
AdapTT: A Type Theory with Functorial Types
Arthur Adjedj1,2, Thibaut Benjamin2, Meven Lennon-Bertrand2, and Kenji

Maillard3

1 ENS Paris-Saclay, Saclay, France
2 University of Cambridge, Cambridge, United Kingdom

3 Gallinette Project Team, Inria, Nantes, France

Abstract

How can we make systematic and precise the idea that type formers in dependent
type theory are functorial? To examine this question, we propose a type theory AdapTT
with adapters, following ideas of McBride and Nordvall Forsberg [MN21] and Coraglia and
Emmenegger [CE23].

Coercions, coercions everywhere Diverse type theories feature operators to turn a term
of one type into one of another: coercive subtyping [LA08; LLM24], transport for observational
equality [AMS07; PT22], casts for gradual typing [Len+22], or adapters [MN21]. These oper-
ators share a similar decomposition of coercions along the structure of the types they operate
on. For instance, coercing a function f from a function type A0→B0 to A1→B1 amounts to
coercing its argument from A1 to A0, and its return value from B0 to B1.

Semantically, this shared core can be understood as a form of functoriality of type construc-
tors —see for instance Castellan et al. [CCD17, Lemma 4.8], which is essentially the same as the
behaviour of coercions at function types outlined above. However, the statement of this lemma
is somewhat contorted, as standard CwFs are not up to the task of expressing this functorial-
ity aspect. Indeed, if we want to talk about functoriality, we need categories between which
functorial type constructors map. Yet, types in CwFs only form a set. As already observed
by Coraglia and Emmenegger [CE23], comprehension categories [Jac93] lift this discreteness
constraint, providing suitable categorical models of subtyping.

Some pieces are however still missing for a full-fledged understanding of coercions in type
theory. First, rather than CwF, Coraglia and Emmenegger [CE23] generalise natural models.
Second, the key operation of coercion is not directly explicitated. Finally, only specific type
constructors (Π and Σ) are considered, those for which the functorial action is admissible thanks
to η-rules. Our goal is to fill in these missing pieces, and provide a good setting to talk about
functoriality of type formers and coercions as a general concept.

Adapters As we already hinted at, our first step is to modify the standard CwF structure
to CwF<:, which incorporate extra data: types in a CwF<: form a category rather than a
mere set —see full definition of CwF<: in appendix A. We call arrows between types adapters,
after McBride and Nordvall Forsberg [MN21]. Each type has an identity adapter, and adapters
compose. More importantly, adapters act on terms: if Γ ⊢ t : A and a is an adapter from A
to B, we can form a term Γ ⊢ t ⟨a⟩ : B, the coercion of t along a. Subtyping can be construed
as the special case where types are posets, making the witness adapter irrelevant —only the
endpoints matter.

Coercions should satisfy a number of properties in their interactions with identity, compo-
sition, substitution... Coraglia and Emmenegger’s gCwF structure [CE23] succinctly captures
this: although they do not derive it, we have shown that the coercion operation can be con-
structed in any gCwF. In short, when considered fiberwise over a fixed context, terms form a



AdapTT Adjedj, Benjamin, Lennon-Bertrand and Maillard

discrete opfibration over types. This means their setting is a good semantic fit for adapters, and
since they show its equivalence with general comprehension categories, this gives us assurance
that CwF<:, which reformulate gCwF in the language of CwF, are a reasonable notion.

Parameter contexts We now have an idea of what the codomain of a functorial type con-
structor should be. But what should its domain be? We propose to use parameter contexts,
which contain two kinds of variable. The usual, term-level ones, and type variables. These come
with two pieces of information: a variance, which we will use to differentiate between co- and
contravariant functors1; and a context of bound variable that a type can depend on. As an
example, the following represents the parameters of the dependent function type constructor
Π, with one contravariant type, and a covariant one depending on the first

ΓΠ := (X : Ty−) ▷ (Y : (x : X).Ty+)

A substitution into that context ∆ ⊢ σ : ΓΠ accordingly consists of two types, the second
depending on the first. Since we have arrows between types, we also get arrows between these
substitutions: if ∆ ⊢ τ : ΓΠ is another substitution into ΓΠ, a transformation ∆ ⊢ µ : σ ⇒ τ
consists of an adapter between τ(X) and σ(X) (since X is contravariant), and one between
σ(Y ) and τ(Y ), suitably lying over the first. This is exactly the data we need to build an
adapter between Πx : σ(X).σ(Y ) and Πx : τ(X).τ(Y ) by pre- and post-composition, as above.

Generalising this example, a type constructor of “arity” Γ amounts to a type Γ ⊢ T , which
generates types in all other contexts and the relevant adapters, by the respective actions of
substitutions and transformations. In particular, such a type gives rise to a functor from the
category of substitutions Sub(∆,Γ) to that of types in ∆: given two substitutions ∆ ⊢ σ, τ : Γ
and a transformation ∆ ⊢ µ : σ ⇒ τ , we get an adapter T JµK between T [σ] and T [τ ].

