t is a modified-realizer of A and all the variables in t are contained in the free variables
of A, where ACω is the scheme of choice in all finite types and IPω

ef is the independence-of-
premise-schema for ∃-free formulas in all finite types.

That is, the negative translation and the modified realizability interpretation (finitistically)
reduce the consistency of the theories to the consistency of our theory E-HAω

ef . In addition,
both of the negative translation and the modified realizability interpretation for E-HAω

ef -formulas
(namely, ∃-free formulas) do not change the formulas in question anymore. Because of the facts
that (i) the modified realizability interpretation is a sort of direct formalization of the notion of
constructive proofs, (ii) E-HAω

ef is sufficient for the verification of the soundness of the modified
realizability interpretation, and (iii) the modified realizability interpretation of each theorem of
E-HAω

ef is the theorem itself, our existential-free theory E-HAω
ef can be regarded as a constructive

foundational theory in comparison with that T is a finitistic theory (in an extended sense). From
this perspective, one may argue that Gödel firstly in [1] showed the consistency of PA based on
a constructive foundation, and secondly in [2], showed that based on a finitistic foundation (in
an extended sense).

In addition, we introduce an axiom scheme N-ACω
ef , which consists of the negative trans-

lations of the instances of ACω in the language of E-HAω
ef . Then the soundness of the mod-

ified realizability interpretation for the negative translation of E-PAω + ACω can be verified
in E-HAω

ef + N-ACω
ef , In particular, for the interpretation of the countable choice scheme ACN,

only the countable fragment N-ACN
ef of N-ACω

ef is enough, and hence, E-HAω
ef + N-ACN

ef is a
constructive counterpart of T augmented with the bar recursion in the extended finitism with
respect to Spector’s consistency proof of classical analysis (cf. [6]). Furthermore, we show
that the modified realizability interpretation of the monotone bar induction of type N (Kleene’s
formalization of Brouwer’s bar theorem) can be realized in E-HAω

ef + N-ACN
ef augmented with

the bar recursion for type-N objects. The latter is consistent with E-HAω
ef +N-ACN

ef (relative to
the extended finitism with respect to Spector) but not so with E-HAω

ef +N-ACω
ef .

2
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Logical frameworks (LFs [3]) and the closely related two-level type theories (2LTTs [1]) let
us work in a mixed syntax of a metatheory and a chosen object theory. Here, we have a second-
order view on the object theory, where contexts, variables and substitutions are implicit, and
binders are represented as meta-level functions. There are some well-known limitations to LFs.
First, we have to pick a model of the object theory externally. Second, since we only have a
second-order view on that model, many constructions cannot be expressed; for example, the
induction principle for the syntax of an object theory requires a notion of first-order model,
where contexts and substitutions are explicit. Various ways have been described to make logical
frameworks more expressive by extending them with modalities (e.g. [9, 4, 8, 7]). In the current
work we describe an LF with the following features:

• We can work with multiple models of multiple object theories at the same time. By
“theory” we mean a second-order generalized algebraic theory (SOGAT [10, 6]); this
includes all type theories and programming languages that only use structural binders.

• We have both an “external” first-order view and an “internal” second-order view on each
model, and we can freely switch between perspectives. All models of object theories are
defined internally in the LF.

• The LF is fully structural as a type theory; no substructural modalities are used.

The Generalized Logical Framework (GLF). The basic structure is as follows.

• We have a universe U closed under the type formers of extensional type theory.

• We have Base : U, 1 : Base and PSh : Base → U, such that each PShi is a universe
that supports ETT. We have cumulativity: PShi ⊆ U. We can only eliminate from PShi
to PShi. Semantically, each PShi is a universe of presheaves over some base category
represented by i. The terminal category is 1.

• For convenience, we assume type-in-type everywhere, so that U : U and PShi : PShi.

• We define Cati : PShi as the type of categories internally to PShi, where types of objects
and morphisms are in PShi. We have In : {i : Base} → Cati → U and base : InC → Base.
Informally, InC is a type of “permission tokens” for working in a presheaf universe.

Let us look at a basic scenario in GLF. In the empty context, we have PSh1 as a universe of sets.
Internally to PSh1, we can define some C : Cat1. Now, under the assumption of i : InC, we can
form PSh(base i) as the universe of presheaves over C. Then, we may define another category D
inside PSh(base i), and get a new universe PShj under the assumption of j : InD. Hence, GLF
at its heart is a type theory for iterated internal categories and presheaves.

At this point there is no interesting interaction between presheaf universes, so we proceed to
specify some. Recall that the standard semantics of 2LTTs is in presheaves over a chosen model
of an object theory, where a model consists of a category of contexts plus extra structure. In
GLF, if we define a model M of a theory in some PShi universe, we would like to have a “view”
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on that model internally to presheaves over M , and also a way to move between the internal
view and the external M . Hence we specify that for any first-order model M of a second-order
generalized algebraic theory T , we have

1. A second-order model of T internally to PShi, assuming i : InM1. We write this second-
order model as Si.

2. Yoneda embedding as a certain family of maps from M to Sj .

We look at the example where T is pure lambda calculus. A second-order model of pure LC
in PShi is simply Tm : PShi together with an isomorphism Tm ≃ (Tm → Tm) for abstraction
and application. We write lam for the former and –$– for the latter. A first-order model is
a unityped category with families [2], where we write Con : PShi for the type of contexts,
Sub : Con → Con → PShi for substitutions, Tm : Con → PShi for terms, Γ ▷ : Con for the
extension of Γ : Con with a binding, and we have a natural isomorphism TmΓ ≃ Tm (Γ ▷)
to represent abstraction and application. Now, assuming a first-order model M in PShi and
j : PSh(base i), we can use the second-order view when working inside PShj . Let us define the
Y-combinator as an example:

YC : TmSj

YC := lamSj
(λ f. (lamSj

(λx. x $Sj
x)) $Sj

(lamSj
(λx. f $Sj

(x $Sj
x))))

With a reasonable amount of sugar, we may write YC := lam f. (lamx. x x) (lamx. f (xx)). In
other words, PShj now is effectively a presentation of a two-level type theory over pure LC where
Sj constitutes the inner level and the ETT type formers in PShj constitute the outer level. Since
we specify S for every second-order algebraic theory, all 2LTTs are syntactic fragments of GLF.
Next, Yoneda embedding for pure LC is as follows:

Y : ConM → ((j : InM )→ PShj)

Y : SubM Γ∆ ≃ ((j : InM )→ Y Γ j → Y∆ j)

Y : TmM Γ ≃ ((j : InM )→ Y Γ j → TmSj )

such that Y preserves empty context and context extension, so Y • j ≃ ⊤ and Y (Γ ▷) j ≃
Y Γ j × TmSj

, and Y preserves all other structure strictly. Notation: we write Λ for inverses of
Y. Now, Y and Λ allow ad-hoc switching between perspectives. Let’s redefine some operations
in M :

id : SubM ΓΓ comp : SubM ∆Θ→ SubM Γ∆→ SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar, this might look like

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or, making Y implicit, we may even write compσ δ := Λ γ. σ (δ γ). We can develop this into
a “second-order notation” for object theories, which is nicely readable and can be rigorously
elaborated into annotated GLF operations. We only give here a glimpse of what this notation
could look like. The example below comes from a model construction involving models of MLTT

1Here we implicitly cast M to its underlying category.
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as CwFs, which looks fairly obtuse with explicit substitutions and De Bruijn indices [5, Section
5]:

Con◦ Γ := Ty (F Γ)

Ty◦ Γ◦A := Ty (F Γ ▷ Γ◦ ▷ F A[p])

Tm◦ Γ◦A◦ t := Tm (F Γ ▷ Γ◦) (A◦[id, F t[p]))

Γ◦ ▷◦ A◦ := Σ(Γ◦[p ◦ F▷.1])(A◦[p ◦ F▷.1 ◦ p, q, q[F▷.1 ◦ p]])
...

but which looks reasonable in sugary GLF notation:

Con◦ Γ := Ty (γ : F Γ)

Ty◦ Γ◦A := Ty (γ : F Γ, γ◦ : Γ◦ γ, α : F Aγ)

Tm◦ Γ◦A◦ t := Tm (γ : F Γ, γ◦ : Γ◦ γ) (A◦ (γ, γ◦, F t γ))

Γ◦ ▷◦ A◦ := Λ (F▷.2(γ, α)).Σ(γ
◦ : Γ◦ γ)×A◦ (γ, γ◦, α)

...

Sketch of the semantics. First, we give a short motivation. In the semantics, each PShi
should be an universe of internal presheaves over an internal category. Clearly the semantics
should involve categories, but there are well-known complications with the category of cate-
gories: a) there is no general Π type b) Π-types of presheaves and universes of presheaves are
not stable under reindexing by arbitrary functors. The former issue could be addressed by hav-
ing a “directed type theory”, while the latter could be addressed with modalities. In the case
of GLF we don’t need either of these solutions. The reason is that we can’t do any interesting
categorical reasoning in GLF, and Base and In are used purely for managing internal/external
languages, and it suffices to have enough semantic structure to represent the internal/external
shifts.

The model of GLF is constructed in two steps. First, we give a model for the theory that
has PSh, Base and In as sorts but does not support U, and then take presheaves over that model
to obtain a model of a 2LTT where U represents the outer layer. In the inner model, we start
with an inductive definition of certain trees of categories:

dataTree (B : Cat) : Setwhere

node : (Γ : PShB)(n : N)(C : Finn→ Fib (B ▷ DiscΓ))

→ ((i : Finn)→ Tree (B ▷ DiscΓ ▷ C i))

→ TreeB

Here, PSh means presheaves in sets, Fib is cartesian fibrations, Disc creates a discrete fibration
from a presheaf and – ▷ – takes the total category of a fibration. Now, the objects of the
semantic base category are elements of Tree 1, and morphisms between trees are level-wise
natural transformations between the Γ components together with Finn → Finm renamings of
subtree indices. The non-discrete Fib components are preserved by morphisms.

In a nutshell, each node represents a presheaf universe and each edge represents an inter-
nal/external switch. A semantic element of Base selects a node of a tree, while an In is an index
that points to a subtree of a node. A semantic PSh is a dependent presheaf over a Γ in a given
node. Extending a context with an In binding adds a new empty subtree to a given node, and
extending a context with a presheaf variable extends the Γ presheaf in a node with a dependent
presheaf.
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Abstract

In this paper, we introduce a typed natural deduction system for propositional intu-
itionistic inquisitive logic. The term calculus we use to establish a Curry-Howard corre-
spondence is lambda calculus extended with a new construct corresponding to the logical
behaviour of the Split rule, a key rule of inquisitive logic. We show that the resulting
system is normalizing. The existence of this system corroborates previous observations
that questions have constructive content.

Extended abstract

Inquisitive logic [2] is a framework that accounts for both statements and questions within a
unified formal system. In recent years, research on inquisitive logic has grown significantly and
it has found its application in many other areas such as linguistics or philosophy of language [3].

Inquisitive logic is especially well-explored and understood from model-theoretic and alge-
braic points of view [12, 4]. Recently, there has been progress in the proof-theoretic under-
standing of the system [13, 7]. However, when it comes to a type-theoretic view, the picture
of inquisitive logic becomes less clear. To our knowledge, this area has not yet been properly
explored.

In this paper, we want to fill this gap and examine inquisitive logic from a type-theoretic
point of view. The canonical system of inquisitive logic is based on classical logic of statements.
However, in the type-theoretic context, it is natural to focus instead on intuitionistic inquisitive
logic (InqIL), which is an inquisitive logic of questions based on intuitionistic logic of statements
[5, 9, 10]. In particular, we introduce a Curry-Howard correspondence between a natural de-
duction system for propositional InqIL and a lambda calculus extended with a new construct
select that will capture the logical behaviour of the key rule of inquisitive logic called Split.

The fact that this can be achieved shows that there is a close link between the notions
of inquisitive/interrogative content and computational/constructive content. This was already
partly hinted at by the following Ciardelli’s observation:

proofs [of dependencies; i.e., proofs where both premises and conclusion are questions] have
an interesting kind of constructive content, reminiscent of the proofs-as-programs interpre-
tation of intuitionistic logic: a proof of a dependency encodes a method for computing
the dependency, i.e., for turning answers to the question premises into an answer to the
question conclusion. ([2], p. 3; see also [1], p. 324)

This also raises a further intriguing question: can these approaches be combined? For example,
while inquisitive semantics can model many kinds of questions, it is unsuitable for deductive or
computational ones (e.g., “What is 2 + 2?” or “What follows from φ?”) as its key semantic
notion of informational support is closed under logical consequence, and thus computational
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questions are trivially resolved by all information states. A type-theoretic approach, however,
has tools for tackling these issues.

In the basic version of intuitionistic inquisitive logic, inquisitive disjunction is the primary
question-forming operator and there is no primitive declarative disjunction. However, declara-
tive disjunction can be added to the system, either in the form of the so-called tensor disjunction,
as in [5, 10], or it can be defined as presupposition of the inquisitive disjunction, if we add to
the language the presupposition modality ◦, as in [11]. We will also discuss these extensions.

We obtain InqIL by extending intuitionistic propositional logic (IPL) by the following rule
known as Split:

α→ (φ ∨ ψ)
Split

(α→ φ) ∨ (α→ ψ)

where φ and ψ are arbitrary formulas corresponding to either questions or statements and α is a
declarative, that is, a disjunction-free formula corresponding to a statement. The rule intuitively
says that conditional questions are disjunctive questions resolved by suitable conditionals. In
particular, the possible answers to the conditional question whether q or r, if p are, in accordance
with Split, the conditionals if p then q and if p then r.

A key step in obtaining a Curry-Howard correspondence for InqIL rests on finding an ap-
propriate constructive function that would capture the behaviour of the key Split rule from a
computational point of view. To this end, we can utilize the results of [8] that introduced a
generalized version of this rule with such a function in the context of a propositional fragment
of Martin-Löf’s constructive type theory.

We show that we can carry over this function into InqIL and use it to derive the Split rule
and thus also provide its computational interpretation. The resulting lambda term capturing
its behaviour will be as follows:

f : α→ (φ ∨ ψ) [x : α]

ap(f, x) : φ ∨ ψ
[y : α→ φ]

injl(y) : (α→ φ) ∨ (α→ ψ)

[z : α→ ψ]

injr(z) : (α→ φ) ∨ (α→ ψ)

select(x.ap(f, x), y.injl(y), z.injr(z)) : (α→ φ) ∨ (α→ ψ)

The crucial new construct select is defined as follows:

[x : α]

c(x) : φ ∨ ψ
[y : α→ φ]

d(y) : χ

[z : α→ ψ]

e(z) : χ

select(x.c(x), y.d(y), z.e(z)) : χ

with the following computation rules, where t(x) : φ and s(x) : ψ:

select(x.injl(t(x)), y.d(y), z.e(z))⇒ d(λx.t(x))
select(x.injr(s(x)), y.d(y), z.e(z))⇒ e(λx.s(x))

Note that the new construct select is a variable-bining operator (the notation ‘x.c(x)’ means
that the variable x becomes bound in c(x) by select) and that it is treated as an eliminatory
noncanonical operator for disjunction (without appearances of the declarative formula α, the
rule reduces to the standard disjunction elimination rule). From a functional perspective, adding
select allows us to compute even open terms to canonical values, as long as the free variables
of those open terms range over declarative formulas α only.

Furthermore, we consider a variant of InqIL called InqIL◦ extended with a presupposition
modality ◦. This modality was introduced in [11] and defined via the following rules:

φ ◦I◦φ ◦φ
[φ]i

α ◦Eiα

2
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This modality is inspired by the truncation modality from homotopy type theory [6] that
turns types into mere propositions, that is, types that are inhabited by at most one term
(up to equivalence). The presupposition modality ◦ turns inquisitive formulas into declarative
ones. As mentioned above, it can be used to define declarative disjunction as ◦(φ ∨ ψ). And,
analogously to Split and select, we introduce new constructs for ◦I and ◦E called pre and sup
that will allow us to extend the Curry-Howard correspondence to InqIL◦ as well.

Having a typed natural deduction system for inquisitive logic makes it possible to utilize
Tait’s computability method for proving normalization [14]. Specifically, as the notion of reduc-
tion ⇒ that we will define via computation rules is a deterministic weak head reduction (that
is, there is at most one possible reduction for any given term), we show that both InqIL and
InqIL◦ are weakly normalizing. However, we suspect that if a more general notion of reduction
is adopted, the strong normalization property can be obtained as well.

Finally, establishing a Curry-Howard correspondence for inquisitive logic sheds further light
on the connection between the formulas-as-types principle innate to the Curry-Howard corre-
spondence and the questions-as-information types interpretation of inquisitive logic [1]. First,
our results confirm that formulas of inquisitive logic can indeed be regarded as types, as previ-
ously suggested by Ciardelli [1], p. 352 (see also [2], p. 110).

Second, the inherent distinction between information types and singleton types of inquis-
itive logic can be seen as paralleling the type-theoretic distinction between types and mere
propositions. From this perspective, both truncation of type theory and presupposition of in-
quisitive logic can be seen as operators for suppressing content: computational one in the case
of truncation and inquisitive one in the case of presupposition.
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Abstract

The type theories λU and λU− are known to be logically inconsistent. For λU , this is
known as Girard’s paradox [7]; for λU− the inconsistency was proved by Coquand [3]. It
is also known that the inconsistency gives rise to a so called looping combinator: a family
of terms Ln such that Lnf is convertible with f(Ln+1f). It is un-known whether a fixed
point combinator exists in these systems. Hurkens [9] has given a simpler version of the
paradox in λU−, giving rise to an actual proof term that can be analyzed, and which is
proven to be a looping combinator and not a fixed point combinator in [2]. However, the
underlying untyped term is a real fixed point combinator.

Here we analyze the possibility of typing a fixed point combinator in λU and we prove
that the Curry and Turing fixed point combinators Y and Θ cannot be typed in λU , and
the same holds for Ω.

Although systems like λ⋆ and λU are logically inconsistent, computationally they are still
interesting, because not all terms are β-convertible. The first to study the computational power
of these inconsistent systems was Howe [8], going back to earlier (unpublished) work of [10].
Howe coined the terminology looping combinator for a family of terms {Ln}n∈N such that
Ln f =β f(Ln+1 f), and he showed that a looping combinator can be defined in λ⋆. Using a
looping combinator, it can be shown that the equational theory (the theory of β-conversion) is
undecidable and that the theory is Turing complete.

When Girard [7] proved the paradox in 1972, he did that for λU , an extension of higher order
logic with polymorphic domains and quantification over all domains. This system allows less
type constructions than λ⋆, but that has the advantage that it is somewhat easier to see what
is going on. By that time, it was unclear whether λU−: higher order logic with polymorphic
domains (but no quantification over all domains) was inconsistent.

In 1994, Coquand [3] proved that λU− is inconsistent as well, by encoding Reynolds’ result
[11], stating that no set-theoretic model of polymorphic lambda calculus exists, into λU−. Later,
Hurkens gave a considerably shorter proof [9], which is based on interpreting Russell’s paradox in
λU−. Recently, Coquand [4] has given an adapted presentation of Hurkens’ proof, emphasizing
the relation with Reynolds’ result.

Here we analyze the paradox in λU syntactically. (For a semantic analysis, relating the
paradox to models of higher order logic, see [6].) The main question we are interested in is
whether there exists a fixed-point combinator in λU . We give a partial answer by showing that
the well-known Turing and Curry fixed-point combinators (Θ and Y ) cannot be typed in λU .

We assume λU to be known (see [1, 5]), so we don’t give the typing rules but we just emphasize
that we divide the set of variables V into three disjoint sets var△, var2 and var⋆ for which we
use standard characters: var△ = {k1, k2, k3, . . .}, var2 = {α, β, γ, . . .}, var⋆ = {x, y, z, . . .}. So
a variable that lives in a type A : ⋆ is typically x, y or z etcetera. We also define the syntactical

∗herman@cs.ru.nl
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categories Kinds (K1,K2,K3), Constructors (P,Q,R) and Proof terms (t, p, q) as follows.

Kinds K ::= k | ⋆ | K → K | Πk :2.K

Constructors P ::= α | λα :K.P | PP | P → P | λk :2.P | PK| Πα :K.P

Proof terms t ::= x | λx :P.t | tt| λα :K.t | tP | λk :2.p | pK

An important property of λU (which is not the case in λ⋆) is that

Lemma 1. All kinds and constructors of λU are strongly normalizing.

Therefore, type checking is decidable in λU . For t a proof term of λU , we define the erasure
of t, denoted by |t|, as follows, by induction on the construction of proof terms.

|x| = x
|λx :P.p| = λx.|p| if P ∈ Constructors |pq| = |p||q| if p, q ∈ Proof terms
|λα :K.p| = |p| if K ∈ Kinds |pP | = |p| if P ∈ Constructors
|λk :2.p| = |p| |pK| = |p| if K ∈ Kinds

We say that an untyped lambda term M is typable in λU iff there exist Γ, t, A such that
Γ ⊢ t : A : ⋆ and |t| =M . We prove the following result

Proposition 1. The terms Ω, Y and Θ are not typable in λU .

This result comes as a corollary of a more general result:

Theorem 2. Double self-application is not possible in λU .
Here we mean with “double self-application” a term t : A : ⋆ such that |t| = (λx.N)(λy.P ) and
N contains a sub-term xx and P contains a sub-term y y.

