
NbE for LNL via Adjoint Meta-modalities

James Wood1

Huawei Research Centre, Edinburgh, UK
lamudri@gmail.com

Abstract

Linear/non-Linear Logic (LNL) was introduced by Benton [1994], and is a calculus
comprising both linear and intuitionistic terms. In this work, we give an intrinsically typed
Agda-mechanised (see Wood [2025] for the code) normalisation by evaluation (NbE) [Berger
and Schwichtenberg, 1991] procedure for LNL, using metalanguage constructs F and G to
mediate between linear and intuitionistic parts throughout the metatheory.

Overview. We give an NbE procedure based on that for Simply Typed λ-Calculus given
by Allais et al. [2017], in particular reusing the context-implicit notational style of that work.
Our model construction and reify, reflect, and evaluation functions appear to be very similar,
just with refinements to deal with linearity and modifications for the choice of object lan-
guage connectives. However, the underlying definitions and lemmas, particularly pertaining to
environments, are different and new, and are our main focus in this extended abstract.

Contexts. We take the LNL types of Benton [1994], split into linear and intuitionistic types.
We let intuitionistic contexts (Θ and Λ) be lists of intuitionistic types, and let linear contexts
(Γ and ∆) be lists of arbitrary types tagged lin or int as appropriate. The two kinds of context
can be related by ∼, with Γ ∼ Θ whenever all types in Γ are intuitionistic and Γ and Θ are
pointwise equal. Note that ∼ is functional in both directions and total from right to left.

We often consider families of sets indexed over contexts, with LFam and IFam being the
sets indexed over linear and intuitionistic contexts respectively. We have operators on LFam
and IFam called meta-connectives, coloured blue. These include the proof relevant separation
logic connectives of Rouvoet et al. [2020] — namely separating conjunction ∗, separating unit I,
and separating implication −∗ — on LFam. Acting on both LFam and IFam are the pointwise
operators ×̇ , →̇ , and ∪̇ . We also have the meta-modalities F and G of definition 1. Binders
Σ and Π stand for the dependent pair/function type formers of the ambient theory (Agda).

Definition 1 (Meta-modalities). Let F : IFam → LFam be defined by (FT) Γ := ΣΘ. Γ ∼
Θ× T Θ, and let G : LFam → IFam be defined by (GT) Θ := ΣΓ. Γ ∼ Θ× T Θ.

Our first use of the meta-modalities is in defining the object-language (LNL) modalities: F
and G. The introduction forms use the corresponding meta-modalities directly, similarly to how
⊗-introduction uses ∗ directly to split the context between the two subterms. G-elimination
also uses meta-F directly, to restrict the rule’s use to purely intuitionistic contexts. However, F-
elimination does not use any meta-modalities, instead using binding of an intuitionistic variable
to cross modes. F-elimination does, nevertheless, use meta-connective ∗ to split the free linear
variables between the two premises. Each of these rules is understood to take an arbitrary
ambient linear/intuitionistic (as appropriate) context, which is the context of the conclusion.
The contexts of the premises are derived from the ambient context via the meta-connectives.

F (⊢I X)
FI

⊢L FX

G(⊢L A)
GI

⊢I GA

⊢L FX ∗ intX ⊢L A
FE

⊢L A

F (⊢I GA)
GE

⊢L A

NbE for LNL via Adjoint Meta-modalities Wood

Aside from modalities F and G, we have linear and intuitionistic function types, negative
intuitionistic products, and positive linear tensor products, all with rules equivalent to those of
Benton [1994, Fig. 3]. We also have linear and intuitionistic base types, with no rules.

Variables and environments. The variable judgements are defined as follows. The variable
judgements embed into their respective term judgements via the variable rules (not pictured).

Definition 2 (Variables). Let Θ ∋I X be the set of entries of Θ equal to X. Let Γ ∋L A
be a singleton if there is exactly one linear entry in Γ and that entry has type A, and empty
otherwise.

We choose very intensionally different representations of environments in the intuitionistic
and linear cases. This is partially to avoid any coincidences and sleights of hand when passing
between environment types, but also reflects the path of least resistance in each mode considered
separately. The functional definition given in definition 3 is standard, but unavailable in the
linear case without some overarching linearity condition [Wood, 2024, sec. 5.1]. These definitions
are parametrised on an intuitionistic judgement form ▷ and a linear judgement form ▶. Both
of these judgement forms are indexed on a context and a type, like the variable and term
judgement forms, where the context and type are intuitionistic for ▷ and linear for ▶.

Definition 3 (Intuitionistic environment). Let Θ
▷

=⇒I Λ := ΠX. Λ ∋I X → Θ ▷ X.

