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Lob’s theorem ([24], short: LT) states that in sufficiently strong formal systems such as
Peano Arithmetic (PA), for a sentence ¢ we have PA = ¢ if and only if PA F provpa["¢ 7] = ¢,
where the formula provp,(z) is the standard provability predicate. It is a strengthening of
Godel’s second incompleteness theorem (short: G2) which can be recovered via ¢ := L. Similar
to the incompleteness theorems, the proof of LT is highly technical. Even for a fixed system
such as PA, there are many different provability predicates of varying strengths. Not all of them
qualify for LT, and formal reasoning about provability predicates is highly tedious.

For Gédel’s first incompleteness theorem (short: G1), even in Rosser’s [31] strengthening,
these technical challenges can be avoided, as demonstrated by Kirst and Peters [20] who mech-
anise an abstract and computational proof of G1 [12] due to Kleene [21, 22] in Rocq [34].
They build their proof on the axiom Church’s Thesis (CT) [23, 35], a well-understood axiom in
constructive mathematics stating that quantifiers over functions in a constructive setting only
range over computable functions. Fundamentally, their proof reduces G1 to the undecidability
of provability in PA, mechanised by Kirst and Hermes [18].

For this abstract, we

1. mechanise the traditional proof of G1 via Carnap’s diagonal lemma [6], using CT, with
Rosser’s [31] strengthening, complementing Kirst and Peters’ computational mechanisa-
tion,
mechanise Tarski’s theorem [33] about the undefinability of truth,
mechanise a proof of LT parameterised against a sufficiently strong provability predicate,
define a provability predicate and prove some of the necessary properties, all in Rocq,
extend Paulson’s [28, 27] Isabelle mechanisation of a sufficiently strong predicate to yield
LT.

In general, the abstract approach of Kirst and Peters does not extend to G2 or LT, because
these theorems inherently rely on concrete implementation details of the underlying logical
system, unlike G1. The results of this paper mechanised in the Rocq Prover [34] formally work
in the Calculus of Inductive Constructions (CIC) [7, 26]. They rely on and are contributed to
the Rocq Library for First-Order Logic [19] and the Rocq Library of Undecidability Proofs [11].
All proofs are constructive. This abstract is based on the first author’s Bachelor’s thesis [1]
carried out in the group of Gert Smolka, advised by the other authors.

U

Mechanised synthetic computability. We use synthetic computability theory due to Rich-
man, Bridges, and Bauer [29, 5, 2]. In synthetic computability theory, the usual notions from
computability theory are defined without referring to a concrete model of computation. For
instance, a predicate P : X — P is said to be decidable iff there is a decider f : X — B such
that for all , Pz holds iff fo = true. If O(X) ::= Some(z) | None denotes the option type
over X, we say that P is (recursively) enumerable if there is an enumerator f : N — O(X) such
that for all z, Pz holds iff there exists n such that fn = Some(z). In type theory, synthetic
computability has been developed by Forster [9] and colleagues. Of importance for this abstract
is the standard fact [10] that Ap.T F ¢ is (recursively) enumerable if T is.
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Arithmetical Church’s thesis. We define a variant of Church’s thesis for Robinson arith-
metic (Q) [30], a subsystem of PA. A formula ¢ is Xy if it is of the form 3. ....3z,.¢ and 1
does not use unbounded quantification. A theory T is called 3;-sound if T ¢ implies N F ¢
for all ¥j-formulas ¢. Church’s thesis for Robinson arithmetic (CTq) states that for every
function f : N — N there exists a binary X;-formula ¢(x,y) such that for all n, it holds that
QF Vy. ¢[m,y] <>y =fn. CTq is already employed by Kirst, Hermes, and Peters [14, 15, 20].
If applied to deciders and enumerators, CTq implies that certain predicates can be represented
in Q as well [20, 14]. Most importantly, for any (recursively) enumerable P : X — P and any
Yi-sound T 2 Q, there is a unary %;-formula ¢(2) such that for all n, Pn holds iff T+ ¢[7]
(weak representation). Also, for any disjoint (recursively) enumerable P, P’ : X — P and con-
sistent T' D Q, there is a unary X-formula ¢(x) such that for all n, both Pn implies T F ¢[n]
and P’ n implies T + (7] (strong separation).

