
Algebraic Universes and Variances For All

Matthieu Sozeau1 and Marc Bezem2

1 LS2N & Inria de l’Université de Rennes,
Nantes, France

matthieu.sozeau@inria.fr
2 University of Bergen

Bergen, Norway
Marc.Bezem@uib.no

Building on a refinement of the novel loop-checking algorithm of Bezem and Coquand [2], we
present a new design and implementation of cumulative universe polymorphism for dependent
type theories, materialized in a branch [6] of the Rocq prover. Our system handles universe
level polymorphism for the full universe algebra (ℓ, 0,+1,max). The constraint solving algo-
rithm based on Horn clauses is theoretically polynomial. However, to stay competitive with the
previous algorithm based on the work of Bender et al. [1], we make the algorithm incremental
and integrate a union-find datastructure to capture semantic universe level equalities by effi-
ciently represented equivalence classes; this makes the algorithm more user-friendly in practice,
reflecting inferred equalities instantaneously in annotations.

On the type theory side, the original system of Sozeau and Tabareau [9] is simply generalized:
universe-polymorphic binders can take universe expressions as arguments, all constraints can
be enforced and checked, and we remove a long-standing distinction between inferred types
and checkable types [4]. This puts the system on par with Agda and Lean’s (non-cumulative)
universe systems.

On the elaboration side, the previous system [9] introduced a heuristic in unification to avoid
unnecessary unfoldings and an (infamous) minimization procedure to try to reduce the number
of unnecessarily quantified universes and constraints, which naturally grows exponentially fast
in presence of implicit cumulativity [3]. We generalize the notion of universe variance intro-
duced for cumulative inductive types [10] to all definitions and use it to refine the unification
heuristics and provide a more principled universe level metavariable solving process: it should
now guarantee a principal typing property.

The talk will present all these aspects along with examples and our preliminary performance
benchmarks and compatibility status.

A new loop-checking algorithm for universes

In dependent type theories with predicative universe levels, universe checking involves veri-
fying equalities (inequalities u ≤ v are interpreted as v = max(u, v)) between universe level
expressions:

Universe levels u, v := ℓ (universe level variable)
| 0 (bottom universe)
| u+ 1 (successor)
| max(u, v) (supremum)

Here 0 should be neutral for max, successor distributes over max and max is idempotent,
subsumptive (max(u, u + 1) = u + 1), associative and commutative. This already generates
a non-trivial quotient where for example max(0 + 1, u + 1) = u + 1. To make matters a
little more interesting one might add level metavariables (noted ?ℓ) to solve during elaboration



Algebraic Universes and Variances For All Sozeau and Bezem

and unification. Then, unification can get stuck: max(?l, ?k) = max(?u, ?v) has no general
solution. In Agda and Lean, this requires adding user annotations, instantiating metavariables
sufficiently to disambiguate. This situation is quite problematic when one considers automated
tactics as used in Rocq or Lean, where it might be difficult to make the tactics annotate
generated terms. We would rather like to keep the universe checking entirely automated,
so Rocq rather handles a context of universe constraints that are incrementally checked for
consistency. Previous versions of Rocq did not run into the problem of getting stuck as
the system carefully avoided generating max( , ) = max( , ) constraints [4], at the cost of
a less expressive theory and unpleasant API: inferred types needed to be ”refreshed” before
being put into terms, using fresh universe variables as proxies for max expressions. Currently
in Rocq, we actually consider a cumulative hierarchy of universes, so equational problems
become entailments of shape u0 ≤ ℓ0 . . . ui ≤ ℓi ⊢ u ≤ ℓ. Note the restriction to levels on the
right hand side of inequality constraints which is enforced by the type inference algorithm [4].
We lift this restriction to levels on the right using the new algorithm of [2], which is able to
handle all constraints. I.e., the whole algebra is supported and the entailments to check can
now have the general shape: u0 ≤ u1 . . . ui ≤ ui + 1 ⊢ u ≤ v. This also greatly simplifies the
API for term manipulation. In addition, it cannot ”get stuck”: it is correct and complete for
the (in)equational theory.

