
Efficient Program Extraction in Elementary Number

Theory using the Proof Assistant Minlog

Franziskus Wiesnet1

Vienna University of Technology, Vienna, Austria, European Union
franziskus.wiesnet@tuwien.ac.at

Abstract

Overview We examine theorems of elementary number theory using a constructive, compu-
tational, and proof-theoretic approach. Key theorems include Euclid’s proof of the infinitude
of prime numbers, Bézout’s identity, the Fundamental Theorem of Arithmetic, and Fermat’s
factorization method. These theorems have been formalized within the proof assistant Min-
log, providing rigorous formal verification. Minlog allows the extraction of executable Haskell
programs from proofs, demonstrating their computational utility. The implementations can
be found in the folder examples/arith of the Minlog directory. Currently these files are only
available and functional in the dev branch of Minlog. Instructions on how to install Minlog and
switch to the dev branch can be found on the Minlog website [14]. All relevant files are also
available in a GitHub repository (https://github.com/FranziskusWiesnet/MinlogArith/).

We explore interesting and instructive aspects of the proofs, the implementation in Minlog,
and the extracted Haskell term. Additionally, we will highlight the unique features and advan-
tages of Minlog as a proof assistant, offering the audience a deeper insight into its capabilities.
The main focus of the presentation will be on the Fundamental Theorem of Arithmetic and
Fermat’s factorization method. The second one can be extended to the quadratic sieve, which
is a sub-exponential factorization method. An implementation of the quadratic sieve in Minlog
is the subject of future research.

While prior knowledge of Minlog, Haskell, or other programming languages can be helpful,
it is not required, as we will provide all necessary explanations.

Innovations and Methodology While Minlog has primarily been used for the formalization
of analysis, this study serves as a case study demonstrating that Minlog is also highly suitable
for algorithmic number theory. The only article dealing with number theory (in this case,
the greatest common divisor) in Minlog is [6]. However, that work primarily focused on the
extraction of programs from classical proofs. Therefore, this new implementation can serve as
a solid foundation for the formalization of number theory in Minlog.

Another innovation is that we have considered the efficiency of the extracted term right
from the formulation of theorems and their proofs. Therefore, the proofs were formalized in
two different versions. The first version is based on unary natural numbers, defined by 0 and the
successor function. In contrast, the second version is based on positive binary numbers given
by 1 and two successor functions, one appending 0 and the other appending 1. While the first
version focuses primarily on the simplicity of the theorems and their proofs, the second version
prioritizes the efficiency of the extracted term. Hence, we demonstrate how formulating theo-
rems and structuring their proofs influence the efficiency of the extracted algorithms, bridging
the gap between formal verification and practical applications. Furthermore, extracting proofs
as Haskell programs (rather than as terms in Minlog) will also contribute to shortening the
runtime of the extracted algorithms.

https://github.com/FranziskusWiesnet/MinlogArith/


Elementary Arithmetic in Minlog F. Wiesnet

Background Minlog is a proof assistant developed in the 1990s by the logic group at the
Ludwig-Maximilians-Universität München under the direction of Helmut Schwichtenberg [4,
13, 14, 15, 20, 21]. Several introductions to Minlog are available [31, 32, 33]. Recently, Minlog
has predominantly been employed in the field of constructive analysis [5, 11, 16, 23, 26, 35].
However, there exists a broad spectrum of proofs in diverse domains that have been implemented
in Minlog [2, 8, 22, 24, 25]. All of them share the characteristic that an implementation in
Minlog not only focuses on the correctness of the proof but also on extracting programs from
the proofs. As the primary goal of Minlog is to interpret proofs as programs and to work with
them accordingly [1], it includes all the functions for the formal program extraction from proofs.

Minlog and the formal program extraction from proofs are based on an extension of HAω

called Theory of Computable Functionals (TCF) as meta-theory. Its origins go back to Scott’s
seminal work on Logic of Computable Functionals [28] and Platek’s PhD thesis [18], and it
incorporates basic concepts introduced by Kreisel [10] and Troelsta [30]. In recent years the
Munich team have made important progress in the development of TCF [3, 7, 9, 17, 19]. It is
based on partial continuous functionals and information systems, serving as their designated
model, known as Scott model [12, 27].