Diagonal lemma and G1. A standard approach [4, 32] to prove Gl is to establish the
diagonal lemma [6], stating that for all unary formulas ¢(x) there is a sentence G such that
Q F ¢["G7 < G, where -7 is an encoding of formulas into closed terms. As a second step,
the diagonal lemma is used to diagonalise against a provability predicate. We observe that the
diagonal lemma readily follows from CTq. G1 then easily follows from (recursive) enumerability
of Ap.T ¢ with a brief application of weak representability and diagonalisation. We also
mechanise the following strengthening of G1 following Rosser [31].

Theorem 1 (G1 [12]). Let T 2 Q be (recursively) enumerable and consistent. Then there is
an independent sentence for T .

Here, the idea is to diagonalise against the negation of the formula obtained from strong
separability applied to Ap. T ¢ and Ap. T F <. Similar reasoning also gives rise to Tarski’s
theorem [33].

Theorem 2 (Tarski [33]). There is no first-order formula truen(x) such that N F ¢ iff N E
truen[ ] for all sentences .

For all these results, CTq is extremely helpful since instead of defining actual formulas for

the provability predicates, only enumerability of provability is needed, which is easy to establish
synthetically. The proofs thus reduce to the key insights gained from Gdédel’s and Tarski’s work,
making the proofs extremely concise. Without CTgq, the results can still be shown if one assumes
that T is p-recursively enumerable, but then the proofs would become very tedious.
LT and internal vs external provability. Following a classification due to Feferman [8],
we distinguish between external and internal provability predicates. An external provability
predicate only has to correctly identify provable formulas, i.e. T F ¢ iff T F provp["¢7] for
all . CTq implies the existence of an external provability predicate, which is sufficient for
Theorem 1. Mostowski [25], Bezboruah, and Shepherdson [3] observe that external predicates
are too weak for LT by giving an external predicate for which G2 and hence also LT fails.

An internal provability predicate needs to additionally allow proving some deduction rules
of the logical system as object level implications. This was made precise by Lob [24], based
on previous work by Hilbert and Bernays [16]. The required properties are known as Hilbert-
Bernays-Lob (HBL) derivability conditions, which are as follows, where ¢, are arbitrary for-
mulas:

T F ¢ implies T provy[¢] (necessitation)
T+ provy[ o =47 = provp [T = provy [T (modus ponens rule)
T+ provy[ ™ = provy[provy "¢ (internal necessitation)
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For an internal provability predicate, LT follows abstractly, and we mechanise this abstract
proof in Rocq.

Theorem 3 (Lob [24]). Let T be a theory admitting the diagonal lemma and let provy(x) satisfy
the HBL conditions. Then T ¢ iff T F provp[T¢ 7| — ¢ for all sentences .

Defining internal provability predicates. To do so, most authors arithmetise the notion
of provability and define a complicated formula prfr.(x,y) such that prfr(z,y) is provable iff
y arithmetises a proof of the formula with code x. In this setting Jy. prf(z,y) characterises
provability of z. Usually, a proof of a formula ¢ is encoded as a list of formulas representing the
deduction of ¢ from the deduction rules. This is also how the standard provability predicate
for PA is constructed.

While PA and related systems of arithmetic are strong enough to express the required list
functions and to prove properties about these functions on the object level, choosing arithmetic
to define provability predicates is not ideal. Instead, we prove the following:

Theorem 4. There is an extension of PA with native function symbols for basic list functions
to avoid some of the technicalities. In this system, there is an internal provability predicate
satisfying necessitation and the modus ponens rule.

This development is axiom-free. The verification of necessitation and the modus ponens
rule heavily relies on a proof mode for first-order logic due to Koch [17], which made these
mechanisations possible in the first place. As part of this proof, we contribute a mechanisation
of Hilbert systems and a proof of its equivalence to natural deduction to the Rocq Library of
First-Order Logic [19].

Paulson [28, 27] mechanises an internal provability predicate in HF set theory, easing arith-
metisation, but the definition and the correctness proofs are still very arduous. We add the
following to Paulson’s Isabelle development:

Theorem 5. Paulson’s provability predicate is sufficient to deduce LT.

Future work. Ultimately, we would like to obtain a Rocq mechanisation and verification of
an internal provability predicate in a suitable system of first-order logic resembling PA. Besides
doing the tedious work to prove internal necessitation for our predicate, it also seems promising
to follow the approach by Halbach and Leigh [13] who give a system of first-order logic with
function symbols for syntax manipulation which can express PA. These syntax functions seem
helpful in the verification of internal necessitation.

In addition, it may be desirable to understand how strong a theory T of first-order arithmetic
needs to be such that the HBL conditions for T’s standard provability predicate can be proved.
There may be research on this of which the authors are currently unaware.
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