The new algorithm [2] is based on a representation of constraints as Horn clauses and
performs forward reasoning to check for consistency. Informally, it maintains an assignment
of the variables in N ∪ {+∞} that forms a minimal model of the Horn clauses; the value +∞
signals a loop. The algorithm can be used both to check that a new constraint is consistent
or produce a loop (used during elaboration), and to decide whether a constraint is deducible
from existing constraints (used during kernel type-checking). We extended the algorithm so
that each time a constraint ℓ ≤ ℓ′ is introduced, we check if ℓ′ ≤ ℓ also holds, in which case we
choose a canonical variable among the two and substitute the other one by it in the constraints.
Then checks for equality between level variables can be done in constant time, which is crucial
for performance.

We tested the new implementation against the previous one on the standard library and
some large Rocq projects (e.g. math-comp, the HoTT library and Iris), and found a 15%
overhead on average, which is expected against a highly optimized implementation for a simpler
problem. Note that on average universe checking accounts for 25% of Rocq’s compilation times,
according to an empirical study by Pierre-Marie Pédrot. However, most libraries do not use
polymorphism yet but rely on a very large global graph of constraints, which is less suitable
to the new algorithm. On the other hand, experiments on universe polymorphic code shows
drastic improvements on performance, with much less constraints being generated and more
reasonable inferred quantifications on universes.

Variances

We found the largest slowdowns of the new algorithm in Rocq’s Reals library, in proof scripts
using the setoid rewrite tactics [8]. Those proofs generated a large amount of global uni-
verse constraints. To solve this, we switched the setoid rewrite tactic to rather use universe
polymorphic definitions, avoiding interaction with the global graph. The main polymorphic
definitions of interest are:

Definition relation@{i} (A : Type@{i}) := A → A → Prop.
Class Proper@{i} {A : Type@{i}} (R : relation@{i} A) (m : A) := R m m.
Definition respectful@{i j} {A : Type@{i}} {B : Type@{j}} (RA : relation A) (RB : relation B)
: relation (A → B) := fun f g ⇒ ∀ x y, RA x y → RB (f x) (g y).

2



Algebraic Universes and Variances For All Sozeau and Bezem

The tactic performs proof search on instances of Proper@{i} R m, indexed by the syntax of
the relation R and the morphism m. If done näıvely, however, unification will spend a lot of
time unifying universe levels before doing useful work, for example in a unification constraint
relation@{i} A ≃ relation@{j} B will always first try to unify i and j before looking at the
arguments A and B. However one can see that unfolding relation would result in a unification
that would rather start comparing A and B as i and j do not appear in the unfoldings. For
respectful A B RA RB, the same is true for i and j.

Hence, we reify information on the occurrences of universe variables as a variance annotation
on universe level binders, reusing the variance analysis used for cumulative inductive types. A
variance can be one of: irrelevant (∗), covariant (+), contravariant (−) or equivariant (=). We
automatically infer an over-approximation of the variance of each variable at specific positions:
in the nth binder type, the return type or the body of the definition. If a variable does not appear
in a specific position, it is irrelevant. Typically, parameter universes appear contravariantly in
some binder of the definition (e.g. in the 1st binder A : Type@{i} for relation) but irrelevantly
everywhere else. So, if the definition is applied to at least one argument, for example i in
relation@{i} A in Proper’s second binder, then we can consider this occurrence irrelevant as well:
unfolding relation@{i} A makes i disappear. Applying this analysis compositionally results in
most universe binders being considered as irrelevant in Proper R m instances. We can use this
automatically inferred information during unification to avoid doing any unification on universes
until the real indexes of the proof search (the syntactic shape of the relation and morphism)
are unified, resulting in type unifications that will set the universes straight. This improves
unification performance significantly. The new setoid_rewrite tactic is even more performant
than the previous tactic in the Reals library.