Illustrative examples. The natural numbers N are given by the constructors

0 : N, S : N → N,

and the positive binary numbers P are given by

1 : P, S0 : P → P, S1 : P → P.

Note that the binary representation is reversed. For example, S0 S1 1 represents the number 6,
which corresponds to binary 110. The reason for starting with 1 instead of 0 is primarily to
ensure that each number is uniquely determined by its constructors. Otherwise, for example 0
and S0 0 would represent the same number, violating this uniqueness.

Already the definition of the greatest common divisor clearly illustrates the computa-
tional difference between the number types. On natural numbers, the greatest common divisor
can be defined by the euclidean algorithm:

gcd(0, n) := gcd(n, 0) := n

gcd(Sm,Sn) :=

{
gcd(Sm,n−m) if m < n

gcd(m− n, Sn) otherwise

It should be noted that using division with remainder on the natural numbers would not make
this algorithm more efficient, because the computation of division with remainder results es-
sentially in an iterated application of the step case in the definition above.

On positive binary numbers, however, the greatest common divisor can be defined much
more efficiently by Stein’s algorithm (named after Josef Stein [29]):

gcd(1, p) := gcd(S1 p, 1) := gcd(S0 p, 1) := 1

gcd(S0 p,S0 q) := S0(gcd(p, q))

gcd(S0 p,S1 q) := gcd(S1 p,S0 q) := gcd(p,S1 q)

gcd(S1 p,S1 q) :=


gcd(S1 p, q − p) if p < q

gcd(p− q,S1 q) if q < p

S1 p otherwise.

2



Elementary Arithmetic in Minlog F. Wiesnet

One can see that in Stein’s algorithm, at each step, at least one argument is reduced by one
digit and is therefore at least halved. Noting that the subtraction of two binary numbers has
approximately linear runtime in the number of digits, Stein’s algorithm therefore has quadratic
runtime in the number of digits. In contrast, the Euclidean algorithm on natural numbers has
quadratic runtime only with respect to the absolute size of the arguments.

Bézout’s identity is known as the statement that the greatest common divisor is a linear
combination of the two arguments. That is, for integers a, b there are integers u, v with
gcd(a, b) = u · a + v · b. During the formalization, we wanted to remain within the respec-
tive number system, so the theorem had to be reformulated as

∀n,m∃l0∃l1 . gcd(n,m) + l0 · n = l1 ·m ∨ gcd(n,m) + l0 ·m = l1 · n

for natural numbers, and as

∀p0,p1
. ∃q q · p0 = p1 ∨ ∃q q · p1 = p0

∨ ∃q0∃q1 gcd(p0, p1) + q0 · p0 = q1 · p1
∨ ∃q0∃q1 gcd(p0, p1) + q1 · p1 = q0 · p0

for positive binary numbers. Note that, since integers in Minlog are defined as a type sum
of negative binary numbers, zero, and positive binary numbers, the case distinction would be
implicitly present in the proof anyway.

The proofs were carried out by induction over an upper bound of the numbers, which is
seen as a natural number. In the induction step itself, a case distinction was made based on
the structure of the numbers. Specifically for positive binary numbers, this means that the
statement

∀l,p0,p1
. p0 + p1 < l →

∃q q · p0 = p1 ∨ ∃q q · p1 = p0

∨ ∃q0∃q1 gcd(p0, p1) + q0 · p0 = q1 · p1
∨ ∃q0∃q1 gcd(p0, p1) + q1 · p1 = q0 · p0

was proven by induction on l : N and case distinction on p0 ∈ {1,S0 q0,S1 q0} and p1 ∈
{1,S0 q1,S1 q1}. In particular, properties of both natural numbers and positive binary numbers
were combined. The individual cases are then quite straightforward, but in many instances, a
further case distinction according to the four cases in the statement is required.

A similar approach was also chosen for the Fundamental Theorem of Arithmetic and Fer-
mat’s factorization method. A detailed presentation can be found in [34].

Acknowledgements. The research for this document was funded by the Austrian Science
Fund (FWF) 10.55776/ESP576.

