
Unboxed Dependent Types

Constantine Theocharis and Ellis Kesterton

University of St Andrews
kt81@st-andrews.ac.uk

When the reduction rules of type theory become part of its static semantics, it is sometimes
impossible to compute the memory size in bytes of a type during compilation. This happens
when polymorphism is present but monomorphisation is not, and in particular when dependent
types are part of the mix, since the dependency might be on runtime values.

In this ongoing work, we formulate a dependent type theory where the memory size of a type
is always known at compile-time, and thus compilation can directly target a low-level language.
Boxing is opt-in and can be avoided, leading to efficient code that enables cache locality. This
is done by indexing syntactic types by a metatheoretic type describing memory layouts: Bytes.
This leads to a notion of representation polymorphism. Unboxed data in functional languages
has been explored before [7, 6, 5], but results in overly restricted polymorphism or complex
theories with multiple levels of kinds separating values and computations, and without support
for full dependent types. Our approach is lightweight and extends to dependent types.

The staging view of two-level type theory (2LTT) [3] has been explored by Kovács in the
general setting [9] as well as in the setting of closure-free functional programming [10]. In-
spired by a note in the aforementioned works, we can embed our unboxed type theory as the
object language of a 2LTT, which allows us to write type-safe metaprograms that compute
representation-specific constructions. For example, we can formulate a universe of flat protocol
specifications in the style of Allais [2], and interpret it in the unboxed object theory. We needn’t
compromise on the usage of dependent types either; as opposed to [10], the object theory is
itself dependently typed and thus we can encode unboxed higher-order polymorphic functions
as part of the final program, because all sizes (not necessarily all types) are known after staging.

Basic setup We formulate our system in the form of a second-order generalised algebraic
theory (SOGAT) [11]. We assume a metatheoretic type of Bytes with

0, 1 : Bytes + : Bytes→ Bytes→ Bytes ptr : Bytes × : Nat→ Bytes→ Bytes .

The constant ptr defines the size of a pointer. Any model of the signature above will suffice;
such a model might encode a sophisticated layout algorithm with padding, for example.

To begin with, types are indexed by bytes:1 Ty : Bytes→ Set. We have the following basic
type and term formers:

U : Bytes→ Ty 0 Tm Ub = Ty b

� : Ty b→ Ty ptr box : Tm �A ' Tm A : unbox .

The universe Ub describes types whose inhabitants take up b bytes, with a Grothendiek-style
identification Tm Ub = Ty b. The � type former takes sized types to types which box their
contents. In other words, for a type A of some size a, an inhabitant of data of �A will be
stored on the heap behind a pointer indirection. On the other hand, an inhabitant of A will
be stored inline on the stack, since it is known that A takes up exactly a bytes. Codes for
types of any kind take up no space at runtime because they are erased. Additionally, we have

1For brevity we will not regard issues of universe sizing, but this can be accomodated without issue.

Unboxed Dependent Types Theocharis and Kesterton

boxing and unboxing operators for types of a known size. Since we present this as a second-
order theory, we can mechanically derive its first-order presentation [8], with explicit contexts.
There, contexts Γ record the size of each type, such that b(Γ) : Bytes can be defined as the
sum of the sizes of its types. The action of substitutions on types does not vary their sizes:
−[−] : Ty Γ b→ Sub ∆ Γ→ Ty ∆ b.

Functions and unboxed pairs This setup can be augmented with Π and Σ types, where
the dependency is uniform with respect to layout:

Π : (A : Ty a)→ (Tm A→ Ty b)→ Ty ptr

Σ : (A : Ty a)→ (Tm A→ Ty b)→ Ty (a+ b) .

For functions, we store a pointer to an allocation containing both code and data. Alternatively,
we could separate the two by sizing functions as ptr + ptr. Conversely, pairs are stored inline;
their size is the sum of the sizes of their components. The term formers remain unchanged.

It could be desirable to have a function type with unboxed captures, which might look like

Πk : (A : Ty a)→ (Tm A→ Ty b)→ (ptr + k) ,

annotated with the size of its captures k. This is not expressible as a second-order construct
because its term former must know about captured variables: λ : (ρ : Sub Γ ∆) → Tm (∆ �

A) B → Tm Γ (Πb(∆) A B)[ρ]. This also means it is not immediately compatible with 2LTT.
We leave this as future work, which would likely involve a modality for closed object terms.