We succinctly describe this with a 2-category of parameter contexts, substitutions and trans-
formations, the latter built of adapters. The above intuition can then be quickly summarised by
saying that Ty is a 2-functor. In the most general view, a type constructor can be understood
as a natural transformation from a (Cat-valued) presheaf on the category of contexts to this
2-functor Ty. Our notion of parameter contexts is rich enough to make many such presheaves
representable. By the (2-categorical) Yoneda lemma —which gives an isomorphism between
the categories CatCtxop

[y Γ,Ty] and Ty(Γ)— parameter contexts let us represent these type
constructors and their functorial action more directly, as we did with ΓΠ.

We are exploring the formalisation of all this in Agda as a quotient-inductive-inductive-
recursive type, representing the syntax of a putative type theory AdapTT. In particular, we can
check that type formers such as Π, Σ, or the identity type, adapt to this functorial setting. And
they do, following the familiar pattern of structural coercions/casts/transport.

The next direction we hope to explore, which was part of our original motivation, is to
provide a setting to generally derive this functorial structure for datatypes. That is, to design
a theory of signatures which incorporates —and checks— variance information, and generically
derives the adapter equivalent of a map operation [LLM24].

Towards 2-CwF The 2-categorical aspects of the category of contexts suggests a connection
to the 2-dimensional type theory 2DTT of Licata and Harper [LH11]. Indeed, internalizing type
variables as quantifications over a universe of sets yields a theory very close to 2DTT. However,
2DTT does not have an explicit judgement for the categorical structure on types corresponding
to adapters, merely relying on the corresponding notion between terms. A unifying notion of
2-dimensional type theory should combine our CwF<: with type variables and 2DTT.

1For simplification we do not consider equivariance, which should however be relatively easy to add.



AdapTT Adjedj, Benjamin, Lennon-Bertrand and Maillard

A Full definition of CwF with adapters
Definition 1 (Families indexed by categories). Fam<: is the category whose objects are pairs
of a category X and a functor X → Set. An arrow (X,F ) → (Y,G) is a pair of a functor
H : X → Y and a natural transformation F

·→ G ◦H. Abstractly (and ignoring size issues),
Fam<: is the lax slice category Cat � Set.

Definition 2 (Categories with families and adapters (CwF<:)). A category with families and
adapters (CwF<:) is given by the following data.

• A category Ctx whose objects are called contexts and arrows substitutions.

• A functor T : Ctxop → Fam<:, that is, given a context Γ : Ctx, we have

– a category Ty(Γ) of types in Γ, we write Ad(Γ, A,B) (adapters) for the collection of
arrows between two types A and B;

– for any A : Ty(Γ), a set of terms Tm(Γ, A);
– an action of substitution · [·] on types, adapters and terms,
– and an action · ⟨·⟩ of adapters on terms: if t : Tm(Γ, A) and a : Ad(Γ, A,B), then

t ⟨a⟩ : Tm(Γ, B);
– suitable equalities for the compatibility of the actions of substitution and adapters

with identities, compositions and each other.

• For any context Γ and type A : Ty(Γ), a context extension Γ ▷ A, equipped with

– a substitution wk : Γ ▷ A → Γ (weakening)
– and a term vz : Tm(Γ ▷ A,A [wk]) (variable zero)
– in a universal way: for any context ∆ equipped with σ : ∆ → Γ and t : Tm(∆, A [σ]),

there exists a substitution σ ▷ t : ∆ → Γ ▷ A (substitution extension) such that
wk ◦ (σ ▷ t) = σ and vz [σ ▷ t] = t, which is unique, i.e. for any σ : ∆ → (Γ ▷ A) we
have σ = (wk ◦σ) ▷ vz [σ].

Theorem 3. Every CwF<: in the sense of definition 2 is a gCwF in the sense of Coraglia and
Emmenegger [CE23], and vice-versa.

This notion of category of families with adapters can alternatively be presentated via the
following Second-Order Generalized Algebraic Theory [Uem21; KX24]:

ty : Sort ad : ty → ty → Sort
tm : ty → RepSort · ⟨·⟩ : {AB : ty} → adAB → tmA → tmB

id : {A : ty} → adAA ◦ : {ABC : ty} → adBC → adAB → adAC

idl : {AB : ty}(a : adAB) → id ◦ a ≡ a idr : {AB : ty}(a : adAB) → a ◦ id ≡ a

assoc : {ABC D : ty}(a : adAB)(b : adBC)(c : adC D) → c ◦ (b ◦ a) ≡ (c ◦ b) ◦ a
adapt/id : {A : ty}(t : tmA) → t⟨id⟩ ≡ t

adapt/◦ : {ABC : ty}(a : adAB)(b : adBC)(t : tmA) → t⟨b ◦ a⟩ ≡ t⟨a⟩⟨b⟩

This presentation exhibits the adapters as the hom-sets of a category structure on types (in-
ternally to presheaves over the category of contexts) and their action on terms as an (internal)
presheaf structure over the category of types and adapters.