The Theorem is proving by analyzing the so called parse tree of a type, following ideas from
[12]. The argument basically consists of two parts:

1. if t contains a self-application, so |t| contains a sub-term xx, then the type of x in t is of

the form Πv⃗ : V⃗ .αT⃗ → . . . with α ∈ v⃗;

2. if |q| = λy.N where N contains y y, then the type of q is not of the Πv⃗ : V⃗ .αT⃗ → . . . with
α ∈ v⃗.

From this the Theorem follows.

If we now look back at the looping combinator L0 that can be derived from the inconsistency
proof of Hurkens [9], and we erase all type information, we obtain the following term.

|Li| = L = λf.(λx.x(λpq.f(qpq))x)(λy.yy)

In the untyped λ-calculus, this is a fixed-point combinator and an interesting one, because it
contains no double self-application, as Ω, Y and Θ do.

2
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Abstract

We present an extension of Rocq’s type theory and implementation with a new Ghost

sort that models proof relevant data that is erased at extraction, inspired by recent work
on ghost types [11], sort polymorphism [9] and certified erasure [3] in MetaRocq [10].

Rocq is based on a dependent type theory with two main kinds of universes, the Type pred-
icative universes that contain computationally relevant data and the Prop/SProp impredicative
universes that represent irrelevant data that can be erased at extraction to produce (relatively)
efficient programs from Rocq definitions. The initial work on extraction in Rocq was done by
Paulin-Mohring [8] during her PhD and followed up by the PhD of Letouzey [5], which gives an
accurate account of the current state of extraction in Rocq. Technically, extraction is based
on elimination restrictions that ensure that propositional content (in Prop or SProp) cannot be
used in a relevant way to produce computational data (with a type in the Type universe), with
only one exception: so-called sub-singleton propositions can be inspected when producing com-
putational data (e.g. natural numbers). The trivial (True) and absurd (False) propositions, the
conjunction of propositions (A ∧ B), the propositional equality type (eq) and the accessibility
predicate (Acc) all fall into this criterion: they have at most one constructor, whose arguments
(if any) are all propositional. In contrast, disjunction (A ∨ B) and existential quantification
(∃ x : nat. P) fall outside this criterion, with good reason: if one could write a program that
takes a disjunction proof A ∨ B and produces 0 in case the proof comes from the left branch and
returns 1 otherwise, then proofs would have to be kept during extraction! Forster et al. [3] pro-
vide a formal proof on top of MetaRocq that the process of extraction based on elimination
restrictions preserves semantics, while erasing all propositional content and type annotations.
However, there are cases where data that should be erased remains in extracted terms.

The case of Accessibility. Singleton elimination of Prop applies to accessibility:

Inductive Acc {A} (R : relation A) (x : A) : Prop :=
| Acc_intro : (∀ y, R y x → Acc R y) → Acc R x.

Definition well_founded {A} R :=
∀ x, Acc R x.

This inductive type represents accessibility proofs of relations, and is used to define constructive
well-foundedness of relations. Thanks to singleton elimination, this allows to derive principles
of well-founded (a.k.a. Noetherian) recursion and induction for Type-valued predicates:

Definition nat_lt_ind (P : nat → Type) : (∀ n, (∀ m, m < n → P m) → P n) → ∀ n, P n :=
. . . Acc_rect . . .

The justification to erase uses of Acc during extraction is a bit more involved than for
other (sub)singletons: indeed as Acc is a recursive type, we need to ensure that definitions in
Rocq cannot distinguish between two accessibility proofs of potentially different depths. The
correctness theorem of extraction crucially holds only on closed Rocq terms, for which we can
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assume by the canonicity property of the theory that any fixed-point definition on Acc proofs
will be able to consume as many Acc_intro constructors as necessary to reach a normal form.
This is however not the case in Rocq itself, where definitional equality is checked on open
terms and the theory does distinguish between accessibility proofs, e.g. one that is a variable
and one that starts with a constructor cannot be considered definitionally equal, otherwise
non-termination can ensue. Putting Acc in Prop while still considering it a (sub)singleton hence
goes against a definitional proof irrelevance interpretation of Prop, even if the weaker principle
of propositional proof irrelevance in Prop can be added consistently to Rocq.

So, in the definitionally proof-irrelevant sort SProp in Rocq, accessibility is restricted to
eliminations to SProp only.1 This is an unfortunate situation, as this precludes using SProp as a
replacement for Prop in many situations. A better compromise is to recognize that accessibility
is definitionally proof-relevant (so cannot live in SProp) but still erasable: this is one purpose
of the new Ghost sort we introduce.

No ghost data. Currently, as extraction is based on the Prop/Type separation, it is impossible
to erase proof-relevant data at extraction. A typical use-case appears when using indexed or
dependent data types in programs, e.g. finite numbers:

Inductive fin : nat → Set :=
| finO {n} : fin (S n)
| finS {n} : fin n → fin (S n).

Fixpoint lookup {A} (l : list A) : fin (length l) → A :=
match l return fin (length l) → A with

| nil ⇒ fun (f : fin 0) ⇒
False_rect (match f in (fin 0) with end)

| cons a l ⇒ fun f ⇒ match f with

| finO ⇒ a

| finS f’ ⇒ lookup l f’
end

end.

(* Extraction to OCaml: *)

type fin =
| Fin0 of nat

| FinS of nat ∗ fin

let rec lookup l f =
match l with

| Nil → assert false

| Cons (a, l0) →
begin

match f with

| FinO _ → a

| FinS (_, f’) → lookup l0 f’
end

In the computation of the lookup function, the indices of the fin structure are never in-
spected. They are only used to logically justify that the first branch is unreachable. Extraction
is unaware of that intention2 and carries around all the index data of fin, as witnessed by the
way fin is extracted to OCaml.

Here, we would like to state in fin’s type declaration that the natural number cannot be used
computationally, but only in ghost contexts, so that Rocq can enforce that the lookup function
does not inspect unduly these indices and that they hence can be erased during extraction.

Progress on this subject was made recently by Winterhalter [11], who introduced Ghost
Type Theory (GTT), an extension of dependent type theory with a new sort for ghost types
and values. This theory allows marking indices such as the fin index as ghost data and ensures
the extraction property we expect. However, the meta-theory of GTT is not yet complete, and
it shares the same defect as the SProp sort, being unable to accommodate a useful accessibility
relation. We simplify this proposal, drawing inspiration from the system of Keller and Lasson
[4] which already introduced a distinction between two predicative hierarchies named Set and
Type which played the roles of non-erasable and erasable proof-relevant types. That system was
designed with parametricity in mind though, not extraction.

1Lean deliberately ignores this issue and breaks transitivity of conversion due to that choice.
2One could in fact write functions that do inspect the indices.
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Our work. Thanks to Rocq’s recent support of sort polymorphism [9] and the new imple-
mentation of sort elimination constraints (see the companion abstract), we can experiment with
different elimination rules for the Ghost sort. We are considering the following designs:

1. A term of a Ghost type can only be eliminated (i.e. in a match) to produce ghost content,
except for ⊥ which always has large elimination. Moreover, Fixpoint elimination is allowed
from Ghost into any sort.

2. The Ghost sort can be eliminated into itself and SProp (which enables large elimination
for ⊥ by transitivity). Fixpoint elimination is also allowed from Ghost into any sort.

3. We restrict elimination to avoid creating computational content (i.e. we disable elimina-
tion of Ghost into Type), but always allow it for other sorts.

All of those enjoy the same desired property: they accommodate the accessibility predicate.
Moreover, introducing a new sort allows one to add specific annotations for proof-relevant
content to be erased at extraction — here, it would simply be to use the ghost version of the
types/functions. For instance, it becomes possible to define a lookup function where extraction
leads to a code that totally discards fin’s indices:

Inductive fin : nat@{Ghost|} → Set :=
| finO {n} : fin (S n)
| finS {n} : fin n → fin (S n).

Fixpoint lookup {A} (l : list A)
: fin (length@{Ghost} l) → A :=
match l return fin (length@{Ghost} l) → A with

| nil ⇒ fun (f : fin 0) ⇒
False_rect (match f in (fin 0) with end)

| cons a l ⇒ fun f ⇒ match f with

| finO ⇒ a

| finS f’ ⇒ lookup l f’
end

end.

(* Extraction to OCaml: *)

type fin =
| Fin0
| FinS of fin

let rec lookup l f =
match l with

| Nil → assert false

| Cons (a, l0) →
begin

match f with

| FinO → a

| FinS f’ → lookup l0 f’
end

We are also considering replacing the equality of Prop by one in Ghost, using a specific
cast term à la GTT. This would effectively get rid of the need of singleton elimination, and
maybe of the Prop sort. This approach might fix the long-standing extraction inconsistency
in the presence of univalence. Indeed, one can show that the equality in Prop and in Type are
equivalent, meaning, from negation, one gets an equality B = B in Prop, transporting true along
that equality will yield an element that is provably equal to false and yet extracts to true.
Choosing one of the first two designs would remove the extraction inconsistency, as in either of
these cases, Ghost equality is not equivalent to Type equality.

While our initial experiments are made in Rocq, we plan to develop a MetaRocq proof to
show the erasure theorem [10] when using Ghost extraction, and to make sure we do not break
any meta-theoretical properties already proven about Rocq.

In this talk, we will present the Ghost sort through the development of examples, focusing
on the treatment of accessibility and indexed data types, and summarize the status of the
MetaRocq formalization. We will also compare our new Ghost sort with recent developments
of quantitative type theories [7, 1], the type theory internalizing reasoning on non-interference
of Liu et al. [6] and its logical properties with the ones of the erasure modality [2] (we expect
to satisfy the same properties).
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Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025. doi: 10.
1145/3704912. URL https://doi.org/10.1145/3704912.

[10] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas
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A Fully Dependent Assembly Language

Yulong Huang and Jeremy Yallop

University of Cambridge, UK

We report our progress in developing an assembly language with fully dependent types to
support type-preserving compilation of dependent type theory, and thus improving the compi-
lation of existing systems which erase types at an early stage. In this abstract, we outline the
fundamental design principles of the language and present our encoding of it in Agda.1

A type-preserving compiler [8] transforms the source code into a strongly typed assembly
language with a series of typed compiler transformations, preserving types through all phases.
Many optimizations benefit from type information. With dependent types, type signatures can
contain code specifications and type-checking the assembly language verifies that the specifica-
tions are met, essentially implementing proof-carrying code [9].

Earlier attempts towards dependent assembly languages, such as Ritter’s categorical ab-
stract machine [10] and Winwood’s Singleton [11], are incompatible with recent advances in
dependently-typed transformations like CPS [3], ANF [6], closure conversion [2], and defunc-
tionalization [4]. A desirable target language should both accommodate fully dependent types
and be able to compile from the intermediate representations of previous transformations.

We propose a two-level design. The syntax of the typed assembly language consists of a set
of instructions of a stack machine (I) and a dependently typed calculus of specifications (e,A).

I ::= LIT c | APP | CLO n lab | POP | I ;I ′ | . . .
e, A ::= x | e e′ | lab {e1, . . . , en} | Πx:A.B | U | . . .

The type judgement for each instructionmodels the computation like an abstract interpreter,
in the form of Γ ⊢ I : σ → σ′. A stack σ is a list of specification terms. The judgement
states that instruction I transforms stack σ to σ′, similar to the conventional stack typing (e.g.
WebAssembly [1]), but it keeps track of the stack’s content instead of the types of the contents.
For example, the rule for pushing a literal constant c in our language is Γ ⊢ LIT c : σ → σ ::c.

Tracking stack contents is necessary to support fully dependent types (since computation
happens at type level), and separating specification from instructions avoids problems such as
the need to check equality of instruction sequences during type checking. Function applica-
tion, which is complicated by type dependency, is simply described by an application in the
specification calculus (shown at the left below, note that B does not appear in the specification).

Γ ⊢ e : Πx:A.B Γ ⊢ e′ : A
Γ ⊢ APP : σ ::e::e′ → σ ::e e′

lab(∆, x:A 7→ e : B) ∈ Γ Γ ⊢ e1, . . . , en : ∆

Γ ⊢ CLO n lab : σ ::e1 :: . . . ::en → σ ::lab {e1, . . . , en}
The specification language is a defunctionalized calculus, an intermediate representation

from dependently typed defunctionalization [4]. It has no lambda abstractions and no way to
create new functions. We can only create a closure of type Πx:A.B by paring a labelled code
lab (from a fixed set of labels, defined in the context Γ) with a list of terms e1, . . . , en (of
types ∆) instantiating the free variables in the code. In assembly, it is reflected by an operation
CLO n lab that takes the top n elements of the stack and forms a closure object with the label
lab on top of the stack, as shown in the judgement at the right above.

The specification calculus is shown to be consistent [4]. We need to prove type safety for
the assembly, in other words, that the typing rule’s abstract interpretation correctly models
runtime behaviour.

1See https://github.com/H-Yulong/ShallowStack.

https://github.com/H-Yulong/ShallowStack
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We are in the process of encoding the assembly language in Agda to formally verify its
meta-theory. The encoding is challenging: besides the classic problem of encoding dependent
type theory in itself, we also have to find a suitable representation for labelled defunctionalized
code.

We use shallow embedding [7, 5] to encode syntax, which coincides the definitional equality
of the object theory and the host language to avoid the problem of having tedious equality
conversions (known as “transport hell”) — every equation in the object theory is trivially
resolved to refl in the host.

Defunctionalization is trickier. As we have previously observed [4], the usual method of
representing each function label with a constructor of a GADT fails to extend to inductive
families, because it requires the data type to be indexed by itself (hence failing positivity
checks), and the interpretation function for code labels is not obviously terminating.2

We have found a workaround for the positivity checks to define an indexed family Pi over the
shallow-embedded syntax for defunctionalized code and an interpretation function interp that
passes Agda’s termination checker, and we will present the techniques used in the talk. Below
shows the (simplified) type signatures of Pi and interp, and code labels for two functions.3

data Pi : (id : N) (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Set where

CNat : Pi 0 · Nat U · ⊢ λx:Nat.Nat
App : Pi 0 (·, U, Π 0 U, Π 1 (app 1 0)) 2 (app 2 0) A : U,B : ΠA:U.U, f : Πx:A.B ⊢ λx:A.f x

interp : Pi id Γ A B → Tm (Γ , A) B

The intrinsic typing rules of the stack machine are straightforward to express with shallow-
embedded syntax and defunctionalization. The rules for LIT and APP are exactly like their
typing judgements. Instruction CLO n lab takes an instance argument pf which proves that the
first n items on the stack have types ∆, and Agda can find this proof automatically. We also
have rules for creating and eliminating base types such as booleans and natural numbers.

data Instr (Γ : Con) : Stack Γ m → Stack Γ n → Set where

LIT : (n : N) → Instr Γ σ (σ :: nat n)

APP : {f : Tm Γ (Π A B)} {a : Tm Γ A} → Instr Γ (σ :: f :: a) (σ :: app f a)

CLO : (n : N)(lab : Pi id ∆ A B)

{{ pf : Γ ⊢ (take n σ) of ∆ }} → Instr Γ (drop n σ :: lab [[ pf ]]s)

Here is a type-checked example of an instruction sequence that computes 5 via App and Add

(which corresponds to λy :Nat.x+ y). Firstly, it creates a closure for App, instantiating the free
variables to Nat, CNat{}, and Add{2}, then applies the closure to 3, eventually computing 2+3.
The assembly code type-checks because 2 + 3 = 5, which Agda can realize without proofs.

code : Is · · (· :: nat 5)

code = TLIT Nat

>> CLO 0 CNat

>> LIT 2

>> CLO 1 Add

>> CLO 3 App

>> LIT 3

>> APP

>> RET

Abstract stack content

Nat

Nat :: CNat{}

Nat :: CNat{} :: 2

Nat :: CNat{} :: Add{2}

App{Nat, CNat{}, Add{2}}

App{Nat, CNat{}, Add{2}} :: 3

5

5

Our dependent assembly language uses a two-level design that leaves the machine’s model
simple, but maintains a rich and expressive type system to accommodate type-preserving com-
pilation. We plan to use this Agda formalization to investigate type erasure, assembly code
generation and optimization, and incorporating quantitative type theory in the future.

2We use type-in-type in this abstract and omitted a problem with universe levels for simplicity.
3We use de-Bruijn indices (bold numbers) for variables.
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[5] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding of type theory is morally
correct. In Graham Hutton, editor, Mathematics of Program Construction - 13th International
Conference, MPC 2019, Porto, Portugal, October 7-9, 2019, Proceedings, volume 11825 of Lecture
Notes in Computer Science, pages 329–365. Springer, 2019.

[6] Paulette Koronkevich, Ramon Rakow, Amal Ahmed, and William J. Bowman. ANF preserves
dependent types up to extensional equality. J. Funct. Program., 32:e12, 2022.

[7] Conor McBride. Outrageous but meaningful coincidences: dependent type-safe syntax and evalu-
ation. In Bruno C. d. S. Oliveira and Marcin Zalewski, editors, Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, WGP 2010, Baltimore, MD, USA, September 27-29, 2010,
pages 1–12. ACM, 2010.

[8] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed assembly
language. In David B. MacQueen and Luca Cardelli, editors, POPL ’98, Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, January 19-21, 1998, pages 85–97. ACM, 1998.

[9] George C. Necula. Proof-carrying code. In Peter Lee, Fritz Henglein, and Neil D. Jones, editors,
Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January 1997,
pages 106–119. ACM Press, 1997.

[10] Eike Ritter. Categorical abstract machines for higher-order typed lambda-calculi. Theor. Comput.
Sci., 136(1):125–162, 1994.

[11] Simon Winwood and Manuel M. T. Chakravarty. Singleton: a general-purpose dependently-typed
assembly language. In Stephanie Weirich and Derek Dreyer, editors, Proceedings of TLDI 2011:
2011 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,
Austin, TX, USA, January 25, 2011, pages 3–14. ACM, 2011.

3



Efficient Program Extraction in Elementary Number

Theory using the Proof Assistant Minlog

Franziskus Wiesnet1

Vienna University of Technology, Vienna, Austria, European Union
franziskus.wiesnet@tuwien.ac.at

Abstract

Overview We examine theorems of elementary number theory using a constructive, compu-
tational, and proof-theoretic approach. Key theorems include Euclid’s proof of the infinitude
of prime numbers, Bézout’s identity, the Fundamental Theorem of Arithmetic, and Fermat’s
factorization method. These theorems have been formalized within the proof assistant Min-
log, providing rigorous formal verification. Minlog allows the extraction of executable Haskell
programs from proofs, demonstrating their computational utility. The implementations can
be found in the folder examples/arith of the Minlog directory. Currently these files are only
available and functional in the dev branch of Minlog. Instructions on how to install Minlog and
switch to the dev branch can be found on the Minlog website [14]. All relevant files are also
available in a GitHub repository (https://github.com/FranziskusWiesnet/MinlogArith/).

We explore interesting and instructive aspects of the proofs, the implementation in Minlog,
and the extracted Haskell term. Additionally, we will highlight the unique features and advan-
tages of Minlog as a proof assistant, offering the audience a deeper insight into its capabilities.
The main focus of the presentation will be on the Fundamental Theorem of Arithmetic and
Fermat’s factorization method. The second one can be extended to the quadratic sieve, which
is a sub-exponential factorization method. An implementation of the quadratic sieve in Minlog
is the subject of future research.

While prior knowledge of Minlog, Haskell, or other programming languages can be helpful,
it is not required, as we will provide all necessary explanations.

Innovations and Methodology While Minlog has primarily been used for the formalization
of analysis, this study serves as a case study demonstrating that Minlog is also highly suitable
for algorithmic number theory. The only article dealing with number theory (in this case,
the greatest common divisor) in Minlog is [6]. However, that work primarily focused on the
extraction of programs from classical proofs. Therefore, this new implementation can serve as
a solid foundation for the formalization of number theory in Minlog.

Another innovation is that we have considered the efficiency of the extracted term right
from the formulation of theorems and their proofs. Therefore, the proofs were formalized in
two different versions. The first version is based on unary natural numbers, defined by 0 and the
successor function. In contrast, the second version is based on positive binary numbers given
by 1 and two successor functions, one appending 0 and the other appending 1. While the first
version focuses primarily on the simplicity of the theorems and their proofs, the second version
prioritizes the efficiency of the extracted term. Hence, we demonstrate how formulating theo-
rems and structuring their proofs influence the efficiency of the extracted algorithms, bridging
the gap between formal verification and practical applications. Furthermore, extracting proofs
as Haskell programs (rather than as terms in Minlog) will also contribute to shortening the
runtime of the extracted algorithms.

https://github.com/FranziskusWiesnet/MinlogArith/
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Background Minlog is a proof assistant developed in the 1990s by the logic group at the
Ludwig-Maximilians-Universität München under the direction of Helmut Schwichtenberg [4,
13, 14, 15, 20, 21]. Several introductions to Minlog are available [31, 32, 33]. Recently, Minlog
has predominantly been employed in the field of constructive analysis [5, 11, 16, 23, 26, 35].
However, there exists a broad spectrum of proofs in diverse domains that have been implemented
in Minlog [2, 8, 22, 24, 25]. All of them share the characteristic that an implementation in
Minlog not only focuses on the correctness of the proof but also on extracting programs from
the proofs. As the primary goal of Minlog is to interpret proofs as programs and to work with
them accordingly [1], it includes all the functions for the formal program extraction from proofs.

Minlog and the formal program extraction from proofs are based on an extension of HAω

called Theory of Computable Functionals (TCF) as meta-theory. Its origins go back to Scott’s
seminal work on Logic of Computable Functionals [28] and Platek’s PhD thesis [18], and it
incorporates basic concepts introduced by Kreisel [10] and Troelsta [30]. In recent years the
Munich team have made important progress in the development of TCF [3, 7, 9, 17, 19]. It is
based on partial continuous functionals and information systems, serving as their designated
model, known as Scott model [12, 27].