In addition to improving unification performance, this variance information can also be used
to drive the so-called ”minimization” algorithm we we now call simplification that solves level
metavariables: those appearing in contravariant positions only can be maximized without loss
of generality while those appearing in covariant positions only can be minimized without loss of
generality. The user can also annotate definitions to provide the exact set of universe variables
he expects a definition to quantify over, and simplification will then proceed to instantiate
metavariables in terms of the explicitly quantified variables, providing much finer control to the
user than the previous implementation. Preliminary experiments using this to develop a new
sort-and-universe polymorphic prelude [7, 5] are encouraging.

Acknowledgments We are grateful to Thierry Coquand, Mart́ın Escardó, Pierre-Marie
Pédrot & Nicolas Tabareau for helpful discussions on this work.

3



Algebraic Universes and Variances For All Sozeau and Bezem

References

[1] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A new
approach to incremental cycle detection and related problems. ACM Trans. Algorithms,
12(2):14:1–14:22, December 2015. ISSN 1549-6325. doi: 10.1145/2756553. URL http:

//doi.acm.org/10.1145/2756553.

[2] Marc Bezem and Thierry Coquand. Loop-checking and the uniform word problem for
join-semilattices with an inflationary endomorphism. Theoretical Computer Science, 913:
1–7, 2022. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2022.01.017. URL https:

//www.sciencedirect.com/science/article/pii/S0304397522000317.

[3] Robert Harper and Robert Pollack. Type checking with universes. Theor. Comput. Sci.,
89(1):107–136, 1991.

[4] Hugo Herbelin. Type Inference with Algebraic Universes in the Calculus of Inductive Con-
structions. 2005. URL http://pauillac.inria.fr/~herbelin/publis/univalgcci.

pdf. Manuscript.

[5] Josselin Poiret, Matthieu Sozeau, and Nicolas Tabareau. Sort and Universe Polymor-
phic Core Library for Rocq, March 2025. URL https://github.com/jpoiret/coq/tree/

new-prelude.

[6] Matthieu Sozeau. Algebraic Universes and Variances for Rocq, March 2025. URL https:

//github.com/mattam82/coq/tree/universes-clauses.

[7] Josselin Poiret, Gaëtan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Matthieu Sozeau,
Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025. doi: 10.
1145/3704912. URL https://doi.org/10.1145/3704912.

[8] Matthieu Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning, 2(1):41–62, December 2009.

[9] Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq. In Gerwin Klein
and Ruben Gamboa, editors, ITP 2014, volume 8558 of Lecture Notes in Computer Science,
pages 499–514. Springer, 2014. ISBN 978-3-319-08969-0. doi: 10.1007/978-3-319-08970-6
32. URL http://dx.doi.org/10.1007/978-3-319-08970-6.

[10] Amin Timany and Matthieu Sozeau. Cumulative Inductive Types In Coq. In Hélène
Kirchner, editor, FSCD, volume 108 of LIPIcs, pages 29:1–29:16, July 2018. ISBN 978-
3-95977-077-4. doi: 10.4230/LIPIcs.FSCD.2018.29. URL https://doi.org/10.4230/

LIPIcs.FSCD.2018.29.

4

http://doi.acm.org/10.1145/2756553
http://doi.acm.org/10.1145/2756553
https://www.sciencedirect.com/science/article/pii/S0304397522000317
https://www.sciencedirect.com/science/article/pii/S0304397522000317
http://pauillac.inria.fr/~herbelin/publis/univalgcci.pdf
http://pauillac.inria.fr/~herbelin/publis/univalgcci.pdf
https://github.com/jpoiret/coq/tree/new-prelude
https://github.com/jpoiret/coq/tree/new-prelude
https://github.com/mattam82/coq/tree/universes-clauses
https://github.com/mattam82/coq/tree/universes-clauses
https://doi.org/10.1145/3704912
http://dx.doi.org/10.1007/978-3-319-08970-6
https://doi.org/10.4230/LIPIcs.FSCD.2018.29
https://doi.org/10.4230/LIPIcs.FSCD.2018.29

