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Abstract

Predicativity tells us that universe polymorphic definitions should live in the universe
of level ω. We argue for an alternative rule we call IUP (impredicative universe polymor-
phism) which allows such definitions to live in a much lower universe. The conditions under
which this rule leads to inconsistencies are not yet known, so in the mean time we present
different use cases to provide some intuition about its possibilities and its limits.

1 Introduction

The predicative tower of universes is nowadays ubiquitous in proof assistants, and more often
than not it comes equipped with some form of universe polymorphism [2]. This can take vari-
ous forms, from a “simple” sort of implicit meta-level macro-expansion, through displacement
algebras [5], to something like Agda where universe levels can be manipulated explicitly and
universe polymorphic definitions can be manipulated as first-class values [10], or even systems
where universe levels are themselves first-class values [8].

In all these works, universe polymorphism is predicative, meaning that universe polymorphic
definitions are placed in a universe of level strictly above the largest level to which it can be
instantiated. Concretely, this typically means that such definitions are placed in the universe
of level ω.

We argue that, under some conditions, we could place universe polymorphic definitions in a
lower universe, making those definitions impredicative. More specifically, for a type τ of universe
level ℓ, which can depend on a universe level variable l, the accepted predicative rule places the
type ∀l.τ in the universe of level supl ℓ, i.e. ω, whereas we argue that, under some conditions,
we could place it in the universe infl ℓ, which in our case is also ℓ[0/l].

In terms of practical uses, this form of universe polymorphism would be convenient to ma-
nipulate universe-polymorphic terms without resorting to universe levels beyond ω, it could
be used as an alternative form of impredicativity which does not require a special impredica-
tive universe, and it appears to be one of the ingredients necessary for type-preserving closure
conversion of languages with a hierarchy of universes.

We do not know under which conditions we can use such a rule without breaking consistency of
the system, and it seems difficult to relate this form of impredicativity we call IUP [9, Sec 4] to
other known forms of impredicativity such the Prop universe of the Calculus of Constructions [4]
or the propositional resizing axiom of HoTT [11, Sec 3.5], so until the underlying theory is better
understood, and as a way to motivate such investigation, we present a few specific use cases
where we have reasons to think they should be accepted or not.
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2 Case Studies

We explore a few use cases, chosen for their ability to provide some intuition about the possi-
bilities and the limits of IUP.

2.1 Strong sums

One clear limit to the consistency of IUP comes if we apply it to strong sums, as in:

Γ, l :Level ⊢ τ : Typeℓ
Γ ⊢ Σl.τ : Typeℓ[0/l]

Since we can then resize any function down to universe Type1 by stuffing it in an object of
type Σl1.Σt1 :Typel1 .Σl2.Σt2 :Typel2 .t1 → t2 out of which we can easily recover the original
function, regardless of its original universe level. This also suggests that IUP is incompatible
with first-class universe levels.

2.2 Church encoding

Functions that correspond to Church encodings of inductive types are examples where the IUP
rule seems to be sound. Consider a type of the form:

∀l.∀t :Typel.t → (τ → t → t) → t

Assuming that τ do not refer to l nor t, this type corresponds to a Church-style encoding of
a list of elements of type τ . If τ is in universe level ℓ, then the corresponding inductive type
would be placed in universe level ℓ, but Agda would place it in ω. The IUP rule would instead
put the above type in universe 1 ⊔ ℓ. Compared to the original Church encoding, this adds
support for strong elimination, i.e. the possibility to eliminate to any universe rather than only
to the bottom impredicative universe (i.e. Prop or Set), which is allowed for inductive types and
thus suggests the IUP rule should be sound in this case.

More generally, we can consider a type of the following form:

∀l.∀t :Typel.(τ⃗1 → t) → ... → (τ⃗n → t) → t

If we assume that the τij types do not refer to l, this type corresponds to a Church-style encoding
of an inductive type. If each τij is in universe level ℓij , then the corresponding inductive type
would be placed in universe level

⊔
i,j ℓij , while our IUP rule would similarly put the above

type in universe 1 ⊔
⊔

i,j ℓij .
Note that compared to actual inductive types, Church-style encodings using our IUP rule still
lack dependent elimination, which is a problem that has been tackled by Awodey et.al. [1] and
Firsov and Stump [6]. Of mention also would be the work by Jenkins et.al. [7] which tries to
support strong elimination but without a rule like our IUP rule.

2.3 Closures

In type-preserving compilers for functional programming languages, functions end up reified as
tuples that are then wrapped in an existential package so as not to expose the set of captured
variables in its type. When captured variables can come from an arbitrary universe level, we
similarly need to hide that level: For a source function of type τ1 → τ2, the closure needs to
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have a type of the form ∃l.∃t :Typel.t × ((τ1 × t) → τ2) where t is the type of the captured
environment. If those ∃ are weak sums, one cannot do anything with such closures that one
cannot already do with its corresponding function of type τ1 → τ2, so it supports the idea that
such existentials could live in the same universe level l1 ⊔ l2, and thus suggests that our IUP
rule is justified in this case to puts this existential type in universe level 1 ⊔ l1 ⊔ l2.
See Bowman and Ahmed [3] for more challenges with type preserving closure conversion.

2.4 Well-ordering

Girard’s paradox starts with an impredicative definition of an ordering and then exhibits an
ordering of such orderings. The ordering is a tuple of a type along with some properties:

type Ordering : Type = mk-ord (set : Type) (less-than : set → set → Type) ...

In a predicative setting this does not work because Ordering ends up in a higher universe level
than set. If we want to try and reproduce the paradox using IUP, we need to abstract over the
universe level of set:

type Ordering : Type1 = mk-ord (l : Level) (set : Typel) (less-than : set → set → Typel) ...

But since IUP is restricted to apply to weak sums only, the above definition is unusable, because
the set cannot be extracted from that tuple any more, making it difficult to compare two such
orderings to make an ordering of orderings.
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