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Abstract

We note that Weihrauch problems can be regarded as containers over the category of
projective represented spaces and that Weihrauch reductions correspond exactly to con-
tainer morphisms. We also show that Bauer’s extended Weihrauch degrees and the posetal
reflection of containers over partition assemblies are equivalent. Using this characteriza-
tion, we show how a number of operators over Weihrauch degrees, such as the composition
product, also arise naturally from the abstract theory of polynomial functors.

The content discussed in this abstract is from [13].

Weihrauch Reducibility Weihrauch reducibility is a framework from computable analy-
sis for comparing the computational strength of partial multi-valued functions over Baire space,
i.e., relations on NN, which are thus called Weihrauch problems. Intuitively, a problem P is re-
ducible to a problem Q, written P ≤W G, if we can compute P given an oracle for Q that can
be called once.

Definition 1 ([10]). If P and G are two Weihrauch problems, P is said to be Weihrauch
reducible to G if there exist partial type 2 computable1 maps φ and ψ such that φ is a map
dom(P ) → dom(G) and for every i ∈ dom(P ) and j ∈ G(φ(i)), ψ(i, j) is defined and belongs
to P (i).

Example 1. We can encode the following as Weihrauch problems:

• LPO (“given a bit sequence, tell me if it has a 1”), defined by

LPO(p) = {0ω | p = 0ω} ∪ {1ω | p ∈ {0, 1}N, p ̸= 0ω}

• KL: “given an infinite finitely branching tree t, give me an infinite path through t” can
also be encoded as a Weihrauch problem, modulo a standard embedding 2N

<ω

↪→ NN.

LPO is Weihrauch reducible to KL, but not KL is not reducible to LPO.
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Since Weihrauch reductions compose as depicted above, Weihrauch problems and reductions
form a preorder. The equivalence classes (called Weihrauch degrees) form a distributive lattice,
where meets and joins can be regarded as natural operators on problems: the join P ⊔Q allows
to ask a question either to P or Q and get the relevant answer, while P ⊓Q requires to ask one

1Type-2 computable maps are partial computable stream transformers NN → NN.
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question to each and get only one answer. Many other natural operators have been introduced
on the Weihrauch lattice, including a parallel product P ×Q (ask questions to both P and Q,
get both answers), a composition operator P ⋆ Q (ask a question to Q and then, depending
on the answer you got, a question to P ) and many others, including residuals and fixpoints of
other operators [5, Definition 1.2].

Containers Intuitively, a container in a category C is a family of objects of C indexed
by an object of C. Since objects of C are not necessarily sets, to make this formal, we define
containers as objects of C/I . Morphisms of containers are defined as follows.

Definition 2. A morphism representative from a container P : X → U to Q : Y → V is a pair
(φ,ψ) making the following diagram commute, the rightmost square being a pullback:

X
∑
u∈U

Yφ(u) Y

U U V

P

ψ

⌟
Q

φ

A morphism of containers is an equivalence class of morphism representatives.

The category of containers crops up in several places in the literature on functional program-
ming and mathematics and are sometimes referred to as polynomials or dependent lenses [1, 6,
17]. It is a “category of abundance”, having four monoidal structures (products, coproducts, ⊗,
and a composition ◦) and many other desirable properties [11, 14].

Contributions The representation of container morphisms into a “forward map” ϕ and
a family of “backward maps” ψ, as well as similar types of algebraic structures in the poset of
Weihrauch degrees and the category of containers suggests a strong relation between the two.
Our main contribution is to make that connection formal: Weihrauch degrees are isomorphic
to the posetal reflection of the full subcategory of answerable containers over the category
pMod(Krec

2 ,K2) of partitioned represented spaces and (type 2) computable functions. This is
technically straightforward: one regards a container P : X → U as the problem of finding a
section to P and morphisms as reductions between problems. P being answerable intuitively
means that a (possibly non-computable!) section of P exists at all2.

Thus a similar correspondence also applies to close variants such as continuous Weihrauch
reducibility and extended Weihrauch degrees [3]. Our most recent ongoing work is characterising
strong Weihrauch reducibility in a similar way via dependent adaptors3.

Coproducts and products of containers correspond to the lattice operators in the Weihrauch
degrees. The tensor product ⊗ of containers corresponds to the parallel product of Weihrauch
degrees. The treatment of composition of containers and composition of Weihrauch degrees
is trickier. The reason for this is that Weihrauch problem correspond to containers over a
category which is only weakly (locally) cartesian closed. This means that we while we may
define a composition operator, it will only be a quasi-bifunctor.

A summary of the current state of what we know and conjecture is given in table 1, for
details see our preprint [13].

2In general, starting from any category C with pullbacks, we can say that P is answerable iff it is a pullback-
stable epimorphism and derive the expected basic properties of ×,+ and ⊗ [13, §4.1].

3We adopt the definition and terminology from a seminar talk given by Hedges [4] – we are currently not
aware of another citable source where the notion might have been spelled out.
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Containers Reduciblity Status
Answerable containers over pMod(Krec

2 ,K2) Weihrauch problems ✓
Containers over pAsm(Krec

2 ,K2) Extended Weihrauch problems ✓
Dependent adaptors over pMod(Krec

2 ,K2) Strong Weihrauch problems ✓
Product p× q Meet p ⊓ q ✓
Coproduct p+ q Join p ⊔ q ✓
Tensor product p⊗ q Parallel product p× q ✓
Composition product p ◁ q Composition product p ⋆ q ✓*
Free monad on p Iterated composition product p⋄
Closed structures ⊸,⇒ ?
Derivative ∂p ?
? First-order part 1p
? Deterministic part det(p)
. . . . . .

Table 1: Relating container concepts to reducibility concepts.

Related work The idea of regarding a bundle as a problem to be solved by finding one
of its section is an old one that predates the “container” terminology. For instance, Hirsch [7,
Definition 3.4] defines an equivalent category to study the topological complexity of problems
and reductions between those. This perspective also already appeared in the literature on
Weihrauch problems (see for instance [9, Remark 2.8]), although most of the recent efforts we
are aware of to “categorify” Weihrauch reducibility and operators on problems tend to use other
tools instead.

One natural categorical construction that captured Weihrauch degrees that appeared in
the literature is the restriction of Bauer’s extended Weihrauch problems [3] to objects that
are actually Weihrauch problems, which are characterized as the ¬¬-dense predicates over
modest sets. Interestingly, Ahman and Bauer also linked extended Weihrauch reducibility to
containers [2], but by way of the more general notion of instance reducibility that works over
families of truth values. while here we work directly with bundles of partitioned assemblies.

Trotta et. al. also formally linked (extended) Weihrauch reducibility with the Dialectica
interpretation [15], which can be regarded bicompletions of fibrations by simple products and
sums [8]. Aside from the fact that they work in a posetal setting throughout, it is interesting
to note that the category of containers over C can be recovered by completing the terminal
fibration over C by arbitrary products and then sums and taking the fiber over 1. The Dialectica
interpretation was also used by Uftring [16] to capture Weihrauch reducibility in a syntactic
way in a substructural arithmetic.

Pauly also studied a generic notion of reducibility that encompasses Weihrauch reducibility,
starting from categories of multivalued functions [12], in which he derived the lattice operators
as well as finite parallelizations in a generic way.

Acknowledgement We thank the anonymous reviewers, Arno Pauly and Takayuki Ki-
hara for their comments on this work.
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