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Background

In a seminal paper, Hofmann and Streicher [1] constructed the groupoid model for Martin-Lof
Type Theory (MLTT). In this model, a type A is interpreted as a groupoid [A], while its
identity type ld4 is interpreted as the hom-set of [A]. Further work has shown that types
can be also interpreted as oo-groupoids [2], and that, together with the univalence axiom, the
resulting theory allows for a synthetic development of co-groupoids [3].

More recently, new, directed, type theories have emerged, with the goal of developing a way
of doing synthetic category theory. Different approaches have been used, such as a 2-dimensional
theories [4], modal typings [5, 6, 7], or multilayered approaches [8], among others. Arguably
the most successful of these are Simplicial Type Theory [8] and Triangulated Type Theory [6].
However, they achieve their expressive power by interpreting types not as categories, but more
general structures, and then carving out those types that behave like categories.

Our work aims to develop a type theory with comparable expressive power to the aforemen-
tioned ones, but without changing the universe of types. It builds on previous joint work with
Mangel [9], which itself is a continuation of the work done in [10]. The key new contributions
are a new context extension rule and modified rules for hom-types, which we now sketch.

An overview of directed type theory

We sketch some basic components in our theory, which were already present in [10]. Extending
the groupoid model, we define contexts to be categories, with the empty context being the
terminal category. A type in a context I' is a functor A : I' — Cat, it follows that a type in
the empty context is a category. The context extension operation I' > A is interpreted as the
Grothendieck construction [ A. As usual, terms of A are sections of the canonical projection
'>A-T.

Furthermore, we have types A and A°P for each type A, which in the semantics are ob-
tained by postcomposing A : I' — Cat with the endofunctors core, op : Cat — Cat, respectively.
We additionally have a hom-type former, with formation rule:

hom-ForM
' A type

Iz: Ay : AF homy(z,y) type

In the empty context, this type is interpreted as the usual functor hom, : A°° x A — Set,
except that each set is interpreted as a discrete category.

The dependent 2-sided context extension

In addition to the usual context extension rule, we now have a “dependent 2-sided” version:
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CTtx-EXT>o

T ctx ' A type T'ya: A® I B(a) type
I,a:Ab"Y B(a)ctx

Semantically, it corresponds to a dependent analogue of Street’s notion of a 2-sided fibra-
tion [11], which we call a dependent 2-sided fibration (D2SFib). This construction is
equipped with an opfibration over I' and a “local fibration” over fF A, and is the universal such
construction in the sense that we obtain an equivalence of categories

Functor(/ (opo A), Cat) ~ D2SFib(T', A)
r

We now interpret terms I',a: A+ b Y B as sections (I',a: A) — ([,a: A,b " B).

However, D2SFibs are not stable under pullback, which requires us to make a new judgment
to capture all substitutions. We write I' = X type, for any displayed category X — I'; equiv-
alently, for a normal lax functor X from I' to the double category of profunctors Prof. Now,
terms in X correspond to sections of the displayed category, and so we can write:

SUBST
F,:z::X,AFaQ:fX 'tm:X

D, Am/z]FatX

New rules for the hom-type

In particular, when applying this new operation to the hom-type we are able to form the new

context b: A,a: A, f ¥ homa(a,b)ctx (note the switching of the variables). Semantically, this
corresponds to the arrow category A~ , which validates the following rules:

hom-ELiM
I'a: AF X type

Ib:Aa: A, f Y hom4(a, b),z : X D type

hom-INTRO S
r=A:uU '-2:A Tya:A,x: X Fd: Dla/b,refl4/f]
T+ refl, * hom(z, x) Tb:Aa:A f? homa(a,b),z: X+Fjg? D

As an example of the semantics, the hom introduction rule in the empty context states that
the diagonal A : A — A x A lifts along the projection A~ — A. For another example, we
can now precisely capture natural transformations between two functors F,G : A — B, they
correspond to judgements a : A+ 7, : hom(Fa, Ga).

Furthermore, these rules plus the directed analogue of function extensionality are sufficient
to develop some category theory. Indeed, we can show:

Lemma (Yoneda). Let A : U™ be a type. Then, the following two functors are naturally
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isomorphic

Y,V : (A — Set) x A — Set
Y(F,a):= H Fz
(,f):22 4. 4 hom(a,x)
Y(F,a) := Fa

Future works

This is still work in progress; in particular, we need to better understand D2SFibs, their pull-
backs, and their relation with factorization systems. Additionally, we still have to investigate
just how much category theory can be developed internally. We hope that properties of Tri-
angulated Type Theory, such as a directed structure identity principle, have an analog for our
syntax.
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