First-class byte values with staging This type theory can be embedded as an object
language O of a 2LTT. On the meta level, we have a type former B : Ty1 of byte values, and
term formers that mirror Bytes. In an empty context, in the first-order formulation, we get
an evaluation function ev : Tm1 • B → Bytes. Adding Π types to the meta language allows
abstraction over byte values. Moreover, the meta level has a type former ⇑b: Ty0 b → Ty1 for
embedding (B : Tm1 B)-sized types from the object fragment. If the final program is of the
form p : Tm1 • (⇑k A), after staging we get an object term of size ev k.

Example: Maybe as a tagged union Let’s take a look at how to define the Maybe type
internally in such a way that its data is stored contiguously as a tagged union without indirec-
tions.2. We assume access to a type Pad b : Ub which is the unit type that takes up b bytes,
with sole constructor pad akin to tt, and Bool : U1 which takes up a single byte:

Maybe : (T : Ub)→ U1+b

Maybe T = (x : Bool)× if x then T else Pad b

nothing : {T : Ub} → Maybe T just : {T : Ub} → T → Maybe T

nothing = (false, pad) just = λ t. (true, t)

Computational irrelevance and runtime-sized data Annotating object-level types with
bytes provides a convenient way to handle computational irrelevance without further modifying
the structure of contexts. This is possible through a monadic modality

| − | : Ty b→ Ty 0 ‖ − ‖ : Tm A→ Tm |A|
2This is similar to the approach of languages such as Rust [1].

2

Unboxed Dependent Types Theocharis and Kesterton

which is idempotent by (A : Ty 0) → |A| = A, extending to all zero-sized types. It also has
an appropriate eliminator form. With this we can reproduce, for example, quantitative type
theory instantiated with the {0, ω} semiring [4]. This means that we can now use object-level
types which are entirely erased: reverse : {n : |Nat|} → Vect T n→ Vect T n.

Additionally, we often want to handle data whose size is not known at compile-time, but
is known at runtime; most commonly, heap-backed arrays, but also other dynamically-sized
flat data structures. This is achievable by indexing the universe U by partially-static [12] byte
values. Object-level types Ty b are now identified only with Usta b where sta : Tm1 B→ Tm1 BPS.
We can then add appropriate type formers to the theory for the construction of runtime-sized
data such as pairs. Their inhabitants cannot directly be stored on the stack, but they can be
constructed and manipulated on the heap. To do this, boxing is relaxed to allow runtime-sized
data, and we must have a type for ‘generating’ unsized data. We plan on presenting examples
of this in our presentation.

Formalisation, semantics and implementation We have formalised most parts of the
sketched system by a shallow embedding in Agda, including the irrelevance modality. We have
also formulated a semantics in terms of an untyped lambda calculus which is nevertheless sized
just like the system we presented. Crucially, the sizes of all constructs in this target language
must be non-zero, which forces us to translate away all zero-sized types. This justifies the
irrelevance modality as well as the erased codes for types. We are currently working on a
proof-of-concept implementation that targets LLVM.

Acknowledgements We thank the anonymous reviewers for their helpful comments on the
presentation of the system and the interaction of Πk and 2LTT.

References

[1] std::option - Rust. https://doc.rust-lang.org/std/option/. Accessed: 2025-3-7.

[2] Guillaume Allais. Seamless, correct, and generic programming over serialised data. arXiv [cs.PL],
20 October 2023.

[3] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory and
applications. Math. Struct. Comput. Sci., 33(8):688–743, September 2023.

[4] Robert Atkey. Syntax and semantics of quantitative type theory. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 56–65. Association for
Computing Machinery.

[5] Paul Downen. Call-by-unboxed-value. Proc. ACM Program. Lang., 8(ICFP):845–879, 21 August
2024.

[6] Richard A Eisenberg and Simon Peyton Jones. Levity polymorphism. SIGPLAN Not., 52:525–539.

[7] Simon L Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-strict
functional language. In Functional Programming Languages and Computer Architecture, Lecture
notes in computer science, pages 636–666. Springer Berlin Heidelberg, Berlin, Heidelberg, 1991.

[8] Ambrus Kaposi and Szumi Xie. Second-order generalised algebraic theories: Signatures and first-
order semantics.

[9] András Kovács. Staged compilation with two-level type theory. Proc. ACM Program. Lang.,
6(ICFP):540–569, 29 August 2022.

[10] András Kovács. Closure-free functional programming in a two-level type theory. Proc. ACM
Program. Lang., 8(ICFP):659–692, 15 August 2024.

[11] Taichi Uemura. Abstract and concrete type theories.

[12] Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. Partially-static data as free extension of
algebras. Proc. ACM Program. Lang., 2(ICFP):1–30, 30 July 2018.

3

https://doc.rust-lang.org/std/option/