Illustrative examples. The natural numbers N are given by the constructors

0 : N, S : N→ N,

and the positive binary numbers P are given by

1 : P, S0 : P→ P, S1 : P→ P.

Note that the binary representation is reversed. For example, S0 S1 1 represents the number 6,
which corresponds to binary 110. The reason for starting with 1 instead of 0 is primarily to
ensure that each number is uniquely determined by its constructors. Otherwise, for example 0
and S0 0 would represent the same number, violating this uniqueness.

Already the definition of the greatest common divisor clearly illustrates the computa-
tional difference between the number types. On natural numbers, the greatest common divisor
can be defined by the euclidean algorithm:

gcd(0, n) := gcd(n, 0) := n

gcd(Sm,Sn) :=

{
gcd(Sm,n−m) if m < n

gcd(m− n, Sn) otherwise

It should be noted that using division with remainder on the natural numbers would not make
this algorithm more efficient, because the computation of division with remainder results es-
sentially in an iterated application of the step case in the definition above.

On positive binary numbers, however, the greatest common divisor can be defined much
more efficiently by Stein’s algorithm (named after Josef Stein [29]):

gcd(1, p) := gcd(S1 p, 1) := gcd(S0 p, 1) := 1

gcd(S0 p,S0 q) := S0(gcd(p, q))

gcd(S0 p,S1 q) := gcd(S1 p,S0 q) := gcd(p,S1 q)

gcd(S1 p,S1 q) :=





gcd(S1 p, q − p) if p < q

gcd(p− q,S1 q) if q < p

S1 p otherwise.

2
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One can see that in Stein’s algorithm, at each step, at least one argument is reduced by one
digit and is therefore at least halved. Noting that the subtraction of two binary numbers has
approximately linear runtime in the number of digits, Stein’s algorithm therefore has quadratic
runtime in the number of digits. In contrast, the Euclidean algorithm on natural numbers has
quadratic runtime only with respect to the absolute size of the arguments.

Bézout’s identity is known as the statement that the greatest common divisor is a linear
combination of the two arguments. That is, for integers a, b there are integers u, v with
gcd(a, b) = u · a + v · b. During the formalization, we wanted to remain within the respec-
tive number system, so the theorem had to be reformulated as

∀n,m∃l0∃l1 . gcd(n,m) + l0 · n = l1 ·m ∨ gcd(n,m) + l0 ·m = l1 · n
for natural numbers, and as

∀p0,p1 . ∃q q · p0 = p1 ∨ ∃q q · p1 = p0

∨ ∃q0∃q1 gcd(p0, p1) + q0 · p0 = q1 · p1
∨ ∃q0∃q1 gcd(p0, p1) + q1 · p1 = q0 · p0

for positive binary numbers. Note that, since integers in Minlog are defined as a type sum
of negative binary numbers, zero, and positive binary numbers, the case distinction would be
implicitly present in the proof anyway.

The proofs were carried out by induction over an upper bound of the numbers, which is
seen as a natural number. In the induction step itself, a case distinction was made based on
the structure of the numbers. Specifically for positive binary numbers, this means that the
statement

∀l,p0,p1 . p0 + p1 < l →
∃q q · p0 = p1 ∨ ∃q q · p1 = p0

∨ ∃q0∃q1 gcd(p0, p1) + q0 · p0 = q1 · p1
∨ ∃q0∃q1 gcd(p0, p1) + q1 · p1 = q0 · p0

was proven by induction on l : N and case distinction on p0 ∈ {1,S0 q0,S1 q0} and p1 ∈
{1,S0 q1,S1 q1}. In particular, properties of both natural numbers and positive binary numbers
were combined. The individual cases are then quite straightforward, but in many instances, a
further case distinction according to the four cases in the statement is required.

A similar approach was also chosen for the Fundamental Theorem of Arithmetic and Fer-
mat’s factorization method. A detailed presentation can be found in [34].
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[11] Nils Köpp and Helmut Schwichtenberg. Lookahead analysis in exact real arithmetic with logical
methods. Theoretical Computer Science, 943:171–186, January 2023.

[12] Kim Guldstrand Larsen and Glynn Winskel. Using information systems to solve recursive domain
equations. Information and Computation, 91(2):232–258, April 1991.

[13] Kenji Miyamoto. Program extraction from coinductive proofs and its application to exact real
arithmetic. PhD thesis, Ludwig-Maximilians University Munich, 2013.

[14] Kenji Miyamoto. The Minlog System. https://www.mathematik.uni-muenchen.de/~logik/

minlog/, 2024.

[15] Kenji Miyamoto, Fredrik Nordvall Forsberg, and Helmut Schwichtenberg. Program Extraction
from Nested Definitions. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving, volume 7998 of LNCS, pages 370–385. Springer Berlin Heidelberg, 2013. 4th
International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings.

[16] Kenji Miyamoto and Helmut Schwichtenberg. Program extraction in exact real arithmetic. Math-
ematical Structures in Computer Science, 25(8):1692–1704, November 2014.

[17] Iosif Petrakis. Advances in the Theory of ComputableFunctionals TCF+ due to its Implementa-
tion, 2013. online: https://www.math.lmu.de/~petrakis/TCF+.pdf.

[18] Richard Alan Platek. Foundations of recursion theory. PhD thesis, Stanford University, 1966.

[19] Helmut Schwichtenberg. Primitive Recursion on the Partial Continuous Functionals. In M. Broy,
editor, Informatik und Mathematik, pages 251–268. Springer Berlin Heidelberg, 1991.

[20] Helmut Schwichtenberg. Proofs as Programs. In P. Aczel, H. Simmons, and S. Wainer, editors,
Proof Theory: A selection of papers from the Leeds Proof Theory Programme 1990, page 79–114,

4

https://www.mathematik.uni-muenchen.de/~logik/minlog/
https://www.mathematik.uni-muenchen.de/~logik/minlog/
https://www.math.lmu.de/~petrakis/TCF+.pdf


Elementary Arithmetic in Minlog F. Wiesnet

Cambridge, 1993. Cambridge University Press. Title from publisher’s bibliographic system (viewed
on 24 Feb 2016).

[21] Helmut Schwichtenberg. Minlog. In Freek Wiedijk, editor, The Seventeen Provers of the World,
volume 3600, pages 151–157. Springer Berlin Heidelberg, 2006.

[22] Helmut Schwichtenberg. Program Extraction from Proofs: The Fan Theorem for Uniformly Co-
convex Bars. In S. Centrone, S. Negri, D. Sarikaya, and P. Schuster, editors, Mathesis Universalis,
Computability and Proof, volume 412 of Synthese Library, pages 333–341. Springer International
Publishing, 2019.

[23] Helmut Schwichtenberg. Logic for Exact Real Arithmetic: Multiplication. In Mathematics for
Computation (M4C), chapter 3, pages 39–69. World Scientific, April 2023.

[24] Helmut Schwichtenberg, Monika Seisenberger, and Franziskus Wiesnet. Higman’s Lemma and
its Computational Content. In R. Kahle, T. Strahm, and T. Studer, editors, Advances in Proof
Theory, pages 353–375. Springer International Publishing, 2016.

[25] Helmut Schwichtenberg and Stanley S. Wainer. Tiered Arithmetics. In G. Jäger and W. Sieg,
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Department of Computer Science, University of Oxford, United Kingdom
maximilian.dore@cs.ox.ac.uk

Abstract

We propose a novel approach to combining linear and dependent type theory. By
deeply embedding the rules of linear logic inside dependent type theory, we obtain a linear
type system which is inherently also dependent. Moreover, we can dynamically compute
resource notations, which allows us to give precise types to programs which need a number
of copies of some input depending on some other input. We demonstrate our approach
with an implementation in Cubical Agda that allows us to program in a practical way. We
then propose a novel type theory which also has dependent linear function types.

Background Ever since the rise of dependent type theory and linear logic, the prospect of
having a type theory that has both predicates and allows for restricting variable use has inspired
research into dependent linear type theories [2, 3, 12, 4]. More recently, quantitative [5, 1] and
graded type theories [6, 9] have been proposed as practical programming languages in which
users can specify in the type of a program how often the program uses a given input, we call
this the multiplicity of this input. In many cases, the multiplicity of some input depends on
the value of some other input, consider for example the following Haskell program.

safeHead :: [a] -> a -> (a,[a])

safeHead [] y = (y,[])

safeHead (x:xs) y = (x,xs)

The program uses the backup element y only in case the given list is empty. However,
systems which have static multiplicities such as quantitative and graded type theories [1, 6, 9]
do not allow for precisely capturing this in the type system.

We propose a new approach of combining dependent type theory with linear logic that allows
for equipping inputs with multiplicities that depend on the values of other inputs. The main
idea behind our system is to deeply embed linear logic in dependent type theory and have the
structural rules of linear logic apply to terms of the host theory. More precisely, given a context
Γ of a standard dependent type theory, we require a symmetric monoidal category SupplyΓ
with bifunctor ⊗, plus a bit more structure to be made precise below. We call an object ∆ of
SupplyΓ a supply, and its morphisms productions where we write ∆0 ▷ ∆1 for the collection of
morphisms between ∆0 and ∆1. We impose this linear structure in the host dependent type
theory, i.e., each SupplyΓ and (−) ▷ (−) are themselves types, and its objects/morphisms are
terms. Lastly, any term that is derivable in Γ can be considered a singleton supply, i.e., for any
given Γ ⊢ a : A we have a ι(a) : SupplyΓ.

Using this structure, we define linear entailment as the following dependent type.

∆ ⊩ A := Σ(a : A)(∆ ▷ ι(a))

In words, to conclude A from a supply ∆, we need to give a term a : A as well as a produc-
tion that turns the supply into this term. We can regard our system as having two nested
entailments, where ⊢ is intuitionistic entailment and ⊩ is linear entailment.

Γ ⊢ ∆ ⊩ A
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Having the linear judgment as a dependent type in the host theory has two crucial advan-
tages: we can use open terms of the host theory to compute supplies, which allows for dynamic
multiplicities; and we can derive linear elimination principles using normal dependent elimina-
tion, which simplifies the introduction of data types in our system in contrast to quantitative
type theories [7].

We can implement SupplyΓ as the finite multiset of pointed types in Cubical Agda [8, 13],
which we will sketch in Section 1. To add function types to our system, we need SupplyΓ
to have exponentials and a variable binding principle, which means we cannot define this in
Cubical Agda anymore and need to devise a new type theory, which we will outline in Section 2.
An experimental implementation of our system is online: https://github.com/maxdore/dltt.

The observation that equipping the output of a function with a bag of resources gives rise
to dynamic multiplicities is due to Pierre-Marie Pédrot [10, 11]. We show how to implement
this idea in Cubical Agda; and build on it to devise a novel dependent linear type theory.

1. Linear Types in Cubical Agda Cubical Agda’s higher inductive types allow for defining
finite multisets over some type. We define supplies as finite multisets of pointed types, which
allows us to put any term in a supply.

Supply : Type
Supply = FMSet (Σ[ A ∈ Type ] A)

We can readily define functions for constructing the supply containing a single term a,
written ι a, and for joining two supplies ∆0 and ∆1, written ∆0 ⊗ ∆1. We can compute the
supply containing n copies of some supply for a given natural number n with a straightforward
recursive definition.

ˆ : Supply → N → Supply
∆ ˆ zero = ⋄
∆ ˆ (suc n) = ∆ ⊗ (∆ ˆ n)

Supply can be regarded as a symmetric monoidal category whose laws hold up to proposi-
tional equality. However, we will need to add more morphisms between supplies to take into
account constructors of data types, which is why we introduce a dedicated type of morphisms,
called productions. This type will be extended with other constructors, we only give its main
constructors here.

data ▷ : Supply → Supply → Type where
id : ∀ ∆ → ∆ ▷ ∆
◦ : ∀ {∆0 ∆1 ∆2} → ∆1 ▷ ∆2 → ∆0 ▷ ∆1 → ∆0 ▷ ∆2

⊗f : ∀ {∆0 ∆1 ∆2 ∆3} → ∆0 ▷ ∆1 → ∆2 ▷ ∆3 → ∆0 ⊗ ∆2 ▷ ∆1 ⊗ ∆3

Every supply can be turned into itself with id (which allows us to lift equalities between
supplies to productions), while ◦ and ⊗f give transitivity and congruence principles for produc-
tions. We have omitted equality rules such as id being the unit for composition, these follow in
a standard way for symmetric monoidal categories.

Using this structure, we can define our linear judgment as a dependent type as follows.

⊩ : Supply → Type → Type
∆ ⊩ A = Σ[ a ∈ A ] (∆ ▷ ι a)

2
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We can conveniently program using this notion of linear judgment. For example, we can
implement an analogue of safeHead from above in Cubical Agda and give it the following type.

safeHead : (xs : List A) → (y : A) → ι xs ⊗ (ι y) ˆ null xs ⊩ A × List A

We need a single instance of xs in our program, while the multiplicity of y depends on
whether xs is null, which is a program that returns 1 if the given list is empty and 0 otherwise.
To implement safeHead, we need to add more productions to ▷ , e.g., a rule to remove a cons
constructor from a supply ι (x :: xs) ▷ ι x ⊗ ι xs. This rule captures that the free variables of
a non-empty list are the same as the free variables of head and tail considered separately.

2. Linear dependent functions In order to add function types to our system, we need
additional structure which is not present in Cubical Agda. First, we require that our supplies
have exponentials, i.e., each SupplyΓ is a symmetric monoidal closed category where we write
[∆0,∆1] for the supply which internalises productions between ∆0 and ∆1. Second, we need to
be able to bind free variables in supplies, i.e., we require a functor

Λx:A : SupplyΓ,x:A → SupplyΓ

Furthermore, Λx:A has to be right adjoint to context extension of supplies (context extension
of dependent type theory entails that any term of SupplyΓ is also a term of SupplyΓ,x:A). Using
this structure we can define dependent linear function types as follows.

(−) ⊸ (−) : (A : Type)→ (B : A→ Type)→ Σ(C : Type)(C → Supply)

(x : A) ⊸ B(x) = ((x : A)→ B(x)) , (λf → Λx:A[ι(x), ι(f x)])
(1)

In words, a dependent linear function is a dependent function f and a production that witnesses
that any input x : A represents the same resources as the output of applying f to x. To iterate
this function type, we need to slightly generalise the above definition, we refer the interested
reader to the formalisation.

We can derive natural introduction and elimination principles for our functions.

Γ, x : A ⊢ ∆⊗ ι(x) ⊩ b : B(x)

Γ ⊢ ∆ ⊩ λx.b : (x : A) ⊸ B(x)
(x /∈ fv(∆))

Γ ⊢ ∆0 ⊩ f : (x : A) ⊸ B(x) Γ ⊢ ∆1 ⊩ a : A

Γ ⊢ ∆0 ⊗∆1 ⊩ f a : B(a)

These rules can be generalised to take in n copies of the input for some open term n of
the natural numbers, we write (x : A)n ⊸ B for such a function. Using these functions with
multiplicities, we can write safeHead from above as a proper linear dependent function.

safeHead : (xs : List A)1 ⊸ (y : A)null xs ⊸ A× List A

Our system therefore has both dependent types and dependent multiplicities, giving an expres-
sive language to type many programs that cannot be precisely typed otherwise.

Acknowledgments I am indebted to Valeria de Paiva and Pierre-Marie Pédrot for introduc-
ing me to the Dialectica construction; and to Nathan Corbyn and Daniel Gratzer for clearing up
my type-theoretic confusions. I am grateful for helpful discussions with Thorsten Altenkirch,
Pedro H. Azevedo de Amorim, Evan Cavallo, Jeremy Gibbons, Sean Moss and Sam Staton;
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Abstract

In impredicative type theory (System F, also known as λ2, [3, 4]), it is possible to define
inductive data types, such as natural numbers. It is also possible to define coinductive
data types such as streams. Their (co)recursion principles obey the expected computation
rules (the β-rules), but unfortunately, they do not yield a (co)induction principle [2, 6],
because the necessary uniqueness principles are missing (the η-rules). Awodey, Frey, and
Speight [1] used a extension of the Calculus of Constructions with Σ-types, identity-types,
and functional extensionality to define System F style inductive types with an induction
principle, by encoding them as a well-chosen subtype, making them initial algebras. We
extend their results to coinductive data types, and below we detail the stream data type
with the desired coinduction principle (also called bisimulation). To do that, we first define
quotient types (with the desired η-rules) and we also need a stronger form of the definable
existential types. The method of [1] can be used for general inductive types by defining
W -types with an induction principle. The dual approach for streams can be extended to
M -types, the generic notion of coinductive types, and the dual of W -types.

To define final coalgebras impredicatively, we first need quotient types. The well-known
impredicative definition of quotient types satisfies the β-rule, but fails to satisfy the η-rule.
We extend the technique of [1] to define quotients with an η-rule. We fix a type D : U and a
relation R : D → D → U . We say that a function f respects R (as a type: EqCls f R) if
for all x, y : D such that R x y, we have f x = f y. The well-known impredicative quotient
type, quot∗ D R, is defined as Π(C : U).Π(f : D → C).EqCls f R→ C. The class function
cls∗ : D → quot∗ D R is defined to be

cls∗ := λ(d : D).λ(C : U).λ(f : D → C).λ(H : EqCls f R).f d.

We can lift a function (f : D → E) that respects R to a function (f : quot∗ D R → E). This
lifting is done by the recursor for quotient types, rec∗q :

rec∗q := λ(C : U).λ(f : D → C).λ(H : EqCls f R).λ(q : quot∗ D R).q C f H

As usual we write f for (λq. rec∗q C f H q). We have that f ◦ cls∗ = f , which gives the β-rule
for quotients. NB. We do not require R to be an equivalence relation, so quot∗DR is actually
the quotient of D by the smallest equivalence relation containing R.

The inductive quotient type (that will satisfy the η-rule), which we denote by quot,
is defined as Σ(q : quot∗ D R).LimQuot q where LimQuot (q : quot∗ D R) says that for all
functions g : D → X and g′ : D → Y that respect R, and functions f : X → Y , we have
f (rec∗q X g H q) = rec∗q Y g′ H ′ q whenever f ◦ g = g′. We define the recursor as follows.

recq := λ(C : U).λ(f : D → C).λ(H : EqCls f R).λ(q : quot D R).rec∗q C f H (pr1 q)

It can be shown that we have a term LimQuotCls : (LimQuot (cls d)), and using that we define
the class function cls to be λ(d : D).⟨cls∗ d, LimQuotCls d⟩. We can now show that the
general η-rule is satisfied: If (g : D → C) respects R, then for every (f : D/R → C) with
f ◦ cls = g, we have f = g.
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It is standard to define the impredicative existential type ∃∗(X : U).P (X) to be Π(Y :
U).(Π(X : U).(P X)→ Y )→ Y . The constructor pack∗ and recursor rec∗∃ are defined to be

pack∗ := λ(X : U).λ(t : P X).λ(Y : U).λ(k : Π(X : U).(P X)→ Y ).k X t

rec∗∃ := λ(Y : U).λ(f : Π(Z : U).(P Z)→ Y ).λ(e : ∃∗X.P ).e Y f

These do not satisfy the desired equations: when we unpack an (e : ∃X.P ) using the recursor
rec∃, obtaining (X : U) and (t : P (X)), and then we re-package them into e′ := pack X t,
we want e = e′. We can define an improved existential type that satisfies the properties that
we need: For all e : ∃X.P there are X : U and t : P X such that e = packX t. In addition,
rec∃ (∃X.P ) pack = id∃X.P .

The well-known impredicative stream type Stream∗ (over a carrier type E) is defined as
∃(X : U).X× (X → E)× (X → X). The destructors hd∗ : Stream∗ → E) and tl∗ : Stream∗ →
Stream∗ are standard to define, and so is the corecursor (that produces a stream):

corec∗s := λ(X : U).λ(h : X → E).λ(t : X → X).λ(x : X).pack X ⟨x, h, t⟩.

It is a simple check that the introduction rule (corecursor) and elemination rules (head and tail
functions) compute as one would expect. We want to define a stream-type that satisfies the
η-rule, which is taken from the final coalgebra: Given a stream-morphism (f : X → Y ), we
want that uY ◦ f = uX for the morphisms uX := corec∗s X h t and uY := corec∗s Y h′ t′.

In the case of quotients (and for natural numbers, see [1]), we create a subtype of quot∗ D R.
In the case of streams, we take the dual notion: a quotient. To define this quotient, we define
a relation CoLimStr that relates streams σ and τ if they can be translated into each other by
some stream-morphism.

CoLimStr σ τ := ∃(X,Y : U).∃ (h:X→E)
(h′:Y→E)

.∃(t:X→X)
(t′:Y→Y )

.∃(f : X → Y ).∃(x : X)

(MorphStream X h t Y h′ t′ f) ∧
σ = corec∗s X h t x ∧ τ = corec∗s Y h′ t′ (f x)

We use the infix notation (σ ≡ τ) to denote that (CoLimStr σ τ) holds. The relation CoLimStr

is neither symmetric nor transitive. This does not hinder us since the equality relation on the
quotient is an equivalence relation and we will have clsσ = cls τ if (CoLimStr σ τ) holds. The
coinductive stream type Stream is defined to be quot Stream∗ CoLimStr. To define the
new head and tail functions as lifted functions of hd∗ and tl∗ we need to show that hd∗ and
tl∗ respect ≡. Using that we define the destructors for the new stream type: hd : Stream→ E
and tl : Stream → Stream. Finally, we define the corecursor corecs : Π(X : U).(X → E) →
(X → X) to be cls ◦ corec∗s . Using this we can show the η-rule for Stream∗: For all (X :
U), (h : X → E), (t : X → X) and (f : X → Stream), if (MorphStream X h t Stream hd tl f),
then we have (f = corecs X h t).