Definition 4 (Linear environment). Let (−)
▶,▷
=⇒L ∆ be defined inductively by the following

inclusions, where ∀[T] := ΠΓ. T Γ and (S →̇ T) Γ := S Γ → T Γ:

∀
[
I →̇ (−)

▶,▷
=⇒L ·

]
∀
[
(−)

▶,▷
=⇒L ∆ ∗ (−) ▶ A →̇ (−)

▶,▷
=⇒L ∆, linA

]
∀
[
(−)

▶,▷
=⇒L ∆ ∗ F ((−) ▷ X) →̇ (−)

▶,▷
=⇒L ∆, intX

]
We convert between linear and intuitionistic contexts using the following lemma. We only

convert at purely intuitionistic contexts, as enforced by the meta-modalities, so the linear value
judgement ▶ does not matter. Note that it is somewhat unusual to apply meta-connectives to
a family with its open place on the right of the environment judgements.

Lemma 5. Given linear contexts Γ,∆ and intuitionistic contexts Θ,Λ, we have a functions from

G
(
Γ

▶,▷
=⇒L (−)

)
Λ to F

(
(−)

▷
=⇒I Λ

)
Γ and from F

(
Θ

▷
=⇒I (−)

)
∆ to G

(
(−)

▶,▷
=⇒L ∆

)
Θ.

On the intuitionistic side, distribution of an environment between subterms is trivial (by
copying the whole environment). On the linear side, however, we have that an environment into
a context which splits yields a splitting of the source context and two smaller environments.

Lemma 6. If we have an environment of type Γ
▶,▷
=⇒L ∆ and ∆ splits into ∆l and ∆r, then we

have
(
(−)

▶,▷
=⇒L ∆l ∗ (−)

▶,▷
=⇒L ∆r

)
Γ. If, instead of splitting, ∆ contains no linear assump-

tions, then Γ also contains no linear assumptions, i.e., I Γ.

We use environments to define both renamings (environments in which the values are vari-
ables) and evaluation environments (environments in which the values are elements from the
NbE model). With renamings come the meta-modalities 2L and 2I , which take a family and
produce the largest family stable under renaming contained in it, as per Allais et al. [2017].

2

NbE for LNL via Adjoint Meta-modalities Wood

NbE. Our NbE model is given by families ⊨L and ⊨I , defined below with the contexts left
implicit and manipulated via meta-connectives. Once again, meta-F and meta-G help in in-
terpreting object-F and object-G, and similar relationships hold for other meta-connectives
and types. As is standard, both function types have their interpretation coerced into being
renameable, and positive types may be interpreted as neutral terms as well as semantic values.

⊨L ιL := ⊢ne
L ιL ⊨I ιI := ⊢ne

I ιI

⊨L A⊗B := (⊨L A ∗ ⊨L B) ∪̇ ⊢ne
L A⊗B ⊨I X × Y := ⊨I X ×̇ ⊨I Y

⊨L A ⊸ B := 2L (⊨L A −∗ ⊨L B) ⊨I X → Y := 2I (⊨I X →̇ ⊨I Y)

⊨L FX := F (⊨I X) ∪̇ ⊢ne
L FX ⊨I GA := G (⊨L A)

With these definitions, the reify and reflect functions follow largely as may be expected.

The evaluator evalL : Γ
⊨L,⊨I
=⇒L ∆ → ∆ ⊢L A → Γ ⊨L A (and similar for the intuitionistic mode)

is somewhat more involved, and uses most of the properties and operations established about
meta-connectives (including their functoriality), environments, and renaming. Details can be
found in the associated artefact [Wood, 2025].

References

Guillaume Allais, James Chapman, Conor McBride, and James McKinna. Type-and-scope safe
programs and their proofs. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, page 195–207, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450347051. doi: 10.1145/3018610.3018613. URL https:

//doi.org/10.1145/3018610.3018613.

P.N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. pages 121–135.
Springer-Verlag, 1994.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed
lambda-calculus. In Proceedings of the Sixth Annual Symposium on Logic in Computer Sci-
ence (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 203–211. IEEE
Computer Society, 1991. doi: 10.1109/LICS.1991.151645. URL https://doi.org/10.1109/

LICS.1991.151645.

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed
definitional interpreters for linear, session-typed languages. In CPP 2020, pages 284–298,
2020. ISBN 9781450370974. doi: 10.1145/3372885.3373818.

James Wood. A framework for semiring-annotated type systems. PhD thesis, 2024. URL
https://doi.org/10.48730/pa0y-ct71.

James Wood. NbE for LNL via adjoint meta-modalities (artefact), 2025. URL https://

github.com/laMudri/lin-env/blob/types25-submission/src/Modal/LnL.agda.

3

https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1145/3018610.3018613
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.48730/pa0y-ct71
https://github.com/laMudri/lin-env/blob/types25-submission/src/Modal/LnL.agda
https://github.com/laMudri/lin-env/blob/types25-submission/src/Modal/LnL.agda