Many thanks to Helmut Schwichtenberg for providing valuable tips on writing the Minlog
code and for integrating it into the official Minlog version.

I am grateful to the anonymous reviewers for their thoughtful suggestions. Although space
and time constraints prevented me from including all of them, their input was highly appreci-
ated.

References

[1] Holger Benl and Helmut Schwichtenberg. Formal Correctness Proofs of Functional Programs:
Dijkstra’s Algorithm, a Case Study. In U. Berger and H. Schwichtenberg, editors, Computational

3



Elementary Arithmetic in Minlog F. Wiesnet

Logic, volume 165 of Series F: Computer and Systems Sciences, pages 113–126. Proceedings of the
NATO Advanced Study Institute on Computational Logic, held in Marktoberdorf, Germany, July
29 – August 10, 1997, Springer Berlin Heidelberg, 1999.

[2] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program Extraction
from Normalization Proofs. Studia Logica, 82(1):25–49, February 2006.

[3] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined program extraction from
classical proofs. Annals of Pure and Applied Logic, 114(1–3):3–25, April 2002.

[4] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Monika Seisenberger. Minlog - A
Tool for Program Extraction Supporting Algebras and Coalgebras, pages 393–399. Springer Berlin
Heidelberg, 2011. 4th International Conference, CALCO 2011, Winchester, UK, August 30 –
September 2, 2011. Proceedings.

[5] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Hideki Tsuiki. Logic for Gray-
code Computation. In D. Probst and P. Schuster, editors, Concepts of Proof in Mathematics,
Philosophy, and Computer Science, pages 69–110. De Gruyter, July 2016.

[6] Ulrich Berger and Helmut Schwichtenberg. The greatest common divisor: A case study for program
extraction from classical proofs. In Stefano Berardi and Mario Coppo, editors, Types for Proofs and
Programs, volume 1158, pages 36–46. Springer Berlin Heidelberg, 1996. International Workshop,
TYPES ’95 Torino, Italy, June 5–8, 1995 Selected Papers.

[7] Simon Huber, Basil A. Karádais, and Helmut Schwichtenberg. Towards a Formal Theory of
Computability. In R. Schindler, editor, Ways of Proof Theory: Festschrift for W. Pohlers, pages
257–282. De Gruyter, December 2010.

[8] Hajime Ishihara and Helmut Schwichtenberg. Embedding classical in minimal implicational logic.
Mathematical Logic Quarterly, 62(1–2):94–101, January 2016.

[9] Basil A. Karádais. Towards an Arithmetic for Partial Computable Functionals. PhD thesis,
Ludwig-Maximilians University Munich, 2013.

[10] Georg Kreisel. Interpretation of Analysis by Means of Constructive Functionals of Finite Types.
In A. Heyting, editor, Constructivity in mathematics, pages 101–128. North-Holland Pub. Co.,
1959.

[11] Nils Köpp and Helmut Schwichtenberg. Lookahead analysis in exact real arithmetic with logical
methods. Theoretical Computer Science, 943:171–186, January 2023.

[12] Kim Guldstrand Larsen and Glynn Winskel. Using information systems to solve recursive domain
equations. Information and Computation, 91(2):232–258, April 1991.

[13] Kenji Miyamoto. Program extraction from coinductive proofs and its application to exact real
arithmetic. PhD thesis, Ludwig-Maximilians University Munich, 2013.

[14] Kenji Miyamoto. The Minlog System. https://www.mathematik.uni-muenchen.de/~logik/

minlog/, 2024.

[15] Kenji Miyamoto, Fredrik Nordvall Forsberg, and Helmut Schwichtenberg. Program Extraction
from Nested Definitions. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving, volume 7998 of LNCS, pages 370–385. Springer Berlin Heidelberg, 2013. 4th
International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings.

[16] Kenji Miyamoto and Helmut Schwichtenberg. Program extraction in exact real arithmetic. Math-
ematical Structures in Computer Science, 25(8):1692–1704, November 2014.

[17] Iosif Petrakis. Advances in the Theory of ComputableFunctionals TCF+ due to its Implementa-
tion, 2013. online: https://www.math.lmu.de/~petrakis/TCF+.pdf.