Two streams σ, τ are bisimilar, σ ∼ τ , if there is a bisimulation relation that relates them,
where R is a bisimilation if for all σ, τ : Stream we have that hd σ = hd τ and R (tl σ) (tl τ)
whenever R σ τ . We have the coinduction proof principle, stating that bisimilarity and equality
coincide. More precisely: for all σ, τ : Stream, we have σ ∼ τ if and only if σ = τ .

We used the limit predicate to encode the inductive data types, similar to [1]. For coinductive
data types, we dually used the colimit. It is also possible to directly encode the induction
principle within the embedding, by creating a predicate Ind as was done in [5]. Similarly for
coinductive types, one can use the CoInd principle by quotienting with bisimilarity relation. It
is also possible to encode the η-rule directly by representing the uniqueness requirement, using
a predicate Unq.
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Abstract

Linear/non-Linear Logic (LNL) was introduced by Benton [1994], and is a calculus
comprising both linear and intuitionistic terms. In this work, we give an intrinsically typed
Agda-mechanised (see Wood [2025] for the code) normalisation by evaluation (NbE) [Berger
and Schwichtenberg, 1991] procedure for LNL, using metalanguage constructs F and G to
mediate between linear and intuitionistic parts throughout the metatheory.

Overview. We give an NbE procedure based on that for Simply Typed λ-Calculus given
by Allais et al. [2017], in particular reusing the context-implicit notational style of that work.
Our model construction and reify, reflect, and evaluation functions appear to be very similar,
just with refinements to deal with linearity and modifications for the choice of object lan-
guage connectives. However, the underlying definitions and lemmas, particularly pertaining to
environments, are different and new, and are our main focus in this extended abstract.

Contexts. We take the LNL types of Benton [1994], split into linear and intuitionistic types.
We let intuitionistic contexts (Θ and Λ) be lists of intuitionistic types, and let linear contexts
(Γ and ∆) be lists of arbitrary types tagged lin or int as appropriate. The two kinds of context
can be related by ∼, with Γ ∼ Θ whenever all types in Γ are intuitionistic and Γ and Θ are
pointwise equal. Note that ∼ is functional in both directions and total from right to left.

We often consider families of sets indexed over contexts, with LFam and IFam being the
sets indexed over linear and intuitionistic contexts respectively. We have operators on LFam
and IFam called meta-connectives, coloured blue. These include the proof relevant separation
logic connectives of Rouvoet et al. [2020] — namely separating conjunction ∗, separating unit I,
and separating implication −∗ — on LFam. Acting on both LFam and IFam are the pointwise
operators ×̇ , →̇ , and ∪̇ . We also have the meta-modalities F and G of definition 1. Binders
Σ and Π stand for the dependent pair/function type formers of the ambient theory (Agda).

Definition 1 (Meta-modalities). Let F : IFam → LFam be defined by (FT ) Γ := ΣΘ. Γ ∼
Θ× T Θ, and let G : LFam→ IFam be defined by (GT ) Θ := ΣΓ. Γ ∼ Θ× T Θ.

Our first use of the meta-modalities is in defining the object-language (LNL) modalities: F
and G. The introduction forms use the corresponding meta-modalities directly, similarly to how
⊗-introduction uses ∗ directly to split the context between the two subterms. G-elimination
also uses meta-F directly, to restrict the rule’s use to purely intuitionistic contexts. However, F-
elimination does not use any meta-modalities, instead using binding of an intuitionistic variable
to cross modes. F-elimination does, nevertheless, use meta-connective ∗ to split the free linear
variables between the two premises. Each of these rules is understood to take an arbitrary
ambient linear/intuitionistic (as appropriate) context, which is the context of the conclusion.
The contexts of the premises are derived from the ambient context via the meta-connectives.

F ( ⊢I X)
FI

⊢L FX

G( ⊢L A)
GI

⊢I GA

⊢L FX ∗ intX ⊢L A
FE

⊢L A
F ( ⊢I GA)

GE
⊢L A
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Aside from modalities F and G, we have linear and intuitionistic function types, negative
intuitionistic products, and positive linear tensor products, all with rules equivalent to those of
Benton [1994, Fig. 3]. We also have linear and intuitionistic base types, with no rules.

Variables and environments. The variable judgements are defined as follows. The variable
judgements embed into their respective term judgements via the variable rules (not pictured).

Definition 2 (Variables). Let Θ ∋I X be the set of entries of Θ equal to X. Let Γ ∋L A
be a singleton if there is exactly one linear entry in Γ and that entry has type A, and empty
otherwise.

We choose very intensionally different representations of environments in the intuitionistic
and linear cases. This is partially to avoid any coincidences and sleights of hand when passing
between environment types, but also reflects the path of least resistance in each mode considered
separately. The functional definition given in definition 3 is standard, but unavailable in the
linear case without some overarching linearity condition [Wood, 2024, sec. 5.1]. These definitions
are parametrised on an intuitionistic judgement form ▷ and a linear judgement form ▶. Both
of these judgement forms are indexed on a context and a type, like the variable and term
judgement forms, where the context and type are intuitionistic for ▷ and linear for ▶.

Definition 3 (Intuitionistic environment). Let Θ
▷

=⇒I Λ := ΠX. Λ ∋I X → Θ ▷ X.

Definition 4 (Linear environment). Let (−) ▶,▷
=⇒L ∆ be defined inductively by the following

inclusions, where ∀[ T ] := ΠΓ. T Γ and (S →̇ T ) Γ := S Γ→ T Γ:

∀
[
I →̇ (−) ▶,▷

=⇒L ·
]

∀
[
(−) ▶,▷

=⇒L ∆ ∗ (−) ▶ A →̇ (−) ▶,▷
=⇒L ∆, linA

]

∀
[
(−) ▶,▷

=⇒L ∆ ∗ F ((−) ▷ X) →̇ (−) ▶,▷
=⇒L ∆, intX

]

We convert between linear and intuitionistic contexts using the following lemma. We only
convert at purely intuitionistic contexts, as enforced by the meta-modalities, so the linear value
judgement ▶ does not matter. Note that it is somewhat unusual to apply meta-connectives to
a family with its open place on the right of the environment judgements.

Lemma 5. Given linear contexts Γ,∆ and intuitionistic contexts Θ,Λ, we have a functions from

G
(
Γ

▶,▷
=⇒L (−)

)
Λ to F

(
(−) ▷

=⇒I Λ
)
Γ and from F

(
Θ

▷
=⇒I (−)

)
∆ to G

(
(−) ▶,▷

=⇒L ∆
)
Θ.

On the intuitionistic side, distribution of an environment between subterms is trivial (by
copying the whole environment). On the linear side, however, we have that an environment into
a context which splits yields a splitting of the source context and two smaller environments.

Lemma 6. If we have an environment of type Γ
▶,▷
=⇒L ∆ and ∆ splits into ∆l and ∆r, then we

have
(
(−) ▶,▷

=⇒L ∆l ∗ (−) ▶,▷
=⇒L ∆r

)
Γ. If, instead of splitting, ∆ contains no linear assump-

tions, then Γ also contains no linear assumptions, i.e., I Γ.

We use environments to define both renamings (environments in which the values are vari-
ables) and evaluation environments (environments in which the values are elements from the
NbE model). With renamings come the meta-modalities 2L and 2I , which take a family and
produce the largest family stable under renaming contained in it, as per Allais et al. [2017].

2
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NbE. Our NbE model is given by families ⊨L and ⊨I , defined below with the contexts left
implicit and manipulated via meta-connectives. Once again, meta-F and meta-G help in in-
terpreting object-F and object-G, and similar relationships hold for other meta-connectives
and types. As is standard, both function types have their interpretation coerced into being
renameable, and positive types may be interpreted as neutral terms as well as semantic values.

⊨L ιL := ⊢neL ιL ⊨I ιI := ⊢neI ιI
⊨L A⊗B := ( ⊨L A ∗ ⊨L B) ∪̇ ⊢neL A⊗B ⊨I X × Y := ⊨I X ×̇ ⊨I Y

⊨L A⊸ B := 2L ( ⊨L A −∗ ⊨L B) ⊨I X → Y := 2I ( ⊨I X →̇ ⊨I Y )

⊨L FX := F ( ⊨I X) ∪̇ ⊢neL FX ⊨I GA := G ( ⊨L A)

With these definitions, the reify and reflect functions follow largely as may be expected.

The evaluator evalL : Γ
⊨L,⊨I
=⇒L ∆→ ∆ ⊢L A→ Γ ⊨L A (and similar for the intuitionistic mode)

is somewhat more involved, and uses most of the properties and operations established about
meta-connectives (including their functoriality), environments, and renaming. Details can be
found in the associated artefact [Wood, 2025].
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When the reduction rules of type theory become part of its static semantics, it is sometimes
impossible to compute the memory size in bytes of a type during compilation. This happens
when polymorphism is present but monomorphisation is not, and in particular when dependent
types are part of the mix, since the dependency might be on runtime values.

In this ongoing work, we formulate a dependent type theory where the memory size of a type
is always known at compile-time, and thus compilation can directly target a low-level language.
Boxing is opt-in and can be avoided, leading to efficient code that enables cache locality. This
is done by indexing syntactic types by a metatheoretic type describing memory layouts: Bytes.
This leads to a notion of representation polymorphism. Unboxed data in functional languages
has been explored before [7, 6, 5], but results in overly restricted polymorphism or complex
theories with multiple levels of kinds separating values and computations, and without support
for full dependent types. Our approach is lightweight and extends to dependent types.

The staging view of two-level type theory (2LTT) [3] has been explored by Kovács in the
general setting [9] as well as in the setting of closure-free functional programming [10]. In-
spired by a note in the aforementioned works, we can embed our unboxed type theory as the
object language of a 2LTT, which allows us to write type-safe metaprograms that compute
representation-specific constructions. For example, we can formulate a universe of flat protocol
specifications in the style of Allais [2], and interpret it in the unboxed object theory. We needn’t
compromise on the usage of dependent types either; as opposed to [10], the object theory is
itself dependently typed and thus we can encode unboxed higher-order polymorphic functions
as part of the final program, because all sizes (not necessarily all types) are known after staging.

Basic setup We formulate our system in the form of a second-order generalised algebraic
theory (SOGAT) [11]. We assume a metatheoretic type of Bytes with

0, 1 : Bytes + : Bytes→ Bytes→ Bytes ptr : Bytes × : Nat→ Bytes→ Bytes .

The constant ptr defines the size of a pointer. Any model of the signature above will suffice;
such a model might encode a sophisticated layout algorithm with padding, for example.

To begin with, types are indexed by bytes:1 Ty : Bytes→ Set. We have the following basic
type and term formers:

U : Bytes→ Ty 0 Tm Ub = Ty b

� : Ty b→ Ty ptr box : Tm �A ' Tm A : unbox .

The universe Ub describes types whose inhabitants take up b bytes, with a Grothendiek-style
identification Tm Ub = Ty b. The � type former takes sized types to types which box their
contents. In other words, for a type A of some size a, an inhabitant of data of �A will be
stored on the heap behind a pointer indirection. On the other hand, an inhabitant of A will
be stored inline on the stack, since it is known that A takes up exactly a bytes. Codes for
types of any kind take up no space at runtime because they are erased. Additionally, we have

1For brevity we will not regard issues of universe sizing, but this can be accomodated without issue.
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boxing and unboxing operators for types of a known size. Since we present this as a second-
order theory, we can mechanically derive its first-order presentation [8], with explicit contexts.
There, contexts Γ record the size of each type, such that b(Γ) : Bytes can be defined as the
sum of the sizes of its types. The action of substitutions on types does not vary their sizes:
−[−] : Ty Γ b→ Sub ∆ Γ→ Ty ∆ b.

Functions and unboxed pairs This setup can be augmented with Π and Σ types, where
the dependency is uniform with respect to layout:

Π : (A : Ty a)→ (Tm A→ Ty b)→ Ty ptr

Σ : (A : Ty a)→ (Tm A→ Ty b)→ Ty (a+ b) .

For functions, we store a pointer to an allocation containing both code and data. Alternatively,
we could separate the two by sizing functions as ptr + ptr. Conversely, pairs are stored inline;
their size is the sum of the sizes of their components. The term formers remain unchanged.

It could be desirable to have a function type with unboxed captures, which might look like

Πk : (A : Ty a)→ (Tm A→ Ty b)→ (ptr + k) ,

annotated with the size of its captures k. This is not expressible as a second-order construct
because its term former must know about captured variables: λ : (ρ : Sub Γ ∆) → Tm (∆ �

A) B → Tm Γ (Πb(∆) A B)[ρ]. This also means it is not immediately compatible with 2LTT.
We leave this as future work, which would likely involve a modality for closed object terms.

First-class byte values with staging This type theory can be embedded as an object
language O of a 2LTT. On the meta level, we have a type former B : Ty1 of byte values, and
term formers that mirror Bytes. In an empty context, in the first-order formulation, we get
an evaluation function ev : Tm1 • B → Bytes. Adding Π types to the meta language allows
abstraction over byte values. Moreover, the meta level has a type former ⇑b: Ty0 b → Ty1 for
embedding (B : Tm1 B)-sized types from the object fragment. If the final program is of the
form p : Tm1 • (⇑k A), after staging we get an object term of size ev k.

Example: Maybe as a tagged union Let’s take a look at how to define the Maybe type
internally in such a way that its data is stored contiguously as a tagged union without indirec-
tions.2. We assume access to a type Pad b : Ub which is the unit type that takes up b bytes,
with sole constructor pad akin to tt, and Bool : U1 which takes up a single byte:

Maybe : (T : Ub)→ U1+b

Maybe T = (x : Bool)× if x then T else Pad b

nothing : {T : Ub} → Maybe T just : {T : Ub} → T → Maybe T

nothing = (false, pad) just = λ t. (true, t)

Computational irrelevance and runtime-sized data Annotating object-level types with
bytes provides a convenient way to handle computational irrelevance without further modifying
the structure of contexts. This is possible through a monadic modality

| − | : Ty b→ Ty 0 ‖ − ‖ : Tm A→ Tm |A|
2This is similar to the approach of languages such as Rust [1].

2
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which is idempotent by (A : Ty 0) → |A| = A, extending to all zero-sized types. It also has
an appropriate eliminator form. With this we can reproduce, for example, quantitative type
theory instantiated with the {0, ω} semiring [4]. This means that we can now use object-level
types which are entirely erased: reverse : {n : |Nat|} → Vect T n→ Vect T n.

Additionally, we often want to handle data whose size is not known at compile-time, but
is known at runtime; most commonly, heap-backed arrays, but also other dynamically-sized
flat data structures. This is achievable by indexing the universe U by partially-static [12] byte
values. Object-level types Ty b are now identified only with Usta b where sta : Tm1 B→ Tm1 BPS.
We can then add appropriate type formers to the theory for the construction of runtime-sized
data such as pairs. Their inhabitants cannot directly be stored on the stack, but they can be
constructed and manipulated on the heap. To do this, boxing is relaxed to allow runtime-sized
data, and we must have a type for ‘generating’ unsized data. We plan on presenting examples
of this in our presentation.

Formalisation, semantics and implementation We have formalised most parts of the
sketched system by a shallow embedding in Agda, including the irrelevance modality. We have
also formulated a semantics in terms of an untyped lambda calculus which is nevertheless sized
just like the system we presented. Crucially, the sizes of all constructs in this target language
must be non-zero, which forces us to translate away all zero-sized types. This justifies the
irrelevance modality as well as the erased codes for types. We are currently working on a
proof-of-concept implementation that targets LLVM.

Acknowledgements We thank the anonymous reviewers for their helpful comments on the
presentation of the system and the interaction of Πk and 2LTT.
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In graded modal type theories the type system is parameterized by an algebraic structure,
typically some form of semiring, containing grades. One use of grades, which we focus on, is to
encode quantitative aspects like erasure, linear types, and affine types [3, 4, 5, 6].

In previous work, we have developed an Agda formalization of a graded modal type theory
with dependent types [1] supporting Π-types, strong and weak Σ-types, an empty type, natural
numbers, and a universe. Certain parts of the syntax, notably lambda abstractions and appli-
cations, are annotated with grades corresponding to how many times some part of the program,
in this case the function argument, is used. This is checked primarily by a form of typing for
grades, the usage relation γ ▶ t between a grading context γ and an expression t. Here is a
selection of rules (note that our formalization uses de Bruijn indices instead of variables):

0. x :1.0 ▶ x

γ. x :p ▶ t

γ ▶ λpx.t

γ ▶ t δ ▶ u

γ + pδ ▶ tpu 0 ▶ zero

γ ▶ t

γ ▶ suc t

γ ▶ t

δ ▶ t
δ ≤ γ

In essence, the relation counts the uses of the free variables of t in terms of the operators of the
semiring, lifted pointwise to contexts γ. Usage counting is not necessarily exact: the semiring is
equipped with an order relation interpreted as usage subsumption or compatibility—a variable
that is used p times can also be considered to be used q times if q ≤ p. We proved key properties
for usage such as a substitution lemma and subject reduction, and showed correctness of erasure,
in the sense that parts marked as erasable can be safely removed during compilation.

Building on this work, we extend the formalization [2] with a correctness proof that goes
beyond erasure: we prove that variables are used as many times as specified when a program is
evaluated. Our approach is based on the work of Choudhury et al. [4] and involves a heap-based
abstract machine with the capability to track how many times lookups may be performed. In
contrast to their formulation, our machine uses an explicit stack of continuations. We also
fix a problem with the usage relation in our previous work [1]: variable usage was sometimes
handled incorrectly for natrec, the eliminator for natural numbers. As an example, our previous
method allowed the program λ1n.plus n n to be considered linear (here plus denotes addition
for natural numbers, defined in a standard way).

In natrecrp (xn.A) z (xp.xr.s) n, the arguments z and s are the zero and suc branches, re-
spectively, and n is the natural number argument. The s argument binds two variables, xp,
corresponding to the predecessor of the natural number, and xr, corresponding to the recursive
call. These are assigned the grades p and r, respectively (predecessor and recursive call). There
is also an explicit motive A dependent on the eliminated number (bound as xn).

In order to find a correct usage count for natrec we make the following ansatz (which comes
from following the structure of e.g. the eliminator for pairs):

γz ▶ z γs. xp :p. xr :r ▶ s γn ▶ n

qγn + δ ▶ natrecrp (xn.A) z (xp.xr.s) n
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Here q is some grade indicating the number of copies of n that are used and δ is a context
representing the usage contributions from z and s. The main difficulty in finding proper values
for q and δ comes from the recursion: whatever usage counts we choose to assign, they should
work for all values of n, i.e. regardless of how deep the recursion is.

Let δi be the usage contribution from z and s for the number i. First, δ0 corresponds to
the zero case where only z is used, so we get δ0 = γz. Similarly, δi+1 corresponds to a successor
case which uses s once (with γs resources) and the recursive call r times (up to subsumption).
A single recursive call uses δi resources, so we get δi+1 = γs + rδi. Now we let δ be the
approximation that we get by taking the infimum of the δi (for i ∈ N): if such an infimum does
not exist then natrecrp (xn.A) z (xp.xr.s) n is not considered to be well-resourced.

Analogously, we obtain q as the infimum of the sequence qi, where q0 = 1 since in the base
case n is “consumed fully” by the match, and qi+1 = p + rqi since n is used p times by s and
the recursive call is again used r times.

With this usage rule, we can show the same substitution, subject reduction and erasure
correctness properties as before [1] (for semirings with well-behaved greatest lower bounds).
However, it also allows us to show a more precise form of resource correctness, stated using an
abstract machine with a heap and a stack.

A machine state ⟨H; t; ρ; S⟩ consists of a heap H, head t, environment ρ, and stack S.
Environments map variable names to pointers (again, note that our formalization uses de Bruijn
indices instead of variables, we have not proved that the rules involving variables below actually
work). Heap entries x 7→p (t, ρ) are associated with a grade p, indicating how many times lookup
may be performed. They also contain an environment ρ that maps the variable names of t to
the pointers of the heap. The evaluation stack S is a list of continuations that represent the
context “around” the term that is currently being evaluated (the head). Like entries, each
continuation contains an environment mapping variables to pointers. Reduction is performed
in a call-by-name style; these are the rules for the lambda calculus part:

⟨H. ρ(x) 7→p (t, ρ′). H ′; x; ρ; S⟩ → ⟨H. ρ(x) 7→q (t, ρ′). H ′; t; ρ′; S⟩ if p− |S| = q

⟨H; tpu; ρ; S⟩ → ⟨H; t; ρ; •pu[ρ]. S⟩
⟨H; λpx.t; ρ; •pu[ρ′]. S⟩ → ⟨H. y 7→|S|p (u, ρ′); t; ρ[x 7→ y]; S⟩ y ̸∈ H

For variables, a lookup is performed and the grade of the corresponding entry is updated,
indicating that some allowed lookups have been “used”. We do not require the semiring to be
equipped with subtraction (i.e. to be a ring) and instead define a form of “partial” subtraction
via the relation p− q = r, defined to hold if r is the least grade such that p ≤ r+ q (we require
that if there is such an r then there is a least one). Because an eliminator is not necessarily
linear in its scrutinee, a given lookup might “consume” multiple copies. For instance, for
natrecrp (xn.A)z (xp.xr.s)n the grade q is assigned to the argument n (where q is the infimum of
1, r+p, r2+rp+p, and so on), so the machine is set up so that when natrecrp (xn.A)z (xp.xr.s)x
is evaluated (in an empty stack) the lookup of x consumes q copies. The stack could contain
several eliminators, so the variable rule uses |S|, a grade associated to all the eliminators in S
(note that this grade might not be defined if some infimum does not exist).

