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Abstract

Dependently typed proof assistants offer powerful meta-programming features, which users can
take advantage of to implement proof automation or compile-time code generation. This paper
surveys meta-programming frameworks in Rocq, Agda, and Lean, with seven implementations of
a running example: deriving instances for the Functor type class. This example is fairly simple,
but sufficiently realistic to highlight recurring difficulties with meta-programming: conceptual
limitations of frameworks such as term representation – and in particular binder representation
–, meta-language expressiveness, and verifiability as well as current limitations such as API com-
pleteness, learning curve, and prover state management, which could in principle be remedied. We
conclude with insights regarding features an ideal meta-programming framework should provide.
A full experience report in paper form is accessible at https://hal.science/hal-05024207.

All proof assistants support user-extensible tactics and code generation through different meta-
programming frameworks. Meta-programs are programs which produce or manipulate other programs
as data. They can in particular be used to generate boilerplate code, i.e. code that can be mechani-
cally derived from definitions, thereby increasing the productivity of proof assistant users. Common
examples are induction principles [25, 12], equality deciders [25, 10], finiteness proofs [5], countability
proofs [5], or substitution functions for syntax [22]. Naturally, the default meta-programming language
of a proof assistant is its implementation language, and several proof assistants even come with mul-
tiple independent meta-programming frameworks. However, we can observe that meta-programming
is not wide-spread on the example of boilerplate generation tools which often fall into one of the
following. Either proof assistants come with built-in boilerplate generation support (such as induc-
tion principles or type class instances) which is widely used, or tools for generating boilerplate are
developed, but not adopted by the community [25, 10, 3]. Lastly, many papers remark that automatic
boilerplate generation would be feasible and interesting, but do not carry it out [27, 29, 9, 7]. Further-
more, subcommunities often seem to be split into silos regarding frameworks and we are not aware of
scientific comparative work between different frameworks and proof assistants. The notable exception
is Dubois de Prisque’s PhD thesis [6], using several meta-programming frameworks in Rocq, but not
coming with one central example implemented in different frameworks and focusing solely on Rocq.

An additional barrier for adoption is that most frameworks are organically grown and documenta-
tion is not accessible to non-experts: pros and cons are often implicitly known by developers but not
readily accessible. In fact the situation is so chaotic that, at times, in order to generate boilerplate
code authors create ad-hoc meta-programming facilities from scratch [22, 13, 23, 11] instead of taking
advantage of existing meta-programming facilities.

On the other hand, the vast choice of meta-programming frameworks also hints that we are at
the point where enough evidence is available to evaluate the state of the art and suggest future de-
velopments. In this paper, we focus on three major dependently typed proof assistants based on the
Calculus of Inductive Constructions (CIC) [4, 17]: Rocq [26], Agda [15, 16], and Lean 4 [14]. We survey
their respective meta-programming frameworks: for Rocq we cover OCaml plugins, MetaRocq [20, 21],
Ltac2 [19], Elpi [24, 25], and furthermore Agda’s Reflection API [28] and Lean 4’s meta-programming
API.1 We furthermore explain a novel approach to use Rocq’s OCaml API with locally nameless
syntax. This means that we focus on systems which are designed as proof assistants with consistent
meta-theory, rather than dependently typed programming languages, and focus on those with con-
ceptual similarity and shared foundations. In particular, we do not consider Idris [1, 2], HOL-based
systems such as Isabelle, HOL4, or HOL light, or LF-based systems such as Beluga.

We evaluate the different meta-programming frameworks on a simple yet realistic example: au-
tomatically deriving instances of the Functor type class for a simple family of inductives, covering,

1We are not aware of a dedicated publication about meta-programming in Lean 4, but there exists a collaborative
book draft [18]. Lean 3’s meta-programming was surveyed by Ebner et al. [8].
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amongst many other types, options, lists, and trees. For Rocq we e.g. want to generate the following
for the list type:

Fixpoint fmap {A B : Type} (f : A -> B) (l : list A) : list B :=

match l with [] => [] | x :: l => f x :: fmap f l end.