[18] Richard Alan Platek. Foundations of recursion theory. PhD thesis, Stanford University, 1966.

[19] Helmut Schwichtenberg. Primitive Recursion on the Partial Continuous Functionals. In M. Broy,
editor, Informatik und Mathematik, pages 251–268. Springer Berlin Heidelberg, 1991.

[20] Helmut Schwichtenberg. Proofs as Programs. In P. Aczel, H. Simmons, and S. Wainer, editors,
Proof Theory: A selection of papers from the Leeds Proof Theory Programme 1990, page 79–114,

4

https://www.mathematik.uni-muenchen.de/~logik/minlog/
https://www.mathematik.uni-muenchen.de/~logik/minlog/
https://www.math.lmu.de/~petrakis/TCF+.pdf


Elementary Arithmetic in Minlog F. Wiesnet

Cambridge, 1993. Cambridge University Press. Title from publisher’s bibliographic system (viewed
on 24 Feb 2016).

[21] Helmut Schwichtenberg. Minlog. In Freek Wiedijk, editor, The Seventeen Provers of the World,
volume 3600, pages 151–157. Springer Berlin Heidelberg, 2006.

[22] Helmut Schwichtenberg. Program Extraction from Proofs: The Fan Theorem for Uniformly Co-
convex Bars. In S. Centrone, S. Negri, D. Sarikaya, and P. Schuster, editors, Mathesis Universalis,
Computability and Proof, volume 412 of Synthese Library, pages 333–341. Springer International
Publishing, 2019.

[23] Helmut Schwichtenberg. Logic for Exact Real Arithmetic: Multiplication. In Mathematics for
Computation (M4C), chapter 3, pages 39–69. World Scientific, April 2023.

[24] Helmut Schwichtenberg, Monika Seisenberger, and Franziskus Wiesnet. Higman’s Lemma and
its Computational Content. In R. Kahle, T. Strahm, and T. Studer, editors, Advances in Proof
Theory, pages 353–375. Springer International Publishing, 2016.

[25] Helmut Schwichtenberg and Stanley S. Wainer. Tiered Arithmetics. In G. Jäger and W. Sieg,
editors, Feferman on Foundations, volume 13, pages 145–168. Springer International Publishing,
2017.

[26] Helmut Schwichtenberg and Franziskus Wiesnet. Logic for exact real arithmetic. Logical Methods
in Computer Science, 17(2):7:1–7:27, April 2021.

[27] Dana S. Scott. Domains for denotational semantics, pages 577–610. Springer Berlin Heidelberg,
1982.

[28] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer
Science, 121(1):411–440, 1993.

[29] Josef Stein. Computational problems associated with Racah algebra. Journal of Computational
Physics, 1(3):397–405, February 1967.

[30] Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. Springer Berlin Heidelberg, 1973.

[31] Franziskus Wiesnet. Konstruktive Analysis mit exakten reellen Zahlen. Master’s thesis, Ludwig-
Maximilians Universität München, September 2017.

[32] Franziskus Wiesnet. Introduction to Minlog. In Klaus Mainzer, Peter Schuster, and Helmut
Schwichtenberg, editors, Proof and Computation, pages 233–288. World Scientific, May 2018.

[33] Franziskus Wiesnet. Minlog-Kurs. https://www.youtube.com/playlist?list=

PLD87fNDrm1skaFxUA-ArQjmqj50IARRPf, 2024. YouTube Playlist.

[34] Franziskus Wiesnet. Verified Program Extraction in Number Theory: The Fundamental Theorem
of Arithmetic and Relatives. arXiv, April 2025. https://arxiv.org/abs/2504.03460, (under
review).

[35] Franziskus Wiesnet and Nils Köpp. Limits of real numbers in the binary signed digit representation.
Logical Methods in Computer Science, 18(3), August 2022.

5

https://www.youtube.com/playlist?list=PLD87fNDrm1skaFxUA-ArQjmqj50IARRPf
https://www.youtube.com/playlist?list=PLD87fNDrm1skaFxUA-ArQjmqj50IARRPf
https://arxiv.org/abs/2504.03460