The non-variable cases are mainly concerned with the stack. For eliminators like applications
and natrec, a corresponding continuation is put on the stack and evaluation continues with the
scrutinee. If the result is a compatible value, then the continuation is removed from the stack
and zero or more new entries are added to the heap. The number of allowed lookups |S|p for
a new heap entry is given by a corresponding annotation p on the syntax, scaled by the stack
multiplicity |S|.

2
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We show termination: evaluation of a well-resourced term of type N, starting with an empty
heap and stack, will reach a final state with a numeral in head position and an empty stack.
This implies that evaluation does not use variables more times than specified, since doing so
is prevented by the reduction semantics. We also show that variables are not used fewer times
than specified: the final heap does not contain any entries for which lookups are “necessary”.
For instance, if the linearity semiring is used, then there is no heap entry with the grade 1.

Acknowledgements. We would like to thank the reviewers. Andreas Abel and Oskar Eriks-
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Dependently typed programming language manipulate types, but types aren’t enough to rep-
resent the general interface of programs. An Application Programming Interface (API) isn’t
defined using a type, but a container [2] instead. Defining APIs this way allows a declarative
style of programming where manipulating APIs is the primary tool for building software. There
already exist tools that represent APIs in software, for example the OpenAPI standard [1], or
command-line interface DSLs. But we have no way of relating those two APIs. Containers and
their morphisms give us the tools to talk about APIs in a principled ways and design complex
software in a modular way.

APIs as Containers, What?
Containers defined as a pair of shape and positions can be reinterpreted as a pair of query and
response (𝑞𝑢𝑒𝑟𝑦 ∶ 𝑆𝑒𝑡� 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∶ 𝑞𝑢𝑒𝑟𝑦 → 𝑆𝑒𝑡). With this interpretation, monoidal operators
like coproducts (+), tensors (×), composition (∘), perfectly represent valid operations on APIs.

A coproduct of APIs (𝑞𝑢𝑒𝑟𝑦1 �𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1)+(𝑞𝑢𝑒𝑟𝑦2 �𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2) constructs an API that gives
the choice of what query to send 𝑞𝑢𝑒𝑟𝑦1 +𝑞𝑢𝑒𝑟𝑦2 and return a response that matches the query
that was send [𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2].
A tensor of APIs (𝑞𝑢𝑒𝑟𝑦1 � 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1) × (𝑞𝑢𝑒𝑟𝑦2 � 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2) produces an API that expects
both queries at once, and returns both response at the same time (𝑞𝑢𝑒𝑟𝑦1×𝑞𝑢𝑒𝑟𝑦2�𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1×
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2).
The composition of APIs (𝑞𝑢𝑒𝑟𝑦1�𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1)∘(𝑞𝑢𝑒𝑟𝑦2�𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒2) defines a specific sequence
of operations starting with 𝑞𝑢𝑒𝑟𝑦1 and depending on its response, sending another query 𝑞𝑢𝑒𝑟𝑦2,
from which we derive the response for both ((𝑞, 𝑘) ∶ Σ(𝑞 ∶ 𝑞𝑢𝑒𝑟𝑦1).𝑟𝑒𝑝𝑜𝑛𝑠𝑒1(𝑞) → 𝑞𝑢𝑒𝑟𝑦2 �Σ(𝑟 ∶
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒1(𝑞)).𝑟𝑒𝑝𝑜𝑛𝑠𝑒2(𝑘(𝑟))

An example could help here
For sure! Let’s say we are working with the movie database. It advertises a GET endpoint with
path /movie/{movie_id} and this endpoint return responses 200 OK with a JSON content
body representing the movie’s data. This API can be equally represented as the container
Info = (movie_id�Movie). Another endpoint GET /movie/{movie_id}/alternative_titles
returns a list of titles given a movie id, so as a container it can be represented as Titles =
(movie_id � List Title). A server exposing this API gives any client the choice of what
endpoint to call, and therefore, can be represented as the container Info+Titles ≡ (movie_id�
Movie) + (movie_id � List Title).

What About Morphisms?
Morphisms of APIs tell us how to delegate from a higher-level API to a more specialised
one. For example, a command line interface is an API represented with a container CLI =

https://www.themoviedb.org
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Mouse event
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SQL query
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UI Client Server Database

Figure 1: An illustration of a compositional pipeline of API morphisms. Containers are the
vertical interstices between colors, the color blocks are container morphisms. The lifecycle of a
single interaction can be read clockwise starting from the UI.

(List String � String) indicating that it expects a list of string as input and returns a string
to print as output. A morphism CLI ⇒⇒ DB converts messages from List String into database
queries and, converts back responses from Table to String to print in the standard output.

Reusing the example of the movie database, if we want to create a program that exposes a
command-line interface and forwards requests to the movie database, we could conceptualise
this program as the morphism CLI =>> Info + Titles. Such morphisms in inhabited by two
maps, one to convert command-line arguments to requests:

parseArgs : List String -> Movie_id + Movie_id

And one to convert http responses into strings we can display in the terminal:

convertResponses : Movie + List Title -> String

Those two functions can be combined in a single container morphism:

app : CLI =>> Info + Titles
app = !! \x => parseArgs x ## convertResponses

Surely This Can’t Deal With Effects, Can It?
Yes it can! In fact there are many ways to express effectful computation with containers, the
most common effects, non-determinism, and failure, can be represented as a List and Maybe
monad [6] on containers.

The Maybe monad on container is defined by 𝑀𝑎𝑦𝑏𝑒(𝑞 � 𝑟) = (𝑀𝑎𝑦𝑏𝑒 𝑞 � 𝐴𝑛𝑦 𝑟) and the list
monad on container is defined by 𝐿𝑖𝑠𝑡(𝑞 � 𝑟) = (𝐿𝑖𝑠𝑡 𝑞 � 𝐴𝑙𝑙 𝑟).
Something like the previous mapping parsing command-line argument can now be written using
the Maybe monad on containers to accurately represent the fact that parsing might fail: app :
CLI =>> Maybe (Info + Title).

Additionally, we can perform effect like 𝐼𝑂 by mapping the responses of a container with
the (•) operation which applies a monad on types to turn it into a comonad on containers:
𝑓 • (𝑞 � 𝑟) = (𝑞 � 𝑓 ∘ 𝑟). For example a program that prints its output can be seen as the
morphism IO • (𝑆𝑡𝑟𝑖𝑛𝑔 � ()) ⇒⇒ (String � 𝑆𝑡𝑟𝑖𝑛𝑔) where the forward map is an identity and
the backward map is given by putStrLn : String -> IO (), this is an example of a monadic
lens [3].
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I Get the Idea, But How Do You Even Run Those Things?
A container morphisms which codomain is the monoidal unit can be converted into a function
from its query to its response. The function 𝑐𝑜𝑠𝑡𝑎𝑡𝑒 ∶ (𝑞�𝑟) ⇒⇒ 𝐼 → (𝑥 ∶ 𝑞) → 𝑟(𝑥) does exactly
that. Those leaf morphisms represent computation that can be done immediately and are often
found the end of a long sequence of API transformations converting APIs into increasingly
simpler ones. Typically, sending an HTTP request amounts to implementing the morphism
HTTP ⇒⇒ 𝐼 , likewise for database queries and their responses DB ⇒⇒ 𝐼

Conclusion
Implementing containers in a dependently-typed programming language we can create a library
which sole purpose is to describe API-level architecture. There are many use-cases for such a
library and architecture, including server development, command-line tools, compilers, microser-
vices, and more. We chose Idris [4, 5] for its package manager, ecosystem of low-level libraries,
and flexible FFI.
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Setoid models of type theory were designed by Hofmann [5] in order to add function ex-
tensionality, proposition extensionality, and quotient types to intensional type theory. Unfor-
tunately, Hofmann’s first setoid model does not support true type dependency, and his second
setoid model does not support all the computation rules of type theory. Altenkirch [1] improved
the definition of setoids by putting the setoid equalities in a sort of strict propositions (SProp),
which allowed him to support dependent types. A few years later down the line, Altenkirch,
Boulier, Kaposi, Sattler and Sestini constructed a universe of setoids for Altenkirch’s model [2].
They give three different definitions of their universe: one which needs induction-recursion, one
which needs induction-induction, and finally one which only requires an identity type with a
strengthened J rule.

In this abstract, we propose a new construction for the setoid universe which only needs
indexed inductive families. Furthermore, we note that our construction still works (more or
less) when the equality of the setoids is taken to be in Prop or Type instead of SProp, resulting
in models that can be equipped with choice principles. Our construction is fully formalised in
Rocq, and is available at https://github.com/loic-p/setoid-universe.

1 The Universe of Setoids
The most natural construction for the setoid universe is via induction-recursion: one defines
a type of codes U0 along with three recursive functions eqU0, El0 and eq0 that respectively
represent the setoid equality between the codes, the universal family of small setoids and its
(heterogeneous) equality:

U0 : Type1 El0 : U0 → Type0
eqU0 : U0 → U0 → Sort1 eq0 : ∀ (A B : U0), El0 A → El0 B → Sort0

Note that we use an indeterminate sort Sorti for the equality relations of our setoids, so that
we may later instantiate it with either SProp, Prop or Typei. Anyway, we do not wish to use
induction-recursion, so we must find a way to eliminate it from the construction. The canonical
method is Hancock et al.’s small induction-recursion [4], but it does not apply in this case: not
only do the recursive functions eqU0 and eq0 have two arguments of type U0 instead of one, but
the return type of eqU0 is not even small (at least in the case where Sorti = Typei).

Instead, we start by defining an overapproximation preU0 for our setoid universe, with a
constructor for dependent products that is parametrised by arbitrary equality relations on A
and P and does not enforce P to be a setoid morphism (Fig. 1). This way, the definition of
preU0 is not mutual with the definition of eq0 and eqU0 anymore, and it fits in the framework
of small induction-recursion. Then, as a second step, we define the equality relations eq0 and
eqU0 on the overapproximated universe, using the same definitions as in the usual inductive-
recursive version. Next, we define an inductive predicate extU0 that carves out the codes
from preU0 which have a counterpart in the inductive-recursive definition. More specifically,
it ensures that that the dependent codomains that appear in preΠ and preΣ are proper setoid
morphisms from the domains into the universe, and that the codes for dependent products have

https://github.com/loic-p/setoid-universe
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Inductive preU0 : Type1 :=
| preN : preU0
| preΣ : ∀ (A : preU0) (P : El0 A → preU0), preU0
| preΠ : ∀ (A : preU0) (Aeq : El0 A → El0 A → Sort0)

(P : El0 A → preU0) (Peq : ∀ a0 a1, El0 (P a0) → El0 (P a1) → Sort0), preU0.

Fixpoint El0 (A : preU0) : Type0 :=
match A with
| preN ⇒ N
| preΣ A P ⇒ Σ (a : El0 A), El0 (P a)
| preΠ A Aeq P Peq ⇒ Σ (f : ∀ (a : El0 A), El0 (P a)), (∀ a a’, Aeq a a’ → Peq (f a) (f a’))
end.

Figure 1: Small inductive-recursive definition of an overapproximated universe.

been parametrised with the equality relations defined by eq0. Finally, we can put everything
together: the carrier type of our universal setoid is defined as U0 := Σ (A : preU0). extU0 A, its
setoid equality is given by eqU0 on the first component, the universal dependent family on the
universe is provided by El0, and the heterogeneous equality on that family is given by eq0. This
roundabout encoding is actually faithful to the original inductive-recursive definition, as we can
derive the same induction principle with its computation rules, and the three functions El0,
eqU0 and eq0 compute on type formers.

In order to complete the definition of our universal setoid, we can show by induction that
the equality relation eqU0 is an equivalence relation on U0, and that the relation eq0 is a hetero-
geneous equality equipped with a coercion operator:

cast : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), El0 B
casteq : ∀ (A B : U0) (e : eqU0 A B) (a : El0 A), eq0 A B a (cast A B e a)

The accompanying Rocq development also includes W types, a subuniverse of propositions, an
equality type, two universe levels, quotient types, and an accessibility predicate with its large
elimination principle.

2 Choice principles
SProp setoids Instantiating the construction with SProp results in a universe that fits nicely
in Altenkirch’s setoid model, and does not need anything fancy from our metatheory. This
provides a shallow embedding of MLTT + extensionality + quotients into MLTT + SProp, which
preserves all the computation rules of MLTT. Note that even though the computation rule of
the J eliminator for eq0 is only propositional, one can nevertheless define an inductive equality
in U0 which is equivalent to eq0 and for which J does compute on reflexivity [8].

Type setoids The situation is even more interesting if we try to instantiate the construction
with Type. In that case, we can additionally interpret the following principle in our model,
which says that any relation that is propositionally a functional relation determines a function
(this principle is sometimes called unique choice):

∀ (a : A), ∥Σ (b : B), (R a b) × (∀ c, R a c → c = b) ∥
→ Σ (f : A → B), ∀ (a : A), R a (f a).
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And there’s more: since the equality relation on the setoid of natural numbers coincides with
the meta-theoretic equality on its underlying set, a function from N to any other setoid is
automatically a setoid morphism. As a consequence, one can interpret countable choice and
even dependent choice in this new model.

ACN : (∀ (n : N), ∥ P n ∥) → ∥ ∀ (n : N), P n ∥
DC : (∀ (a : X), ∥Σ (b : X), R a b ∥) → ∥Σ (s : N → X), ∀ n, R n (n+1) ∥

Unfortunately, there is a price to pay: if we try to do a setoid model without definitional proof
irrelevance, the computation rules for substitution under binders do not hold definitionally. In
particular, this means that our construction can no longer be viewed as a shallow embedding
from an extension of MLTT to MLTT, since some definitional equalities are only interpreted as
setoid equalities. This phenomenon has already been pointed out in a note of Coquand [3], in
which he presents proof-relevant setoids as a model for an early version of MLTT which had
weaker computation rules [6, 7].

Prop setoids If we instantiate our construction with Prop instead, we can have a sort of
impredicative propositions without destroying the computational content of propositions. In
particular, it allows us to have large elimination for the Prop-valued accessibility predicate. As
a consequence, we can derive a version of unique choice which is restricted to decidable relations
R : A → N → Prop. The resulting theory is extensional but keeps the proof-theoretic strength
of CIC, which is much higher than the strength of MLTT+SProp. However, neither the full
principle of unique choice nor countable choice are provable in this model, and the computation
rules for binders are not definitional either.
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Abstract

We note that Weihrauch problems can be regarded as containers over the category of
projective represented spaces and that Weihrauch reductions correspond exactly to con-
tainer morphisms. We also show that Bauer’s extended Weihrauch degrees and the posetal
reflection of containers over partition assemblies are equivalent. Using this characteriza-
tion, we show how a number of operators over Weihrauch degrees, such as the composition
product, also arise naturally from the abstract theory of polynomial functors.

The content discussed in this abstract is from [13].

Weihrauch Reducibility Weihrauch reducibility is a framework from computable analy-
sis for comparing the computational strength of partial multi-valued functions over Baire space,
i.e., relations on NN, which are thus called Weihrauch problems. Intuitively, a problem P is re-
ducible to a problem Q, written P ≤W G, if we can compute P given an oracle for Q that can
be called once.

Definition 1 ([10]). If P and G are two Weihrauch problems, P is said to be Weihrauch
reducible to G if there exist partial type 2 computable1 maps φ and ψ such that φ is a map
dom(P ) → dom(G) and for every i ∈ dom(P ) and j ∈ G(φ(i)), ψ(i, j) is defined and belongs
to P (i).

Example 1. We can encode the following as Weihrauch problems:

• LPO (“given a bit sequence, tell me if it has a 1”), defined by

LPO(p) = {0ω | p = 0ω} ∪ {1ω | p ∈ {0, 1}N, p ̸= 0ω}

• KL: “given an infinite finitely branching tree t, give me an infinite path through t” can
also be encoded as a Weihrauch problem, modulo a standard embedding 2N

<ω

↪→ NN.

LPO is Weihrauch reducible to KL, but not KL is not reducible to LPO.

i ∈ dom(P ) k ∈ dom(R)
φ γ

t ∈ Rk

ψ θ
φ

r ∈ Pi

φ
j ∈ dom(Q)

ψ

γ
i ∈ dom(P )

θ
s ∈ Qj

k ∈ dom(R)

t ∈ Rk

=

r ∈ Pi

Since Weihrauch reductions compose as depicted above, Weihrauch problems and reductions
form a preorder. The equivalence classes (called Weihrauch degrees) form a distributive lattice,
where meets and joins can be regarded as natural operators on problems: the join P ⊔Q allows
to ask a question either to P or Q and get the relevant answer, while P ⊓Q requires to ask one

1Type-2 computable maps are partial computable stream transformers NN → NN.
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question to each and get only one answer. Many other natural operators have been introduced
on the Weihrauch lattice, including a parallel product P ×Q (ask questions to both P and Q,
get both answers), a composition operator P ⋆ Q (ask a question to Q and then, depending
on the answer you got, a question to P ) and many others, including residuals and fixpoints of
other operators [5, Definition 1.2].

Containers Intuitively, a container in a category C is a family of objects of C indexed
by an object of C. Since objects of C are not necessarily sets, to make this formal, we define
containers as objects of C/I . Morphisms of containers are defined as follows.

Definition 2. A morphism representative from a container P : X → U to Q : Y → V is a pair
(φ,ψ) making the following diagram commute, the rightmost square being a pullback:

X
∑
u∈U

Yφ(u) Y

U U V

P

ψ

⌟
Q

φ

A morphism of containers is an equivalence class of morphism representatives.

The category of containers crops up in several places in the literature on functional program-
ming and mathematics and are sometimes referred to as polynomials or dependent lenses [1, 6,
17]. It is a “category of abundance”, having four monoidal structures (products, coproducts, ⊗,
and a composition ◦) and many other desirable properties [11, 14].

Contributions The representation of container morphisms into a “forward map” ϕ and
a family of “backward maps” ψ, as well as similar types of algebraic structures in the poset of
Weihrauch degrees and the category of containers suggests a strong relation between the two.
Our main contribution is to make that connection formal: Weihrauch degrees are isomorphic
to the posetal reflection of the full subcategory of answerable containers over the category
pMod(Krec

2 ,K2) of partitioned represented spaces and (type 2) computable functions. This is
technically straightforward: one regards a container P : X → U as the problem of finding a
section to P and morphisms as reductions between problems. P being answerable intuitively
means that a (possibly non-computable!) section of P exists at all2.

Thus a similar correspondence also applies to close variants such as continuous Weihrauch
reducibility and extended Weihrauch degrees [3]. Our most recent ongoing work is characterising
strong Weihrauch reducibility in a similar way via dependent adaptors3.

Coproducts and products of containers correspond to the lattice operators in the Weihrauch
degrees. The tensor product ⊗ of containers corresponds to the parallel product of Weihrauch
degrees. The treatment of composition of containers and composition of Weihrauch degrees
is trickier. The reason for this is that Weihrauch problem correspond to containers over a
category which is only weakly (locally) cartesian closed. This means that we while we may
define a composition operator, it will only be a quasi-bifunctor.

A summary of the current state of what we know and conjecture is given in table 1, for
details see our preprint [13].

2In general, starting from any category C with pullbacks, we can say that P is answerable iff it is a pullback-
stable epimorphism and derive the expected basic properties of ×,+ and ⊗ [13, §4.1].

3We adopt the definition and terminology from a seminar talk given by Hedges [4] – we are currently not
aware of another citable source where the notion might have been spelled out.
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Containers Reduciblity Status
Answerable containers over pMod(Krec

2 ,K2) Weihrauch problems ✓
Containers over pAsm(Krec

2 ,K2) Extended Weihrauch problems ✓
Dependent adaptors over pMod(Krec

2 ,K2) Strong Weihrauch problems ✓
Product p× q Meet p ⊓ q ✓
Coproduct p+ q Join p ⊔ q ✓
Tensor product p⊗ q Parallel product p× q ✓
Composition product p ◁ q Composition product p ⋆ q ✓*
Free monad on p Iterated composition product p⋄
Closed structures ⊸,⇒ ?
Derivative ∂p ?
? First-order part 1p
? Deterministic part det(p)
. . . . . .

Table 1: Relating container concepts to reducibility concepts.

Related work The idea of regarding a bundle as a problem to be solved by finding one
of its section is an old one that predates the “container” terminology. For instance, Hirsch [7,
Definition 3.4] defines an equivalent category to study the topological complexity of problems
and reductions between those. This perspective also already appeared in the literature on
Weihrauch problems (see for instance [9, Remark 2.8]), although most of the recent efforts we
are aware of to “categorify” Weihrauch reducibility and operators on problems tend to use other
tools instead.

One natural categorical construction that captured Weihrauch degrees that appeared in
the literature is the restriction of Bauer’s extended Weihrauch problems [3] to objects that
are actually Weihrauch problems, which are characterized as the ¬¬-dense predicates over
modest sets. Interestingly, Ahman and Bauer also linked extended Weihrauch reducibility to
containers [2], but by way of the more general notion of instance reducibility that works over
families of truth values. while here we work directly with bundles of partitioned assemblies.