AdapTT Adjedj, Benjamin, Lennon-Bertrand and Maillard

References
[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational Equal-

ity, Now!” In: Proceedings of the 2007 Workshop on Programming Languages Meets
Program Verification. PLPV ’07. Freiburg, Germany: Association for Computing
Machinery, 2007, pp. 57–68. isbn: 9781595936776. doi: 10.1145/1292597.1292608.

[CCD17] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Undecidability of equality
in the free locally cartesian closed category (extended version)”. In: Logical Methods
in Computer Science 13 (2017).

[CE23] Greta Coraglia and Jacopo Emmenegger. Categorical models of subtyping. 2023. doi:
10.48550/arxiv.2312.14600. arXiv: 2312.14600 [cs.LO].

[Jac93] Bart Jacobs. “Comprehension Categories and the Semantics of Type Dependency”.
In: Theoretical Computer Science 107.2 (1993), pp. 169–207. doi: 10.1016/0304-
3975(93)90169-T.

[KX24] Ambrus Kaposi and Szumi Xie. “Second-Order Generalised Algebraic Theories: Sig-
natures and First-Order Semantics”. In: 9th International Conference on Formal
Structures for Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn,
Estonia. Ed. by Jakob Rehof. Vol. 299. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024, 10:1–10:24. isbn: 978-3-95977-323-2. doi: 10.4230/LIPICS.
FSCD.2024.10. url: https://doi.org/10.4230/LIPIcs.FSCD.2024.10.

[LA08] Zhaohui Luo and Robin Adams. “Structural subtyping for inductive types with func-
torial equality rules”. In: Mathematical Structures in Computer Science 18.5 (2008),
pp. 931–972. issn: 0960-1295. doi: 10.1017/S0960129508006956. url: https:
//www.cambridge.org/core/article/structural-subtyping-for-inductive-
types-with-functorial-equality-rules/03A1AD06A0D2F0E6037C2D54DBA68CCC.

[Len+22] Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric Tanter. “Grad-
ualizing the Calculus of Inductive Constructions”. In: ACM Transactions on Pro-
gramming Languages and Systems 44.2 (Apr. 2022). issn: 0164-0925. doi: 10.1145/
3495528.

[LH11] Daniel R. Licata and Robert Harper. “2-Dimensional Directed Type Theory”. In:
Twenty-seventh Conference on the Mathematical Foundations of Programming Se-
mantics, MFPS 2011. Ed. by Michael W. Mislove and Joël Ouaknine. Vol. 276.
Electronic Notes in Theoretical Computer Science. Elsevier, 2011, pp. 263–289. doi:
10.1016/J.ENTCS.2011.09.026.

[LLM24] Théo Laurent, Meven Lennon-Bertrand, and Kenji Maillard. “Definitional Functo-
riality for Dependent (Sub)Types”. In: 33rd European Symposium on Programming,
ESOP 2024. Ed. by Stephanie Weirich. Vol. 14576. Lecture Notes in Computer
Science. Springer, 2024, pp. 302–331. doi: 10.1007/978-3-031-57262-3_13.

[MN21] Conor McBride and Frederik Nordvall Forsberg. “Functorial Adapters”. In: 27th
International Conference on Types for Proofs and Programs. 2021.

[PT22] Loïc Pujet and Nicolas Tabareau. “Observational Equality: Now for Good”. In: Proc.
ACM Program. Lang. 6.POPL (2022). doi: 10.1145/3498693.

[Uem21] Taichi Uemura. “Abstract and Concrete Type Theories”. PhD thesis. University of
Amsterdam, 2021. url: https://eprints.illc.uva.nl/id/document/12150.

https://doi.org/10.1145/1292597.1292608
https://doi.org/10.48550/arxiv.2312.14600
https://arxiv.org/abs/2312.14600
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.4230/LIPICS.FSCD.2024.10
https://doi.org/10.4230/LIPICS.FSCD.2024.10
https://doi.org/10.4230/LIPIcs.FSCD.2024.10
https://doi.org/10.1017/S0960129508006956
https://www.cambridge.org/core/article/structural-subtyping-for-inductive-types-with-functorial-equality-rules/03A1AD06A0D2F0E6037C2D54DBA68CCC
https://www.cambridge.org/core/article/structural-subtyping-for-inductive-types-with-functorial-equality-rules/03A1AD06A0D2F0E6037C2D54DBA68CCC
https://www.cambridge.org/core/article/structural-subtyping-for-inductive-types-with-functorial-equality-rules/03A1AD06A0D2F0E6037C2D54DBA68CCC
https://doi.org/10.1145/3495528
https://doi.org/10.1145/3495528
https://doi.org/10.1016/J.ENTCS.2011.09.026
https://doi.org/10.1007/978-3-031-57262-3_13
https://doi.org/10.1145/3498693
https://eprints.illc.uva.nl/id/document/12150

	Full definition of CwF with adapters