Many tasks involving automatic boilerplate generation follow the same model as this example:
take an inductive as input and produce a term as output. We choose this example because it is
simple enough for code to be readable and explainable, yet complex enough to expose issues that
arise in more realistic meta-programs, and makes use of common meta-programming features such as
type-class search or the ability to extend the global environment.

Paper summary Our paper at https://hal.science/hal-05024207 can be seen as a first step
towards a suggested rosetta stone project for meta-programming in Rocq project:

https://github.com/coq-community/metaprogramming-rosetta-stone.

We conclude in the paper that there are conceptual and current limitations to existing frameworks.
Conceptually, we observe that:

• Binder representation was a recurring issue in the paper,
• Term quotations allow to use user syntax directly when constructing and pattern matching on
terms, thereby removing the need to spell out fully qualified constant names, implicit arguments,
type-class instances, or universe levels,

• Recursive function generation is crucial, which became especially apparent for the example in Lean 4,
where the need to fall back on primitive recursors prevented us from implementing a plugin with
the same features as in the other systems,

• State is inherent to meta-programs, which can read and modify the global environment, local
environment, and unification state,

• Verifiability is a desirable property of frameworks, where ideally formal verification is possible.
Verification is not so attractive for users of meta-programs because properties such as well-typedness
can be checked a posteriori by the kernel, but implementors of meta-programs might be interested
in (partial) correctness guarantees. Indeed, formal specifications can partly replace documentation
– which is lacking for all considered frameworks anyways – and can help in writing correct meta-
programs, which is far from an easy task considering the complexity of the underlying systems.

Currently, we observe that:

• The learning curve of a meta-programming framework is crucial, and writing meta-programs in a
different language than that of the underlying proof assistant leads to a steeper curve.

• A proper meta-programming language benefits from adequate tooling, such as a language server,
a documentation generator, a package manager, an optimising compiler or an efficient interpreter,
and a good integration with the proof assistant’s build system.

• Precise performance considerations are outside the scope of this paper, although we do comment
on performance when relevant.

Overall, two meta-programming approaches emerge: meta-programming directly in the proof as-
sistant, or using a domain specific language (DSL).

The first option allows the possibility of verifying meta-programs, which is relevant for authors of
meta-programs. Verifying meta-programs requires both a specification of the basic meta-programming
operations provided by the framework, and adequate means to use these basic specifications in order
to derive guarantees about complex meta-programs. The second option does not allow certifying
meta-programs, but enables using domain-specific programming language features.

In both cases, one needs a feature-complete meta-programming API, which stays up to date with
the evolution of the proof assistant. As implementors of a meta-programming framework, bootstrapping
the proof assistant gives a feature-complete API for free, but requires significant work a priori (for
instance Lean 4’s elaborator is bootstrapped). An alternate approach, which MetaRocq and Agda
follow, is to do meta-programming directly in the proof assistant, without bootstrapping. Interfacing
with the elaborator and kernel is done using a meta-programming monad, which from a user’s point
of view is very similar to bootstrapping, but requires more work from the implementors.

2

https://hal.science/hal-05024207
https://github.com/coq-community/metaprogramming-rosetta-stone


Bouverot-Dupuis and Forster

References

[1] Edwin C. Brady. Idris, a general-purpose dependently typed programming language: Design and imple-
mentation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/S095679681300018X.

[2] Edwin C. Brady. Idris 2: Quantitative type theory in practice. In Anders Møller and Manu Sridharan,
editors, 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021,
Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages 9:1–9:26. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2021.9, doi:10.4230/
LIPICS.ECOOP.2021.9.

[3] Tej Chajed. Record updates in coq. In CoqPL 2021: The Seventh International Workshop on Coq
for Programming Languages, 2021. Extended Abstract. URL: https://popl21.sigplan.org/details/
CoqPL-2021-papers/3/Record-Updates-in-Coq.

[4] Thierry Coquand and Gérard P Huet. The calculus of constructions. Information and Computation,
76(2/3):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

[5] Arthur Azevedo de Amorim. Deriving instances with dependent types. In Proceedings of the Sixth
International Workshop on Coq for Programming Languages (CoqPL 2020), 2020. URL: https://popl20.
sigplan.org/details/CoqPL-2020-papers/1/Deriving-Instances-with-Dependent-Types.
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