Trotta et. al. also formally linked (extended) Weihrauch reducibility with the Dialectica
interpretation [15], which can be regarded bicompletions of fibrations by simple products and
sums [8]. Aside from the fact that they work in a posetal setting throughout, it is interesting
to note that the category of containers over C can be recovered by completing the terminal
fibration over C by arbitrary products and then sums and taking the fiber over 1. The Dialectica
interpretation was also used by Uftring [16] to capture Weihrauch reducibility in a syntactic
way in a substructural arithmetic.

Pauly also studied a generic notion of reducibility that encompasses Weihrauch reducibility,
starting from categories of multivalued functions [12], in which he derived the lattice operators
as well as finite parallelizations in a generic way.

Acknowledgement We thank the anonymous reviewers, Arno Pauly and Takayuki Ki-
hara for their comments on this work.
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Abstract

While tensors are an important computational device, for example in machine learn-
ing [3] or physics [4], it seems type theory has had little to say about them. This work in
progress is predicated on two principles widely accepted within the Types community: i)
compositionality is a key approach enabling the construction of complex structures from
simpler, and hence easier to define, structures; and ii) containers have an extremely rich
compositional algebra [1]. Given these observations, one might wonder if containers can be
used to develop a compositional approach to tensors and that is exactly what this abstract
does.

1 Introduction

Tensors are actively used in many unrelated areas of computer science and mathematics. There
are at least two ways to understand them. On the one hand, they are just multi-dimensional
arrays, and this is the angle taken in array languages such as APL. On the other hand, tensors
generalise matrices in the following way. If matrix is a normal form for linear functions, where
matrix multiplication is function composition, tensors are normal forms for multi-linear maps
from sets of vector and co-vector spaces into the underlying field. In both cases, tensors and
their operations expose a lot of structure that is interesting to study in the context of type
theory.

Despite their importance, tensor algebra tends to be seen as a tool with fairly concrete
representation based on the manipulation of lists of natural number-valued indices — structure-
preserving tensor operations are thus formalised via list-theoretic computation. While good for
fast implementations, this approach suffers from a lack of high-level abstraction common to all
modern development in type theory. As a result, proving properties of tensor inside systems
such as Agda or Coq is rather cumbersome. We developed a container-based approach to tensors
where properties of tensor operations are mapped onto well-known type-theoretic constructions.
This is still a work in progress, but the clean and general treatment of, for example, reshaping
via container morphisms, makes us confident this approach has something to bring.

Containers Containers [1] (also known as polynomial functors [2]) were introduced to study
concrete data types. This is a powerful construction as it captures the notion of strictly positive
data types, and it is closed under operations such as disjoint sum, product and many others. A
container is a pair (S, P ) where S : Set and P : S → Set. The set S is called the set of shapes
and can be thought of as the constructors of a data type. Each constructor/shape s ∈ S has
an arity P s which we call the positions of that shape. A container (S, P ) is a presentation of
the functor [[S, P ]] : Set→ Set defined by

[[S, P ]] X = (Σs : S)P s→ X

Elements in [[S, P ]] X intuitively consist of the choice of a constructor and an assignment of
a piece of data (here, X) to every position of that constructor. The fundamental theorem of
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containers is a classification of the natural transformations between those: a natural transfor-
mation f : [[S, P ]] → [[Q,R]] is uniquely given by: i) a function on shapes u : S → Q; and
ii) a contravariant re-indexing t : (Πs : S) (R (u s) → P s). Such pairs are called container
morphisms and form a category Cont of containers.

Containers are known to support a large number of constructions making them good for
compositional modelling. We use the coproduct which is defined as follows. Let (S, P ) and
(S′, P ′) be containers. Their coproduct has shapes S + S′ with positions the cotuple [P, P ′].

2 From Containers to Tensors

We change the usual perspective on containers by writing (A, I) to reflect i) A : Set will
correspond to the set of axes (or dimensions) of a tensor; and ii) I : A → Set assigns to a
specific axis a : A, a set of indexes I a on that axis. Consider a traditional two-dimensional
(n ×m)-matrix which can be given as A = 2, I (inl ∗) = Fin n and I (inr ∗) = Fin m. With
A : Set, there is no order on axes and hence we don’t need the complication of re-ordering axes.
Note that to get (n×m) matrices, the usual interpretation of containers needs to be changed:

[[A, I]]Π X = (Π A I)→ X

Note that [[−]]Π : Cont → [Set,Set] is very different from the usual container interpretation.
It is functorial and indeed [[−]]Π = Y ◦ Π where Y is the Yoneda embedding. While [[−]]Π
does not have the full range of compositional operators supported by [[−]], we do have: i)
[[M ]]Π ◦ [[N ]]Π = [[M + N ]]Π; and ii) [[M ]]Π X × [[N ]]Π Y → [[M ]]Π (X × Y ). These properties
give rise to the pair, nest/unnest,map combinators:

pair : [[M ]]Π X → [[M ]]Π Y → [[M ]]Π (X × Y )

nest : [[M +M ′]]Π X ∼= [[M ]]Π ([[M ′]]Π X) : unnest map : (X → Y )→ [[M ]]Π X → [[M ]]Π Y

Reshaping is an important operation in array languages. Reshaping turns structural changes
in shapes into actions on arrays, and it can be used to guide recursive traversals through array
elements [5]. For tensors, reshaping can be given by container morphism and their action is
defined as follows:

reshape : Cont(M,M ′)→ [[M ]]Π X → [[M ′]]Π X

Tensor contraction is one of the key operation in tensor calculus, and we can define this as
follows:

matmul : [[M1 +M2]]Π X → [[M2 +M3]]Π X → [[M1 +M3]]Π X

under the assumption that M2 is finite and X is a ring. This operation also gives rise to the
category of Tensors where objects are containers, morphisms from s to p are [[s + p]]Π X, and
composition is given by matmul. Note that under this interpretation [[s + p]]Π X is a tensor
of s co-vectors and p (contravariant) vectors. Empty container 0 and the singleton container
1 give rise to singleton tensors which are usually referred as scalars. Any [[s]]Π X can be
turned into a “column vector” [[s + 1]]Π X or a “row vector” [[1 + s]]Π X. Here distinction
between vectors and co-vectors is not as strong as in the actual tensor calculus, but we have
the structure to make it precise. Our work-in-progress formalisation can be found at https:
//github.com/ashinkarov/2025-types.
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Abstract

We explore how to approximate large elimination and indexed datatypes in refinement
type systems with a non-dependent base type system.

Introduction. At the core of modern dependent type theories [2], indexed inductive types
and large elimination are the main means of how new datatypes are introduced. They also play
a vital role in the kind of theorems that are provable in our theory. As an example, removing
large elimination from MLTT [4] causes the loss of the ability to prove the disjointness of
constructors [5]. This makes the theory unable to prove trivial theorems; for example, we
cannot show that Π(Eq(Bool, true, false), V oid) is inhabited.

Refinement types as implemented in Liquid Haskell [8, 9] extend the type system of Haskell,
SystemFC, with logical predicates. These predicates are Haskell (terminating) boolean expres-
sions and operators that belong to the decidable fragment of SMT-Lib.

As refinement type systems lack direct support for large elimination and indexed datatypes,
their absence makes it challenging to encode certain proofs and datatype definitions. In this
work, we explore how to approximate these features within the refinement type system. As a
running example, we translate the correct compiler of STLC to the SKI calculus presented in
[6] from Agda [7] to Liquid Haskell.1

data Term : Ctx → Ty → Set where

app : ∀ {Γ σ τ} → Term Γ (σ ⇒ τ)
→ Term Γ σ → Term Γ τ

lam : ∀ {Γ σ τ} → Term (σ :: Γ) τ
→ Term Γ (σ ⇒ τ)

var : ∀ {Γ σ} → Ref σ Γ → Term Γ σ

(a) Agda definition

data Term where

{-@ App :: γ:Ctx → σ:Ty → τ:Ty
→ Prop (Term γ (Arrow σ τ))
→ Prop (Term γ σ)
→ Prop (Term γ τ) @-}

App :: Ctx → Ty → Ty → Term → Term

→ Term

{-@ Lam :: γ:Ctx → σ:Ty → τ:Ty
→ Prop (Term (Cons σ γ) τ)
→ Prop (Term γ (Arrow σ τ)) @-}

Lam :: Ctx → Ty → Ty → Term

→ Term

{-@ Var :: γ:Ctx → σ:Ty
→ Prop (Ref σ γ)
→ Prop (Term γ σ) @-}

Var :: Ctx → Ty → Ref → Term

data TERM = Term Ctx Ty

(b) Liquid Haskell definition

Figure 1: Well-typed STLC terms definition

1The full translation can be found at https://github.com/ucsd-progsys/liquidhaskell/blob/develop/

tests/ple/pos/SKILam.hs.

https://github.com/ucsd-progsys/liquidhaskell/blob/develop/tests/ple/pos/SKILam.hs
https://github.com/ucsd-progsys/liquidhaskell/blob/develop/tests/ple/pos/SKILam.hs
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data Ty : Set where

ι : Ty

_⇒_ : Ty → Ty → Ty

Value : Ty → Set

Value ι = Z
Value (σ ⇒ τ) = Value σ → Value τ

(a) Agda definition

data Value where

{-@ VIota :: Int → Prop (Value Iota) @-}

VIota :: Int → Value

{-@ VFun :: σ:Ty → τ:Ty
→ (Prop (Value σ) → Prop (Value τ))
→ Prop (Value (Arrow σ τ)) @-}

VFun :: Ty → Ty → (Value → Value)

→ Value

data VALUE = Value Ty

(b) Liquid Haskell definition

Figure 2: HOAS representation of values

Indexed Inductive Datatypes. A first solution for the absence of indexed inductive
datatypes was proposed in [1] under the name of data proposition. The idea is to encode
the information and constraints that in the dependently typed world is carried through in-
dexes by refining the constructors of the datatype. In Liquid Haskell, this role is taken by
the Prop type, which is a type alias for the refined type: type Prop e = {v:a | e= prop v.
Here, prop is treated as an uninterpreted function in thelogic and e is substituted by
the index information. Since the logic has no knowledge about prop other than its type, two
types can match only if the arguments passed to Prop are the same. In Figure 1, we see side
by side the datatypes that encode well-typed terms of the simply typed lambda calculus.2

Large elimination. Large elimination instead is trickier as the natural solution would be to
encode it through functions, but unfortunately this is not feasible as functions need to remain
valid Haskell code and types are not part of valid Haskell expressions. A solution could be to
use codes to encode types through codes mimicking the universe level encoding in dependent
types but at the Haskell level there is no way to have a Haskell type depend on a value. The
only possible solution then is to use a datatype declaration indexed by the argument of the
dependent elimination where we have a constructor for each case and in each constructor we
wrap a value of the type returned by the elimination. However this leads to problem when
we construct an arrow type, as the same type will appear in a negative position, and it will
fail to type check. But are these type declaration actually problematic? The type definition
is actually well-founded as the index is structurally decreasing, otherwise the same declaration
would be rejected by Agda. Thus, at least, the usual example showing that negative types
lead to inconsistency does not apply. Another feature obtained via large elimination is non-
uniform dependencies, i.e., functions are able to inspect their argument and change their type
accordingly. The usual example is the type safe sprintf , but this kind of pattern can still be
emulated through indexed families even if in a less elegant manner through sized lists.

In Figure 2 we compare the HOAS representation of values. In the Liquid Haskell translation,
the VFun constructor has the negative occurrences issue.

Completing the Connection. Naturally, we can ask if this transformation always works and
what is the relationship between the original type and its refined encoding? If these questions
have satisfactory answers, we would then ask if any statement encodable with dependent types

2In the (Liquid) Haskell definition we use γ instead of Γ to denote contexts as as variable names cannot
begin with capital letters.

2



Large Elimination and Indexed Types in Refinement Types Ferrarini A. and Vazou N.

can be translated into refinement types. The work in [3] shows that ATTT, a variant of
System F with refinements, from an expressiveness perspective corresponds to second-order
logic. However, it is unclear whether the notion of refinement in ATTT aligns with that of
Liquid Haskell.

Acknowledgments. Partially funded by the European Union (GA 101039196). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor
the European Research Council can be held responsible for them.

References

[1] M. H. Borkowski, N. Vazou, and R. Jhala. Mechanizing Refinement Types. Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages, 2024.

[2] T. Coquand and C. Paulin. Inductively defined types. Lecture Notes in Computer Science, 1990.

[3] S. Hayashi. Logic of refinement types. In Types for Proofs and Programs, 1994.
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Introduction. While elegant synthetic proofs such as those in Homotopy Type Theory (HoTT)
are expected to “compile” to proofs of classical theorems when interpreted in suitable models,
this idea has not yet been exploited in proof assistants. For example, Cubical Agda supports
synthetic reasoning about cubical types, but its proofs have not been translated formally to
facts about cubical sets, let alone their topological realizations. The HoTTLean project aims to
bridge this gap by formalizing in Lean the semantics of a type theory we call HoTT0, a fragment
of HoTT where univalence holds only on set-truncated types. We define the class of natural
models [Awo18] of HoTT0, and prove that its syntax has a sound interpretation in any such
model. As one concrete instance, we formalize the groupoid model of HoTT0 [HS98], providing
a specific “compilation target” for synthetic proofs. Finally, we work toward embedding HoTT0
as a domain-specific language using Lean’s extensible syntax and meta-programming facilities
[UdM20]. Overall, this allows users to write synthetic proofs in HoTT0 and use the interpretation
to produce constructions pertaining to groupoids as defined in Mathlib, the standard library
for mathematics in Lean [Com20]. Through its compositional and modular approach, our
project not only provides a bridge between synthetic and classical mathematics, but also lays
the foundations for formalized semantics of other internal languages such as (complete) HoTT
[Uni13] or directed type theory [Nor19].

Project structure. This project consists of the following components:

• Type theory. The type theory HoTT0 is a variant of that described in the HoTT book
[Uni13]. HoTT0 has N Russell-style universes U1 : · · · : UN . There can only be finitely
many universes due to Gödelian constraints. HoTT0 has Σ-types, Π-types, and intensional
identity types. We define subuniverses of set-truncated types internally in HoTT0, and
require univalence axioms for each of these subuniverses. Though univalence implies
functional extensionality in the subuniverses, to get functional extensionality for all types
we postulate it as another axiom.

In our Lean formalization, we present HoTT0 by an inductive type Expr of raw terms
(quotient-inductive-inductive types [ACD+18] are not available to us) together with proof-
irrelevant typing judgments EqTp and EqTm specifying type and term equality, respectively.
We view these as partial equivalence relations, defining Γ ⊢ t : A ≜ Γ ⊢ t ≡ t : A and
correspondingly for typehood. To reduce proof burden, we build presuppositions into
some of the inference rules, as well as postulate rather than prove symmetry, transitivity,
and closure under substitution. We establish only very basic syntactic metatheorems,
preferring to work with the semantics to the maximal extent possible.
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• Interpretation. Natural model semantics were developed by Awodey [Awo18], with
additional simplifications in the definition of identity types suggested by Richard Garner.
The construction makes use of polynomial functor machinery, which is currently being
formalized in the parent project Poly, available at github.com/sinhp/Poly.

We define the class of HoTT0 natural models, and show that HoTT0 syntax has a sound
interpretation into any such model. Thanks to this compartmentalization, our project
could be extended with other model constructions (such as simplicial sets) without altering
the syntax or having to reprove soundness.

In our Lean formalization, a model of HoTT0 is a sequence of NaturalModelBase structures
connected by universe morphisms UHom, together with additional data to support type
constructors. Each morphism provides the semantics for one universe. We construct an
interpretation of HoTT0 into any UHomSeq as a partial function defined by recursion on
raw terms. We then show that this function is total on well-formed types and terms, and
respects judgmental equality.

• Groupoid model. In our Lean formalization, the category Ctx of contexts is the category
of 1-groupoids Grpd.{N+1,N+1} with Type (N+1)-sized objects and morphisms (as defined
in Mathlib). This supports a natural model structure with N universes, Σ, Π, and
identity types. Semantically, univalent subuniverses of set-truncated types correspond
to subcategories of discrete groupoids.

The type classifier Ty is defined to be the presheaf on Ctx that takes a context Γ to the
set of functors Γ → Grpd.{N+1,N+1}. Up to isomorphism, a type Γ → Ctx corresponds
to an isofibration of groupoids, but this view does not provide a strict interpretation of
the syntax (substitution equations only hold up to isomorphism). The interpretation of
Σ-types is thus not simply defined using the composition of isofibrations. For each piece
of syntax, we explicitly describe the action on the classifiers as natural transformations
between presheaves.

Terms are classified by the presheaf that takes a context Γ to the set of functors
Γ → PGrpd.{N+1,N+1} where PGrpd.{N+1,N+1} is the category of pointed groupoids
and functors preserving the point up to isomorphism. Context extension is defined using
the Grothendieck construction Grothendieck from Mathlib.

• Embedded proof assistant. An aim of this project is to demonstrate that internal
proofs in HoTT0 can be translated into proofs of theorems about Mathlib’s groupoids,
with the proof assistant offering automated translation. We are working on an embed-
ded HoTT0 proof mode with support for seamless transitions between reasoning internally
and reasoning about the groupoid model. Thanks to Lean’s extensible syntax, macro
system, and elaboration facilities [UdM20], we may reuse existing tactics and user inter-
face elements in the HoTT0 proof mode, providing Lean users with a familiar interactive
environment.

Formalization progress. HoTTLean is work in progress. The repository is accessible at
sinhp.github.io/groupoid model in lean4. So far we have constructed a fragment of the syntax
with universes, Σ and Π-types and an interpretation of this syntax into its corresponding
natural model semantics. For the groupoid model, we have constructed semantics for universes
and Σ-types, with Π-types in the making.

2
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Related work. We know of one other project that worked towards a formalization of the
groupoid model of HoTT, by Sozeau and Tabareau [ST14]. Although their groupoid semantics
follow the style of categories with families, they did not formalize categories with families as a
class of models. Meanwhile, our project develops abstract natural model semantics, and then
constructs the groupoid model as a particular instance. Another key difference is that their
groupoids are enriched in setoids, while ours are not. Finally, a novelty of HoTTLean is in
building a domain-specific proof mode that allows users to develop formal internal language
arguments.

Ahrens, North, and van der Weide formalized the semantics of bicategorical type theory in
Coq [ANvW23]. Unlike HoTTLean, they did not formalize the syntax or its interpretation, nor
did they consider Σ and Π-types.

Maillard and Xu are constructing a deep embedding of geometric logic in Lean that they
unfold into presheaf semantics in order to obtain theorems about Mathlib’s algebraic structures
[XM25].

The Flypitch project of Han and van Doorn established the independence of the continuum
hypothesis in Lean [HvD20]. Mathlib now contains model and set theory libraries, and methods
similar to ours could be employed to facilitate (often syntactically complex) internal arguments
there.

Future work.

• HoTT0 can and should be extended to offer a class of higher inductive types. Possible
candidates that are consistent with groupoid semantics include higher W-types [Vid18]
and groupoid quotients [VvdW21]. From groupoid quotients one could construct the
classifying space BG of a group G, as well as 0-truncations (used to define homotopy
groups).

• Here we focus on semantic foundations, but one could use HoTT0 to develop univalent set-
level mathematics. Univalence for sets can be used to implement the Structure Identity
Principle, allowing for rigorous identification of isomorphic structures [Acz11].

• It may be possible to integrate our work with Ground Zero (github.com/forked-from-
1kasper/ground zero), a recent HoTT library using Lean 4.

This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA9550-21-1-0009.
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Abstract

Rocq’s consistency — and the consistency of constructive type theories in general — crucially depends
on all recursive functions being terminating. Technically, in Rocq, this is ensured by a so-called guard
checker, which is part of Rocq’s kernel and ensures that fixpoints defined on inductive types are struc-
turally recursive. Rocq’s guard checker was first implemented in the 1990s by Christine Paulin-Mohring,
but was subsequently extended, adapted, and fixed by several contributors. As a result, there is no exact,
abstract specification of it, meaning for instance that formal proofs about it are out of reach. We propose
a talk on a first step preceeding the formalisation of the guard checker, namely, a faithful implementation
of the guard checker of Rocq in Rocq, using the MetaRocq framework. We hope that our project will
benefit the users of Rocq by providing an accurate and transparent implementation, as well as lay the
foundations for future formalisation efforts or even mechanised consistency proofs of Rocq.

In Rocq, one can define inductive types which have parameters, are indexed, mutual, or nested. Common
examples are natural numbers, lists (which have a parameter), vectors (which have indices), even/odd pred-
icates (which are mutual), the accessibility predicate (which has nesting via a function type), and rose trees
(which have nesting via inductive types). One can then define so-called fixpoints by structural recursion on
elements of these inductive types. As an example here is a definition of the recursor on natural numbers as
a fixpoint:
Fixpoint nat_rec (P : nat → Set) (p0 : P O) (ps : ∀ (m: nat), P m → P (S m))

(n : nat) {struct n}: P n :=
match n with

| O ⇒ p0
| S m ⇒ ps m (nat_rec P p0 ps m)

end.

All the mentioned features like mutuality and nesting introduce mostly orthogonal complexity in the
definition of Rocq’s guard checker, which is defined in the kernel/inductive.ml file of Rocq’s code in about
1000 lines of OCaml code. To illustrate how a guard checker is crucial for consistency, one can look at the
following two non-terminating fixpoints
Unset Guard Checking.
Fixpoint boom (x : nat) {struct x} : False := boom x.

Fixpoint inf (n : nat) {struct n} :=
match n with
| O ⇒ 0
| S _ ⇒ S (inf n)

end.

