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Monadic equational reasoning. Pure functional programs can be reasoned about using
equational reasoning thanks to their referential transparency. For programs containing com-
putational effects, Gibbons and Hinze [GH11] proposed monadic equational reasoning, which
extends equational reasoning to the verification of programs designed around monads. The
interface of each monad is defined as a collection of operators and equations, that allow to
manipulate effects.

Monae. Monae [ANS19] is a library that enables verification using monadic equational rea-
sonig in Rocq. Monae consists of interfaces and models. The models guarantee the consistency
of the interfaces. Rocq guarantees the correctness of the verification, and the math library
MathComp/SSReflect [GM10] makes it possible to write concise proofs. Monae implements
a hierarchy of interfaces using Hierarchy Builder [CST20], and allows for the combination of
multiple monads and reusable lemmas. Dijkstra monads [SHK+16] also provide an alternative
formal framework to verify monadic programs, albeit using Hoare logic rather than equational
reasoning.

Non-structurally recursive functions. Proof assistants such as Rocq, which allow for the
reduction of programs, do not permit the definition of non-terminating functions to guarantee
consistency. Rocq’s Fixpoint command can only define structurally recursive functions. For
non-structural recursion, it is necessary to use an additional accessibility predicate, correspond-
ing to a well-founded order, either directly or through the Function or Equations commands.
For example, McCarthy’s 91 function mc91, which performs complex recursion, cannot be de-
fined through direct structural recursion in Rocq.

let rec mc91 m = if 100 < m then m - 10 else mc91 (mc91 (m + 11))

Moreover, functions whose termination is unknown, such as the Collatz predicate, cannot be
defined as recursive functions in Rocq.

Defining functions containing while statements by a coinductive type. Another way
of dealing with non-structurally recursive functions in such proof assistants is to use corecursive
definitions, which allow for defining infinite sequences of data. Since Rocq allows an infinite
number of constructor applications as long as the guard constraint is satisfied, it is possible to
use corecursive definitions to make recursive calls without limit.

The Delay monad proposed by Capretta [Cap05] can be used to represent such corecursive
functions as monadic programs. Interaction Trees [SZ21] are a natural generalization of the
delay monad to represent non-structurally recursive functions with events. In our work, by
defining the interface to the Delay monad as a complete Elgot monad [AMV10], we are able to
reason about functions with while statements that need not be guaranteed to terminate, such
as McCarthy’s 91 function and the Collatz predicate.
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Complete Elgot monad. The theory for complete Elgot monads corresponds to Iteration
theory [BÉ93], which deals with recursive structures algebraically.

In our study, we use the function while to define a complete Elgot monad. It is defined
using the CoFixpoint command, where the right embedded value inr x is the continuation of
iterations with value x and the left embedded value inl a is the end of the iteration with the
return value a.

CoFixpoint while {X A} (body: X -> M (A + X)) : X -> M A :=

fun x => (body x) >>= (fun xa => match xa with

| inr x => DLater (while body x)

| inl a => DNow a end).

Uustalu and Veltri [UV17] have shown, by quotienting by an equivalence relation that ignores
a finite number of computational steps, that the delay monad is a complete Elgot monad.

Combining computational effects using monad transformers. By using a complete
Elgot monad to represent a while statement, we can handle functions that contain while

statements, but only pure functions. For example, a factorial computed using references and
while statements cannot be expressed using only a complete Elgot monad.

let fact n =

let r = ref 1 in

let l = ref 1 in

while !l <= n do

r := !r * !l;

l := !l + 1;

done;

!r

Definition factdts n :=

do r <- cnew ml_int 1;

do l <- cnew ml_int 1;

do _ <-

while (fun (_:unit) =>

do i <- cget l;

if i <= n

then do v <- cget r;

do _ <- cput r (i * v);

do _ <- cput l (i.+1);

Ret (inr tt)

else Ret (inl tt)) tt;

do v <- cget r; Ret v.

We use monad transformers [AN20] to combine any complete Elgot monad with the ex-
ception monad and the typed store monad introduced to represent OCaml references [AGS25,
Section 5]. In our work, we show the exception monad transformer, the store monad trans-
former and the typed store monad transformer preserve the complete Elgot monad structure.
This allows verifying programs with multiple effects in Monae.

Contribution. Our contributions are as follows.

1. We define the interface of the delay monad as a complete Elgot monad and show its
consistency. This allows Monae to verify functions containing while statements.

2. By using monad transformers for combination and the setoid_rewrite tactic for gener-
alised rewriting, we have confirmed that verification with Monae is practical for functions
involving while statements together with other effects.

The code for this work can be found at:

https://github.com/affeldt-aist/monae/pull/147
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