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This paper introduces a lightweight approach to formalization of Scott–Strachey style denotational
semantics in Agda. In contrast to previous approaches, it allows definitions of denotations in
λ-notation to be embedded straightforwardly in Agda without significant changes. A lightweight
Agda formalization of the standard denotational semantics of the untyped λ-calculus is given
to illustrate the simplicity of the approach; lightweight Agda formalizations of denotational
definitions of PCF and core Scheme are available online [11].

The lightweight approach presented here simply assumes that all Agda types are Scott-
domains, and that all Agda functions have fixed points. Such assumptions are obviously unsound,
but the Agda proof assistant accepts them, and their unsoundness does not affect checking
definitions for well-formedness.

Motivation. The author’s original motivation for formalizing denotational semantics was
to validate a semantics of inheritance [10]. The aim was to check the soundness not only of
the results stated in [2], but also of the individual proof-steps, and the Agda proof assistant
seemed particularly well-suited for that. The resulting formalization [9] is reasonably lightweight.
Type-checking it with Agda revealed several subtle flaws in the original denotational definition;
after they had been fixed, Agda successfully checked the proof-steps of various lemmas.

Scott domain theory. In conventional Scott–Strachey denotational semantics [20, 21, 22,
27, 29], the denotation of a program phrase is an element of a Scott-domain: an ω-complete
poset with a least element, possibly with further properties. Flat domains are defined as lifted
sets, and domains are closed under domain constructors including lifting, cartesian product,
and separated sum. Domains can also be defined recursively (up to isomorphism) without
restrictions. Functions on domains defined in λ-notation are continuous, ensuring that endo-
functions have least fixed points. More recent presentations of Scott domain theory [1, e.g.]
define also predomains, which need not have a least element, and thus include ordinary sets
(discretely ordered) as well as domains.

Agda formalization of Scott domain theory. The Agda TypeTopology library is based on
univalent foundations. It includes modules for Scott domain theory, and illustrates their use in
denotational definitions of PCF and the untyped λ-calculus [5].

This Agda formalization of domain theory corresponds directly to the usual set-theoretic
definitions: a domain consists of a carrier type together with a partial order relation, its least
element, and proofs of the required completeness properties; a continuous function between
domains is an underlying function between their carrier types, paired with a proof of its continuity.
Similarly for predomains.

Currently, the formalization requires definitions of denotations in λ-notation to include
explicit continuity proofs, and subsequently discard the proof terms when applying functions.
This prevents direct embedding of λ-notation from conventional denotational definitions, and
seems quite impractical for formalizing the denotational semantics of larger languages (especially
in continuation-passing style, e.g., for Scheme [19]).
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Agda formalization of synthetic domain theory. Instead of formalizing the standard
set-theoretic definitions of domains and continuous functions, synthetic domain theory (SDT)
axiomatizes domains as kinds of sets in intuitionistic set-theory. Endofunctions on such sets
have fixed points, and recursive set equations have solutions. SDT was suggested by Dana Scott
[23], about 10 years after his initial development of domain theory.

Most of the published theoretical work on SDT [3, 7, 12, 13, 16, 18, 24, 25, 28] concentrated
mainly on sorting out the underlying mathematical framework of what properties domains have,
and on studying models of such domains. However, Bernhard Reus [14] also formalized SDT in
the Lego proof assistant. The formalization relies on impredicativity and proof-irrelevance [15],
which prevents porting it straightforwardly to Agda.

Alex Simpson’s development of SDT [24] is based on intuitionistic ZF set theory. The
generality of the approach is illustrated by a denotational semantics of FPC, a recursively-
typed λ-calculus with sum and product types. In op. cit. (§3) he wrote: “it seems likely that,
with appropriate reformulations, the development of this paper could be carried out in the
(predicative) context of Martin-Löf’s Type Theory”, but apparently its formalization in Agda
has not yet been attempted.

It appears that the only formalizations of SDT so far developed in Agda are based on guarded
domain definitions in clocked cubical type theory [4, 6, 26]. However, denotations then involve
step-indexing, so they are generally more intensional than in conventional Scott domain theory.

Lightweight Agda formalization. The Agda code presented below is a lightweight formal-
ization of a standard denotational semantics of the untyped call-by-name λ-calculus, following
[17, §10.5]. The complete source code is available online [11].

Abstract syntax. Denotational semantics conventionally defines the abstract syntax of a
language by a context-free grammar. Agda doesn’t include grammars, but it is quite straight-
forward to transform a grammar to inductive datatype definitions with the same interpretation.
The following datatype uses ordinary functional notation for term constructors (partly because
Agda’s mixfix notation doesn’t allow the usual terminal symbols of the λ-calculus) but it is
otherwise a reasonably direct formalization of the original definition.

data Var : Set where
x : N → Var -- variables

_==_ : Var → Var → Bool
x n == x n′ = (n ≡b n′)

data Exp : Set where
var_ : Var → Exp -- variable value
lam : Var → Exp → Exp -- lambda abstraction
app : Exp → Exp → Exp -- application

Domains. The standard denotational semantics of the λ-calculus is based on a domain
D∞ isomorphic to the domain of all continuous functions from D∞ to D∞.1 Its lightweight
formalization postulates2 the existence of an Agda type D∞ with a bijection _↔_ to the type
D∞ → D∞ of all Agda functions on D∞.

open import Function
using (Inverse; _↔_) public

open Inverse {{ ... }}
using (to; from) public

postulate
D∞ : Set

postulate
instance iso : D∞ ↔ (D∞ → D∞)

1In fact the least solution of the domain equation D∞ = D∞ → D∞ is a 1-element domain; the intended
solution includes some arbitrary non-trivial domain.

2Assumptions are specified as postulates to avoid module parameters that would need to be repeated in
importing modules, and to allow assumed properties to be added as rewrite rules.
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The special module application Inverse {{ ... }} above has the effect of declaring the functions
to : D∞ → (D∞ → D∞) and from : (D∞ → D∞) → D∞ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
D∞. Ordering them pointwise defines a domain of environments. The lightweight formalization
of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:

Env = Var → D∞ _[_/_] : Env → D∞ → Var → Env
ρ [ d / v ] = λ v′ → if v == v′ then d else ρ v′

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to λ-notation are needed: λx.fx becomes λ x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.

J_K : Exp → Env → D∞

J var v K ρ = ρ v
J lam v e K ρ = from ( λ d → J e K (ρ [ d / v ]) )
J app e1 e2 K ρ = to ( J e1 K ρ ) ( J e2 K ρ )

Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped λ-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : ∀ {f} → to (from f) ≡ f

check-convergence :
J app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) K

≡ J var x 42 K
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
J app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) K ≡ J var x 42 K
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ≡ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ≡ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant effort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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