They allow proofs of False as boom 0 and exploiting the contradictory property of inf 1 = S (inf 1).
History of the guard condition In the 1990s, Frank Pfenning and Christine Paulin-Mohring introduced
inductive types in the calculus of constructions [15] along with a guard condition for fixpoints [14]. The
first version of Rocq’s Guard Checker was implemented in Rocq v5.10.2 by Paulin-Mohring in 1994 [5]. In
2012, Pierre Boutillier relaxed the guard checker via β-ι commutative cuts [3]. In 2014, Maxime Dénès
restricted the guard checker to forbid an unwanted proof that propositional extensionality does not hold in
Rocq [7]. In 2022, Hugo Herbelin restricted the guard checker to ensure strong normalisation rather than
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just weak normalisation, which is a behaviour that seems to be more in line with the intuition of users [9]. In
2024, Herbelin introduced a relaxation, allowing simpler implementation of nested recursive functions [10].
Furthermore, changes to the guard condition keep being proposed, see e.g. [11] and [12].

MetaRocq: a formalisation of Rocq in Rocq Two central parts of the MetaRocq project [16] are a
formalisation of Rocq’s type theory in Rocq [17] and, on top of that, verified implementations of a type
checker [18] and a verified extraction function to OCaml [8]. The formalisation of type-theory faithfully
captures typing rules of Rocq in an inductive predicate, and is parameterised in a guard checker function
which is required to fulfil some basic properties such as being stable under reduction and substitution. Based
on this formalisation, crucial properties such as subject reduction (types are preserved by reduction) and
canonicity (normal forms of inductive types start with a constructor) are proved [18].

The verified type checker axiomatically assumes that reduction in the system is strongly normalising. The
strong normalisation assumption can also be used to prove consistency, because any proof of False would
have a normal form using strong normalisation, which would have the same type using subject reduction,
and would start with a constructor of the inductive type False using canonicity – which is a contradiction,
because False has no constructors.

An implementation of Rocq’s Guard Checker in Rocq In the talk, we will report on the current
state of the project: a full and faithful implementation of Rocq’s guard checker in Rocq using the MetaRocq
project [19], whose code can also be found online. We will also explain the workings of the guard checker via
the data structures it uses and present its different dimensions of complexity, due to its many contributions
by different authors.

Towards a verified guard checker As future work, the first step to verifying the guard checker would
be synthesising a guard condition predicate from the current OCaml implementation of the guard checker.
This predicate will work similarly to the typing predicate in MetaRocq, i.e. talk about the syntax of Rocq
as specified in MetaRocq. This specification can be an inductive predicate, meaning it does not have to be
obviously decidable.

As a second step, a guard checker function deciding the guard condition predicate should be defined. This
function will have to use MetaRocq’s verified implementation of reduction, meaning it will have to rely on
the strong normalisation axiom. Technically, a substantial challenge will lie in proving that the definition of
this guard checker function, defined in Rocq and working on syntax as specified by MetaRocq, is terminating.
That this function indeed correctly computes the guard condition predicate can either be immediately proved
by using dependent types and a correct-by-construction guard checker function, or in a separate additional
step. Note that technically, proving the soundness of the function suffices, i.e. that whenever the function
accepts a term, the guard condition predicate holds.

Towards normalisation proofs Having a formal description of the guard condition now allows relative
normalisation proofs of Rocq’s type theory in Rocq. Namely, it then is feasible to define a simpler, more
natural, and more modular variant of the guard condition and show that Rocq’s type theory with the
current implementation of the guard condition can be interpreted in this simpler theory. This would result
in a relative normalisation proof, meaning that Rocq’s type theory is normalising (and thus consistent) if
the simpler system is normalising. In particular, this means that the trust in Rocq’s consistency could be
moved to trusting that such a simpler theory is terminating. In the long term future, it then even could
be possible to prove termination of Rocq’s type theory (for a restricted number of universes to get around
Gödel incompleteness issues) by reducing it in many steps to an extension of the currently also ongoing
formalisation of MLTT in Rocq [2].

Related Work Termination checking in Agda is done semantically via sized types: a special, implicit type
used by the type checker to determine if the recursion done on a strictly smaller argument [1, 13]. Lean, on
the other hand, only has recursors (or eliminators) in its type theory, thus user-written recursive functions
are represented in the kernel by recursors [4, 6].
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Introduction. The Lean proof assistant [2] is seeing increasing use in mathematics formaliza-
tion and software verification, but the metatheory of Lean is not yet completely understood. In
particular, while there is an intended interpretation within a classical set-theoretical model ([1],
based on [5]), the proof of soundness has not been formalized. The Lean4Lean project endeavors
to verify the key theorems (and non-theorems!) of the LeanTT formal system. Additionally,
Lean4Lean provides an executable typechecker, written in Lean itself. This is the first complete
typechecker for Lean 4 other than the reference implementation in C++ used by Lean itself,
and our new checker is competitive with the original, running between 20% and 50% slower
and usable to verify all of Lean’s Mathlib library, forming an additional step in Lean’s aim to
self-host the full elaborator and compiler. Ultimately, we plan to use this project to help justify
any future changes to the kernel and type theory and ensure unsoundness does not sneak in
through either the abstract theory or implementation bugs.

The project is most directly comparable to the MetaRocq project [3, 4], and aims to do the
same things that it accomplishes for the Rocq theorem prover, but for Lean’s type theory. This
is complicated by the fact that LeanTT is known to not be theoretically optimal: in particular,
the typing relation is undecidable and Lean underapproximates it, and reduction is not strongly
normalizing. (Canonicity also fails for the basic reason that LeanTT includes 3 axioms,1 one
of which is the axiom of choice.)

Project structure. The Lean4Lean project consists of three major components:

• Executable typechecker. This is a “carbon copy” reimplementation of the C++ Lean
kernel written in Lean. It is written in monadic style, using only pure functions (i.e.
using some combination of state, reader and exception monads rather than IO), and is
designed to be efficiently compiled by the Lean compiler so that the resulting binary is
competitive with the original. Because Lean is a functional programming language with
limited optimizations, there is still a performance gap of about 20–50% compared to the
C++ version, but this may improve along with the Lean compiler. This is already good
enough to be usable as an additional or alternative checking step for Lean projects, and
we would like to make a case for it to replace the C++ kernel.2

• Formalized metatheory. This is the most interesting part of the project for type theo-
rists, and amounts to a definition of a type VExpr representing expressions (extrinsically
typed, using pure de Bruijn variable convention), a judgment Γ ⊢ e ≡ e′ : τ which deals

1The kernel actually implements a theory LeanTT0 which lacks these axioms but this system is not as well
studied. LeanTT adds to LeanTT0 the axioms propext, Quot.sound, and choice, and the main metatheory,
including the soundness proof, targets this extended system.

2The actual decision for if and when this happens is under the control of the Lean FRO, so I cannot speculate
on a timeline here. If the winds are right it could happen tomorrow, but the in-development next generation Lean
compiler may help reduce the performance gap. There are also practical considerations regarding maintenance
in getting the Lean4Lean kernel to be shipped with Lean.
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with typing and definitional equality, and a number of theorems and conjectures3 about
the behavior of this relation. These types are a “cleaned-up” version of the corresponding
types used in the executable kernel (which uses the locally-nameless variable convention,
and includes many conservative extensions such as number and string literals, and prim-
itive projections), to make the presentation of the theory more natural and simplify the
task of proving the metatheorems.

• Program verification. Given the previous two components, the natural next step is
to combine them, such that the executable kernel can have invariants at each stage,
culminating in a theorem to the effect that “if typecheck e = ok τ , then ⊢ JeK : JτK”.4

Formalization progress. The project is available at https://github.com/digama0/lean4lean.
Currently, the most complete portion of the project is the executable typechecker, which

is completely implemented and can typecheck arbitrary Lean projects. The one unsupported
Lean kernel feature is the reduceBool function, exposed to users via the native decide tactic,
which allows the kernel to use the Lean interpreter to run arbitrary Lean code (and in fact, via
@[extern] annotations, even truly external code such as C or Python) and trust the result.
Luckily, this function is (rightfully) viewed with suspicion by most Lean users, and it is banned
in many projects such as Mathlib which do not want the expansion of the trusted code base
(TCB) implied by this feature.

The formalized metatheory portion of the project is well underway, with all of the main
definitions stated: expressions, universe levels, contexts, declarations and environments, with
the exception of inductive types, which have only the basic scaffolding. (Already many of the
“interesting” features of the type theory arise when considering pure MLTT with a universe
hierarchy, impredicative Prop, and definitional proof irrelevance.) Well-formedness and typing
judgments are layered on top of this substrate, with the main player being the Γ ⊢ e ≡ e′ : τ
judgment, defined as an inductive predicate (subsuming both expression typing and definitional
equality).

There are some key missing theorems. The most complex theorem in [1] is the unique typing
theorem, which says that if Γ ⊢ e : α and Γ ⊢ e : β then Γ ⊢ α ≡ β. It is proved mutually
with injectivity of type constructors (e.g. Uℓ ≡ Uℓ′ implies ℓ ≡ ℓ′) and uses a variation on
the Tait–Martin-Löf method for proving the Church–Rosser theorem for a specially defined
reduction relation which restores confluence while abandoning termination. This theorem is
used directly and indirectly in the justification of some of the optimizations employed in the
executable kernel.

The final component of the project, program verification, is in its early stages. The
Γ ⊢ JeK ⇒ e′ relation which relates the Expr type used by the executable kernel to the VExpr

type used by the theory is defined and some of its basic properties are established. There
are similar interpretation relations for most of the other kernel concepts: LocalContext, the
analogue of the Γ context in the above relations, Environment for global declarations, as well
as some other material like NameGenerator (which is a global counter which ensures new free
variables are fresh) and the expression typing cache. But work on giving actual proofs of

3The “conjectures” here refer to theorems from [1] with informal proofs which have yet to be formalized.
I cannot say with confidence that there are no errors remaining in the informal proof, as it is a very delicate
argument. This is part of the reason for wanting to formalize it in the first place.

4In actuality the theorem is quite a bit more complicated than this to state, because the typechecker has
many additional inputs, such as the environment which supplies the definitions of constants. The interpretation
function J·K is also not a function, but a relation, because the translation from Expr to VExpr is not purely
syntactic but depends on typing. But this is the essence of the theorem statement.
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(the substantially large) kernel functions has yet to properly begin, and concurrent work on a
framework for verification of monadic programs by upstream Lean may make this easier.

Future work. The project is quite ambitious and still far from complete, but there are
more goals to aspire to beyond this. We already mentioned that Lean4Lean does not support
reduceBool, but this is both possible and desirable for heavy computations which use this
feature for performance. It would require formalizing the Lean intermediate representation and
the frontend of the compiler, along with some theorems about erasure as in [4]. Furthermore
there are more radical changes to kernel reduction (e.g. NbE) which are currently too risky
to consider without verification. There are no concrete proposals for changes to reduction at
the moment, largely because it’s a complete non-starter under the status quo, but it is widely
understood that the kernel is very algorithmically inefficient and has performance issues, and
this makes it more difficult to practically use implementation techniques such as proof by
reflection, widely used in Rocq, in performance-conscious Lean tactics. But there is a large
literature on better type checking strategies and Lean4Lean provides a place to experiment and
benchmark alternatives, and possibly compensate for the lost 30% performance difference and
then some.

References

[1] Mario Carneiro. The Type Theory of Lean. Master’s thesis, Carnegie Mellon University, 2019.

[2] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean Theorem Prover (system description). In International Conference on Automated Deduction,
pages 378–388. Springer, 2015.

[3] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,
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Abstract

How can we make systematic and precise the idea that type formers in dependent
type theory are functorial? To examine this question, we propose a type theory AdapTT
with adapters, following ideas of McBride and Nordvall Forsberg [MN21] and Coraglia and
Emmenegger [CE23].

Coercions, coercions everywhere Diverse type theories feature operators to turn a term
of one type into one of another: coercive subtyping [LA08; LLM24], transport for observational
equality [AMS07; PT22], casts for gradual typing [Len+22], or adapters [MN21]. These oper-
ators share a similar decomposition of coercions along the structure of the types they operate
on. For instance, coercing a function f from a function type A0→B0 to A1→B1 amounts to
coercing its argument from A1 to A0, and its return value from B0 to B1.

Semantically, this shared core can be understood as a form of functoriality of type construc-
tors —see for instance Castellan et al. [CCD17, Lemma 4.8], which is essentially the same as the
behaviour of coercions at function types outlined above. However, the statement of this lemma
is somewhat contorted, as standard CwFs are not up to the task of expressing this functorial-
ity aspect. Indeed, if we want to talk about functoriality, we need categories between which
functorial type constructors map. Yet, types in CwFs only form a set. As already observed
by Coraglia and Emmenegger [CE23], comprehension categories [Jac93] lift this discreteness
constraint, providing suitable categorical models of subtyping.

Some pieces are however still missing for a full-fledged understanding of coercions in type
theory. First, rather than CwF, Coraglia and Emmenegger [CE23] generalise natural models.
Second, the key operation of coercion is not directly explicitated. Finally, only specific type
constructors (Π and Σ) are considered, those for which the functorial action is admissible thanks
to η-rules. Our goal is to fill in these missing pieces, and provide a good setting to talk about
functoriality of type formers and coercions as a general concept.

Adapters As we already hinted at, our first step is to modify the standard CwF structure
to CwF<:, which incorporate extra data: types in a CwF<: form a category rather than a
mere set —see full definition of CwF<: in appendix A. We call arrows between types adapters,
after McBride and Nordvall Forsberg [MN21]. Each type has an identity adapter, and adapters
compose. More importantly, adapters act on terms: if Γ ⊢ t : A and a is an adapter from A
to B, we can form a term Γ ⊢ t ⟨a⟩ : B, the coercion of t along a. Subtyping can be construed
as the special case where types are posets, making the witness adapter irrelevant —only the
endpoints matter.

Coercions should satisfy a number of properties in their interactions with identity, compo-
sition, substitution... Coraglia and Emmenegger’s gCwF structure [CE23] succinctly captures
this: although they do not derive it, we have shown that the coercion operation can be con-
structed in any gCwF. In short, when considered fiberwise over a fixed context, terms form a
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discrete opfibration over types. This means their setting is a good semantic fit for adapters, and
since they show its equivalence with general comprehension categories, this gives us assurance
that CwF<:, which reformulate gCwF in the language of CwF, are a reasonable notion.

Parameter contexts We now have an idea of what the codomain of a functorial type con-
structor should be. But what should its domain be? We propose to use parameter contexts,
which contain two kinds of variable. The usual, term-level ones, and type variables. These come
with two pieces of information: a variance, which we will use to differentiate between co- and
contravariant functors1; and a context of bound variable that a type can depend on. As an
example, the following represents the parameters of the dependent function type constructor
Π, with one contravariant type, and a covariant one depending on the first

ΓΠ := (X : Ty−) ▷ (Y : (x : X).Ty+)

A substitution into that context ∆ ⊢ σ : ΓΠ accordingly consists of two types, the second
depending on the first. Since we have arrows between types, we also get arrows between these
substitutions: if ∆ ⊢ τ : ΓΠ is another substitution into ΓΠ, a transformation ∆ ⊢ µ : σ ⇒ τ
consists of an adapter between τ(X) and σ(X) (since X is contravariant), and one between
σ(Y ) and τ(Y ), suitably lying over the first. This is exactly the data we need to build an
adapter between Πx : σ(X).σ(Y ) and Πx : τ(X).τ(Y ) by pre- and post-composition, as above.

Generalising this example, a type constructor of “arity” Γ amounts to a type Γ ⊢ T , which
generates types in all other contexts and the relevant adapters, by the respective actions of
substitutions and transformations. In particular, such a type gives rise to a functor from the
category of substitutions Sub(∆,Γ) to that of types in ∆: given two substitutions ∆ ⊢ σ, τ : Γ
and a transformation ∆ ⊢ µ : σ ⇒ τ , we get an adapter T JµK between T [σ] and T [τ ].

We succinctly describe this with a 2-category of parameter contexts, substitutions and trans-
formations, the latter built of adapters. The above intuition can then be quickly summarised by
saying that Ty is a 2-functor. In the most general view, a type constructor can be understood
as a natural transformation from a (Cat-valued) presheaf on the category of contexts to this
2-functor Ty. Our notion of parameter contexts is rich enough to make many such presheaves
representable. By the (2-categorical) Yoneda lemma —which gives an isomorphism between
the categories CatCtxop

[y Γ,Ty] and Ty(Γ)— parameter contexts let us represent these type
constructors and their functorial action more directly, as we did with ΓΠ.

We are exploring the formalisation of all this in Agda as a quotient-inductive-inductive-
recursive type, representing the syntax of a putative type theory AdapTT. In particular, we can
check that type formers such as Π, Σ, or the identity type, adapt to this functorial setting. And
they do, following the familiar pattern of structural coercions/casts/transport.

The next direction we hope to explore, which was part of our original motivation, is to
provide a setting to generally derive this functorial structure for datatypes. That is, to design
a theory of signatures which incorporates —and checks— variance information, and generically
derives the adapter equivalent of a map operation [LLM24].

Towards 2-CwF The 2-categorical aspects of the category of contexts suggests a connection
to the 2-dimensional type theory 2DTT of Licata and Harper [LH11]. Indeed, internalizing type
variables as quantifications over a universe of sets yields a theory very close to 2DTT. However,
2DTT does not have an explicit judgement for the categorical structure on types corresponding
to adapters, merely relying on the corresponding notion between terms. A unifying notion of
2-dimensional type theory should combine our CwF<: with type variables and 2DTT.

1For simplification we do not consider equivariance, which should however be relatively easy to add.
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A Full definition of CwF with adapters
Definition 1 (Families indexed by categories). Fam<: is the category whose objects are pairs
of a category X and a functor X → Set. An arrow (X,F ) → (Y,G) is a pair of a functor
H : X → Y and a natural transformation F

·→ G ◦H. Abstractly (and ignoring size issues),
Fam<: is the lax slice category Cat � Set.

Definition 2 (Categories with families and adapters (CwF<:)). A category with families and
adapters (CwF<:) is given by the following data.

• A category Ctx whose objects are called contexts and arrows substitutions.

• A functor T : Ctxop → Fam<:, that is, given a context Γ : Ctx, we have

– a category Ty(Γ) of types in Γ, we write Ad(Γ, A,B) (adapters) for the collection of
arrows between two types A and B;

– for any A : Ty(Γ), a set of terms Tm(Γ, A);
– an action of substitution · [·] on types, adapters and terms,
– and an action · ⟨·⟩ of adapters on terms: if t : Tm(Γ, A) and a : Ad(Γ, A,B), then

t ⟨a⟩ : Tm(Γ, B);
– suitable equalities for the compatibility of the actions of substitution and adapters

with identities, compositions and each other.

• For any context Γ and type A : Ty(Γ), a context extension Γ ▷ A, equipped with

– a substitution wk : Γ ▷ A → Γ (weakening)
– and a term vz : Tm(Γ ▷ A,A [wk]) (variable zero)
– in a universal way: for any context ∆ equipped with σ : ∆ → Γ and t : Tm(∆, A [σ]),

there exists a substitution σ ▷ t : ∆ → Γ ▷ A (substitution extension) such that
wk ◦ (σ ▷ t) = σ and vz [σ ▷ t] = t, which is unique, i.e. for any σ : ∆ → (Γ ▷ A) we
have σ = (wk ◦σ) ▷ vz [σ].

Theorem 3. Every CwF<: in the sense of definition 2 is a gCwF in the sense of Coraglia and
Emmenegger [CE23] that is moreover split, and vice-versa any split gCwF is a CwF<:.

This notion of category of families with adapters can alternatively be presentated via the
following Second-Order Generalized Algebraic Theory [Uem21; KX24]:

ty : Sort ad : ty → ty → Sort
tm : ty → RepSort · ⟨·⟩ : {AB : ty} → adAB → tmA → tmB

id : {A : ty} → adAA ◦ : {ABC : ty} → adBC → adAB → adAC

idl : {AB : ty}(a : adAB) → id ◦ a ≡ a idr : {AB : ty}(a : adAB) → a ◦ id ≡ a

assoc : {ABC D : ty}(a : adAB)(b : adBC)(c : adC D) → c ◦ (b ◦ a) ≡ (c ◦ b) ◦ a
adapt/id : {A : ty}(t : tmA) → t⟨id⟩ ≡ t

adapt/◦ : {ABC : ty}(a : adAB)(b : adBC)(t : tmA) → t⟨b ◦ a⟩ ≡ t⟨a⟩⟨b⟩

This presentation exhibits the adapters as the hom-sets of a category structure on types (in-
ternally to presheaves over the category of contexts) and their action on terms as an (internal)
presheaf structure over the category of types and adapters.
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Peter Scholze and Dustin Clausen [CS24] introduced light condensed sets, defined as sheaves
on the site of light profinite sets. They can be used as an alternative to topological spaces.
Synthetic Stone duality is an extension of homotopy type theory by four axioms, which was
introduced in [Che+24]. In this article, it was proven that H1(S,Z) = 0 for S a Stone space,
that H1(X,Z) for X compact Hausdorff can be computed using Čech cohomology and that
H1(I,Z) = 0 where I is the unit interval. In this talk we will present the extension of these
results to higher cohomology groups with non-constant countably presented abelian groups as
coefficients. Those are synthetic analogues of results from Roy Dyckhoff [Dyc76a; Dyc76b].

Synthetic Stone Duality In our setting, Stone spaces are precisely countable sequential
limits of finite sets, making them analogous to light profinite sets. The construction of a model
making this analogy rigorous is still work in progress.

The axioms of synthetic Stone duality postulate Stone duality (Stone spaces are equivalent
to countably presented Boolean algebras), completeness (non-empty Stone spaces are merely
inhabited), dependent choice and a local-choice axiom. The latter says that given a Stone space
S and a type family B over S such that Πx:S∥B(x)∥, there merely is a Stone space T and
a surjection s : T ↠ S such that Πx:TB(s(x)). Local choice is crucial when performing the
cohomological computations mentioned below.

Many traditional properties of Stone spaces can be shown synthetically, sometimes phrased
in a more type-theoretic way, e.g. Stone spaces are closed under Σ-types. Open and closed
propositions can be defined, inducing a topology on any type such that any map is continuous.
This topology is as expected for Stone spaces and compact Hausdorff spaces (i.e. quotient of
Stone spaces by closed equivalence relations).

One important example of compact Hausdorff space is the real interval I, from which the
type R of real numbers is constructed. This is equivalent to the usual constructions of both
Cauchy and Dedekind reals. As in [Shu18], it is important to distinguish topological spaces like
S1 := {x, y : R | x2 + y2 = 1} from homotopical spaces like the higher inductive 1-type S1.

Despite topological spaces being sets, they can have non-trivial cohomology. Indeed, for any
type X and dependent abelian group A : X → Ab, we use the usual synthetic definition of the
n-th cohomology group Hn(X,A) as ∥Πx:XK(Ax, n)∥0 where K(Ax, n) is the n-th Eilenberg
Mac-Lane space with coefficient Ax. In [Che+24], it is proven that H1(S1,Z) = Z, despite S1
being a set.

We prove Barton and Commelin’s condensed type theory axioms [Bar24] in synthetic
Stone duality, as well as dependent generalisations of them. These are used to show that any
compact Hausdorff space X interact well with any family of countably presented abelian groups
A : X → Abcp.

Vanishing of higher cohomology of Stone spaces First we prove that H1(S,A) = 0 for
all S Stone and A : S → Abcp. We assume α :

∏
x:S K(Ax, 1), by local choice we get a surjection

p : T ↠ S with T Stone which trivialises α. Then we get an approximation of p as a sequential
limit of surjective maps pk : Tk → Sk between finite sets, we check that the induced trivialisation

∗Speaker.
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over Tk gives a trivialisation over Sk, and conclude through our dependent generalisations of
Barton and Commelin’s axioms that α is trivial over limkSk = S.

We follow an idea due to David Wärn [BCW23, Theorem 3.4] to go from H1(S,A) = 0 to
Hn(S,A) = 0 for all n > 0. The key idea is to proceed by induction on n > 0, generalising the
induction hypothesis from Hn(S,A) = 0 to:

(i) K(
∏
x:S Ax, n)→

∏
x:S K(Ax, n) is an equivalence, directly implying Hn(S,A) = 0.

(ii) K(
∏
x:S Ax, n+ 1)→∏

x:S K(Ax, n+ 1) is an embedding.

Assume (i) and (ii) for n > 0, let’s prove (i) and (ii) for n+ 1. (ii) follows immediately from
(i). To prove (i), by induction hypothesis (ii) it is enough to prove that

∏
x:S K(Ax, n+ 1) is

connected, i.e. Hn+1(S,A) = 0. We assume α :
∏
x:S K(Ax, n + 1), by local choice we get a

trivialisation p : T ↠ S of α with T Stone. Denoting by Tx the fiber of p over x, we consider
the exact sequence 0→ Ax → ATx

x → Lx → 0 giving an exact sequence:

Hn(S,L)→ Hn+1(S,A)→ Hn+1(S, λx.ATx
x )

By induction hypothesis (i) we have that Hn(S,L) = 0 so we have an injection:

Hn+1(S,A)→ Hn+1(S, λx.ATx
x )

By induction hypothesis (ii) the map:

Hn+1(S, λx.ATx
x )→ Hn+1(Σx:STx, Ax) = Hn+1(T,A ◦ p)

is an injection so that we get an injection:

p∗ : Hn+1(S,A)→ Hn+1(T,A ◦ p)

But p trivialises α so p∗(α) = 0, therefore α = 0.

Čech cohomology for compact Hausdorff spaces Given a compact Hausdorff space X, a
Čech cover for X consists of a Stone space S and a surjective map p : S ↠ X. By definition any
compact Hausdorff space has a Čech cover.

Given such a Čech cover and A : X → Abcp, we define its Čech complex as:

Πx:XA
Sx
x → Πx:XA

Sx×Sx
x → · · ·

with the boundary maps defined as expected, and its Čech cohomology Ȟk(X,A) as the k-th
homology group of its Čech complex. It is clear that H0(X,A) = Ȟ0(X,A).

From hypothesis (i) in the previous paragraph, for n > 0 we get an exact sequences:

Hn−1(X,λx.ASx
x )→ Hn−1(X,L)→ Hn(X,A)→ 0

By direct computations, for n > 0 we get an exact sequence:

Ȟn−1(X,λx.ASx
x )→ Ȟn−1(X,L)→ Ȟn(X,A)→ 0

We conclude by induction on n that Hn(X,A) = Ȟn(X,A) for all n, so that in particular
Čech cohomology does not depend on the Čech cover. For this induction to go through it is
crucial that ASx

x is countably presented, which follows from Barton and Commelin’s axioms.
Using this result and finite approximations of a well-chosen Čech cover of I, we can check that
Hn(I, A) = 0 for all n > 0 and A : I→ Abcp.

2
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Summary. We describe how two-level type theory can be used to represent a type theory by
turning structural extensions into axiomatic extensions, using Riehl and Shulman’s simplicial
type theory as an example. This talk explains the motivation behind work in progress.

2LTT and extensions of type theories. Two-level type theory (2LTT) [18, 2, 3, 1] is a
framework that allows internalising some of the meta-theory of a given type theory. Simplified,
it can be described as one type theory sitting inside another type theory (inner/fibrant and
outer/strict/exo-level). A useful example arises if we start with a version of extensional MLTT
(as the strict layer) and assume that some types carry a flag marking them as fibrant, done in
a way that ensures that the fibrant layer is exactly homotopy type theory (HoTT) [17]. This
situation is modelled by some presheaf models such as the simplicial sets model, where only
some maps (Kan fibrations) correspond to (fibrant) types [9]. With the correct specification, the
fibrant layer is exactly as expressive as HoTT in the sense of a conservativity property [2, 10].

In the current work, we explore an application of 2LTT in the context of extensions of type
theories. We consider two types of extensions:

1. Axiomatic extensions, where a type theory T2 can be represented as a type theory T1
extended with axioms. Examples are the extensionMLTT ↪→ MLTT+ funext, orMLTT ↪→
HoTT, if HoTT is the theory developed in the book [17] (where univalence is added as an
axiom), without the judgemental computational rules for higher inductive types.

2. Structural extensions, where T2 has all (or most) of the structure of T1 but also contains
additional structural rules. Examples are the extensions of MLTT to (certain versions
of) Cubical Type Theory [4], or of HoTT to Riehl and Shulman’s type theory of (∞, 1)-
categories [15].

Generally speaking, axiomatic extensions are the nicer ones. If we are already familiar with T1,
we merely need to get intuition for internal postulates in order to understand what we might
be able to prove in T2, and if we have a proof assistant for T1, we can use it as a proof assistant
for T2 by simply adding a postulate. The same is not true for structural extensions; for example,
cubical Agda depends on modifications to Agda’s source code by the development team, and
for Riehl and Shulman’s type theory, Kudasov developed the new proof assistant Rzk [11, 12].

The extension HoTT ↪→ 2LTT is a structural extension but it is, in some sense, harmless;
since one is ultimately only interested in the fibrant fragment, the mentioned conservativity
guarantees that the same internal theorems hold as in HoTT. The point is that:

A given structural extension of HoTT might be an axiomatic extension of 2LTT.

While this seems not necessarily useful from a computational point of view, the axiomatic
extension may be easier to get intuition for, and to reason about, than the structural extension;
and the setup may enable us to view structurally different type theories in the same setting, a
situation somewhat reminiscent of a logical framework [8]. Moreover, the additional language
that 2LTT provides may enable us to study properties in the type theory that would ordinarily
be meta-theoretic. As a more practical benefit, using Agda’s --two-level flag [5], we might
be able to directly use Agda to implement the new type theory, bypassing the need for the
development of a custom-made proof assistant.

mailto:nicolai.kraus@nottingham.ac.uk
mailto:tom.dejong@nottingham.ac.uk


Representing type theories in two-level type theory Kraus and de Jong

Simplicial type theory via two-level type theory. In the remainder of this talk abstract,
we sketch how Riehl and Shulman’s type theory for (∞, 1)-categories [15] (simplicial type theory,
STT) can be represented within 2LTT. The theory STT can be described as HoTT with two
additional ingredients. The first are two additional context layers that make it possible to talk
about shape inclusions and extension types; the second is the assumption of a directed interval
on the context level which ensures that the usual simplicial shapes, such as horns or boundary
inclusions, can be constructed as shape inclusions.

Extension types are a concept that multiple type theories make use of, cf. [19] for a summary.
The idea is to allow a version of dependent functions f : ΠXY , where the type fixes the value
of f along some (possibly meta-theoretic) map i : A→ X. For example in the cubical case [4],
one considers extensions of functions defined on partial boxes.

A ΣXY

B X

k

i π

l

In the setting of 2LTT, the concept of extension types is very natural. A
function i : A → B on the strict layer is called a cofibration (correspond-
ing to what some type theories call shape inclusions) if the Leibniz expo-
nential [16] (a.k.a. pullback exponential) of i preserves fibrations and trivial
fibrations [2, §3.4]. This condition means that, given a fibrant family Y over
a not-necessarily fibrant X in a strictly commuting square as shown on the right, the type of
strict fillers (i.e. the type of functions B → ΣXY ) is fibrant, and fibrewise contractible if Y is
a contractible family. The extension type described above occurs when l is the identity on X.

The second assumption of STT is an interval on the context level, equipped with a bounded
linear order, and the new structural rules make it possible to create standard simplicial maps
from this interval. This can be replicated directly in 2LTT, with the interval on the strict layer
satisfying a cofibrancy assumption. An alternative way is to postulate a functor shape from the
category S to the universe of strict types, where S is the subcategory of simplicial sets spanned
by subfunctors of representables, with the assumption that monos are mapped to cofibrations
and finite (co)limits are preserved. The original interval with order can be used to define such a
functor and is used in STT to construct the components that the functor provides, which leads
us to believe that postulating the functor directly may be the easier approach.

In 2LTT, the pairs (cofibrations, trivial fibrations) and (trivial cofibrations, fibrations) are
orthogonal factorisation systems, and STT is concerned with an orthogonal factorisation system
that lies between these, generated by the cofibration Λ2

1 ↪→ ∆2 as a member of the left class.
If X → 1 lies in the right class, then X is called a Segal type; if it additionally satisfies a
univalence/completeness condition, it carries the structure required for it to be considered an
(∞, 1)-category, following Rezk’s model of complete Segal spaces [14].

One appeal of representing STT within 2LTT is that the two layers of the latter can be used
to cleanly separate the “combinatorial/set level part” from the “homotopical part” of STT.
The first is concerned with general results about simplicial sets, e.g. Joyal’s lemma (cf. [13,
Lem. 2.3.2.1]), and works on the strict/outer level; the second is the part of the theory which
depends on working with spaces rather than sets, here given by the inner/fibrant theory.

As demonstrated by recent work [6, 7], STT can also be represented as an axiomatic ex-
tension of HoTT. This requires the stronger assumption that the interval is fibrant, so that
everything above can be carried out in HoTT. An explanation for why this works well is that,
assuming the corners of the square above are fibrant, the type of strict fillers (i.e. the “meta
theoretic” extension type) is equivalent to the type of homotopy fillers (the “internal” extension
type). The assumption that the interval is fibrant is easily justified but not completely free: a
model that gets lost is the original simplicial sets model [9], where the interval is cofibrant but
not fibrant. However, while it can be viewed as a model of STT with the 2LTT approach, the
model is “too small” to have undirected equalities, and all types turn out to be ∞-groupoids.
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In his Ph.D. dissertation, Hofmann [Hof95; Hof97] constructs an interpretation of extensional
type theory in intensional type theory, subsequently proving a conservativity result of the former
over the latter extended by the principles of functional extensionality and of uniqueness of
identity proofs (UIP), cf. [Hof95, §3.2]. Interestingly, Hofmann’s proof is “stronger” than the
statement of his theorem, as the requisite language in which to speak of conservativity and
equivalence of dependent type theories did not exist at the time.

A major insight came as a result of the development of homotopy type theory. In particular,
Voevodsky’s definition, ca. 2009, of when a morphism in a model of dependent type theory is
a weak equivalence allows one to consider different homotopy-theoretic structures both within
such models and the categories thereof.

In [KL18], it was observed that the category of models of a dependent type theory carries
the structure of a left semi-model category. This structure was subsequently used by Isaev
[Isa18] to define a Morita equivalence of dependent type theories. In essence, two theories are
Morita equivalent if their categories of models are equivalent in a suitable “up-to-homotopy”
sense. More precisely, a Morita equivalence between theories is a translation between them
that induces a Quillen equivalence (the correct notion of equivalence for left semi-model struc-
tures) between their left semi-model categories of models. Perhaps unsurprisingly, Isaev cites
Hofmann’s theorem as one of the motivating examples behind his definition, without actually
proving it to be one.

In our recent publication [KL25], we give a direct proof of Morita equivalence between the
extensional type theory and the intensional type theory extended by the principles of functional
extensionality and of uniqueness of identity proofs. While Hofmann proves that the initial mod-
els of these theories are suitably equivalent, we generalize this result to all possible extensions of
the base theories by types and terms, including propositional equalities. In homotopy-theoretic
terms, these are exactly the cofibrant extentions.

Therefore, thanks to proving Morita equivalence, one does not need to prove an analogue
of Hofmann’s result for any new extension but instead appeal to our result addressing all
extensions once and for all. As new variants and extensions of intensional type theory are
constantly proposed, this reduces the burden of proving their expected properties by making
what should be formal formal.

Our proof follows Hofmann’s quite closely but requires a major innovation to account for
all possible (cofibrant) extensions. In [Hof97], Hofmann describes a class of context morphisms
termed propositional isomorphisms by inspecting the outermost type former in (the last type of)
each context and collapses these maps to identities, thus obtaining a functor from the syntactic
model of intensional type theory to that of extensional type theory.

Our general approach is nearly identical: first, we describe the extensional kernel of a
cofibrant model of intensional type theory, which we then collapse in a construction reminiscent
of Hofmann’s to obtain a (cofibrant) model of extensional type theory. This explicit construction
then allows one to directly verify that it produces a model of extensional type theory and
yields Morita equivalence between the theories. Because of working with syntactic categories,
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Hofmann is able to inspect the outermost constructor in each context. This property need not
hold in every model, but it does hold in the cofibrant ones, which is therefore sufficient to follow
the remainder of Hofmann’s strategy to establish a Morita equivalence.

In this talk, after reviewing the necessary background, we give an overview of the proof,
including a detailed comparison with Hofmann’s approach.
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This paper introduces a lightweight approach to formalization of Scott–Strachey style denotational
semantics in Agda. In contrast to previous approaches, it allows definitions of denotations in
λ-notation to be embedded straightforwardly in Agda without significant changes. A lightweight
Agda formalization of the standard denotational semantics of the untyped λ-calculus is given
to illustrate the simplicity of the approach; lightweight Agda formalizations of denotational
definitions of PCF and core Scheme are available online [11].

The lightweight approach presented here simply assumes that all Agda types are Scott-
domains, and that all Agda functions have fixed points. Such assumptions are obviously unsound,
but the Agda proof assistant accepts them, and their unsoundness does not affect checking
definitions for well-formedness.

Motivation. The author’s original motivation for formalizing denotational semantics was
to validate a semantics of inheritance [10]. The aim was to check the soundness not only of
the results stated in [2], but also of the individual proof-steps, and the Agda proof assistant
seemed particularly well-suited for that. The resulting formalization [9] is reasonably lightweight.
Type-checking it with Agda revealed several subtle flaws in the original denotational definition;
after they had been fixed, Agda successfully checked the proof-steps of various lemmas.

Scott domain theory. In conventional Scott–Strachey denotational semantics [20, 21, 22,
27, 29], the denotation of a program phrase is an element of a Scott-domain: an ω-complete
poset with a least element, possibly with further properties. Flat domains are defined as lifted
sets, and domains are closed under domain constructors including lifting, cartesian product,
and separated sum. Domains can also be defined recursively (up to isomorphism) without
restrictions. Functions on domains defined in λ-notation are continuous, ensuring that endo-
functions have least fixed points. More recent presentations of Scott domain theory [1, e.g.]
define also predomains, which need not have a least element, and thus include ordinary sets
(discretely ordered) as well as domains.

Agda formalization of Scott domain theory. The Agda TypeTopology library is based on
univalent foundations. It includes modules for Scott domain theory, and illustrates their use in
denotational definitions of PCF and the untyped λ-calculus [5].

This Agda formalization of domain theory corresponds directly to the usual set-theoretic
definitions: a domain consists of a carrier type together with a partial order relation, its least
element, and proofs of the required completeness properties; a continuous function between
domains is an underlying function between their carrier types, paired with a proof of its continuity.
Similarly for predomains.

Currently, the formalization requires definitions of denotations in λ-notation to include
explicit continuity proofs, and subsequently discard the proof terms when applying functions.
This prevents direct embedding of λ-notation from conventional denotational definitions, and
seems quite impractical for formalizing the denotational semantics of larger languages (especially
in continuation-passing style, e.g., for Scheme [19]).
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Agda formalization of synthetic domain theory. Instead of formalizing the standard
set-theoretic definitions of domains and continuous functions, synthetic domain theory (SDT)
axiomatizes domains as kinds of sets in intuitionistic set-theory. Endofunctions on such sets
have fixed points, and recursive set equations have solutions. SDT was suggested by Dana Scott
[23], about 10 years after his initial development of domain theory.

Most of the published theoretical work on SDT [3, 7, 12, 13, 16, 18, 24, 25, 28] concentrated
mainly on sorting out the underlying mathematical framework of what properties domains have,
and on studying models of such domains. However, Bernhard Reus [14] also formalized SDT in
the Lego proof assistant. The formalization relies on impredicativity and proof-irrelevance [15],
which prevents porting it straightforwardly to Agda.

Alex Simpson’s development of SDT [24] is based on intuitionistic ZF set theory. The
generality of the approach is illustrated by a denotational semantics of FPC, a recursively-
typed λ-calculus with sum and product types. In op. cit. (§3) he wrote: “it seems likely that,
with appropriate reformulations, the development of this paper could be carried out in the
(predicative) context of Martin-Löf’s Type Theory”, but apparently its formalization in Agda
has not yet been attempted.

It appears that the only formalizations of SDT so far developed in Agda are based on guarded
domain definitions in clocked cubical type theory [4, 6, 26]. However, denotations then involve
step-indexing, so they are generally more intensional than in conventional Scott domain theory.

Lightweight Agda formalization. The Agda code presented below is a lightweight formal-
ization of a standard denotational semantics of the untyped call-by-name λ-calculus, following
[17, §10.5]. The complete source code is available online [11].

Abstract syntax. Denotational semantics conventionally defines the abstract syntax of a
language by a context-free grammar. Agda doesn’t include grammars, but it is quite straight-
forward to transform a grammar to inductive datatype definitions with the same interpretation.
The following datatype uses ordinary functional notation for term constructors (partly because
Agda’s mixfix notation doesn’t allow the usual terminal symbols of the λ-calculus) but it is
otherwise a reasonably direct formalization of the original definition.

data Var : Set where
x : N → Var -- variables

_==_ : Var → Var → Bool
x n == x n′ = (n ≡b n′)

data Exp : Set where
var_ : Var → Exp -- variable value
lam : Var → Exp → Exp -- lambda abstraction
app : Exp → Exp → Exp -- application

Domains. The standard denotational semantics of the λ-calculus is based on a domain
D∞ isomorphic to the domain of all continuous functions from D∞ to D∞.1 Its lightweight
formalization postulates2 the existence of an Agda type D∞ with a bijection _↔_ to the type
D∞ → D∞ of all Agda functions on D∞.

open import Function
using (Inverse; _↔_) public

open Inverse {{ ... }}
using (to; from) public

postulate
D∞ : Set

postulate
instance iso : D∞ ↔ (D∞ → D∞)

1In fact the least solution of the domain equation D∞ = D∞ → D∞ is a 1-element domain; the intended
solution includes some arbitrary non-trivial domain.

2Assumptions are specified as postulates to avoid module parameters that would need to be repeated in
importing modules, and to allow assumed properties to be added as rewrite rules.
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The special module application Inverse {{ ... }} above has the effect of declaring the functions
to : D∞ → (D∞ → D∞) and from : (D∞ → D∞) → D∞ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
D∞. Ordering them pointwise defines a domain of environments. The lightweight formalization
of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:

Env = Var → D∞ _[_/_] : Env → D∞ → Var → Env
ρ [ d / v ] = λ v′ → if v == v′ then d else ρ v′

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to λ-notation are needed: λx.fx becomes λ x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.

J_K : Exp → Env → D∞
J var v K ρ = ρ v

J lam v e K ρ = from ( λ d → J e K (ρ [ d / v ]) )
J app e1 e2 K ρ = to ( J e1 K ρ ) ( J e2 K ρ )

Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped λ-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : ∀ {f} → to (from f) ≡ f

check-convergence :
J app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) K

≡ J var x 42 K
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
J app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) K ≡ J var x 42 K
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ≡ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ≡ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant effort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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