
Impredicative Encodings of (Co)inductive Types

Steven Bronsveld1, Herman Geuvers12, and Niels van der Weide1

1 iCIS, Radboud University Nijmegen, The Netherlands
2 Technical University Eindhoven, The Netherlands

Abstract

In impredicative type theory (System F, also known as λ2, [3, 4]), it is possible to define
inductive data types, such as natural numbers. It is also possible to define coinductive
data types such as streams. Their (co)recursion principles obey the expected computation
rules (the β-rules), but unfortunately, they do not yield a (co)induction principle [2, 6],
because the necessary uniqueness principles are missing (the η-rules). Awodey, Frey, and
Speight [1] used a extension of the Calculus of Constructions with Σ-types, identity-types,
and functional extensionality to define System F style inductive types with an induction
principle, by encoding them as a well-chosen subtype, making them initial algebras. We
extend their results to coinductive data types, and below we detail the stream data type
with the desired coinduction principle (also called bisimulation). To do that, we first define
quotient types (with the desired η-rules) and we also need a stronger form of the definable
existential types. The method of [1] can be used for general inductive types by defining
W -types with an induction principle. The dual approach for streams can be extended to
M -types, the generic notion of coinductive types, and the dual of W -types.

To define final coalgebras impredicatively, we first need quotient types. The well-known
impredicative definition of quotient types satisfies the β-rule, but fails to satisfy the η-rule.
We extend the technique of [1] to define quotients with an η-rule. We fix a type D : U and a
relation R : D → D → U . We say that a function f respects R (as a type: EqCls f R) if
for all x, y : D such that R x y, we have f x = f y. The well-known impredicative quotient
type, quot∗ D R, is defined as Π(C : U).Π(f : D → C).EqCls f R → C. The class function
cls∗ : D → quot∗ D R is defined to be

cls∗ := λ(d : D).λ(C : U).λ(f : D → C).λ(H : EqCls f R).f d.

We can lift a function (f : D → E) that respects R to a function (f : quot∗ D R → E). This
lifting is done by the recursor for quotient types, rec∗q :

rec∗q := λ(C : U).λ(f : D → C).λ(H : EqCls f R).λ(q : quot∗ D R).q C f H

As usual we write f for (λq. rec∗q C f H q). We have that f ◦ cls∗ = f , which gives the β-rule
for quotients. NB. We do not require R to be an equivalence relation, so quot∗DR is actually
the quotient of D by the smallest equivalence relation containing R.

The inductive quotient type (that will satisfy the η-rule), which we denote by quot,
is defined as Σ(q : quot∗ D R).LimQuot q where LimQuot (q : quot∗ D R) says that for all
functions g : D → X and g′ : D → Y that respect R, and functions f : X → Y , we have
f (rec∗q X g H q) = rec∗q Y g′ H ′ q whenever f ◦ g = g′. We define the recursor as follows.

recq := λ(C : U).λ(f : D → C).λ(H : EqCls f R).λ(q : quot D R).rec∗q C f H (pr1 q)

It can be shown that we have a term LimQuotCls : (LimQuot (cls d)), and using that we define
the class function cls to be λ(d : D).⟨cls∗ d, LimQuotCls d⟩. We can now show that the
general η-rule is satisfied: If (g : D → C) respects R, then for every (f : D/R → C) with
f ◦ cls = g, we have f = g.



Impredicative Encodings of Inductive and Coinductive Types Bronsveld, Geuvers van der Weide

It is standard to define the impredicative existential type ∃∗(X : U).P (X) to be Π(Y :
U).(Π(X : U).(P X) → Y ) → Y . The constructor pack∗ and recursor rec∗∃ are defined to be

pack∗ := λ(X : U).λ(t : P X).λ(Y : U).λ(k : Π(X : U).(P X) → Y ).k X t

rec∗∃ := λ(Y : U).λ(f : Π(Z : U).(P Z) → Y ).λ(e : ∃∗X.P ).e Y f

These do not satisfy the desired equations: when we unpack an (e : ∃X.P ) using the recursor
rec∃, obtaining (X : U) and (t : P (X)), and then we re-package them into e′ := pack X t,
we want e = e′. We can define an improved existential type that satisfies the properties that
we need: For all e : ∃X.P there are X : U and t : P X such that e = packX t. In addition,
rec∃ (∃X.P ) pack = id∃X.P .

The well-known impredicative stream type Stream∗ (over a carrier type E) is defined as
∃(X : U).X× (X → E)× (X → X). The destructors hd∗ : Stream∗ → E) and tl∗ : Stream∗ →
Stream∗ are standard to define, and so is the corecursor (that produces a stream):

corec∗s := λ(X : U).λ(h : X → E).λ(t : X → X).λ(x : X).pack X ⟨x, h, t⟩.

It is a simple check that the introduction rule (corecursor) and elemination rules (head and tail
functions) compute as one would expect. We want to define a stream-type that satisfies the
η-rule, which is taken from the final coalgebra: Given a stream-morphism (f : X → Y ), we
want that uY ◦ f = uX for the morphisms uX := corec∗s X h t and uY := corec∗s Y h′ t′.

In the case of quotients (and for natural numbers, see [1]), we create a subtype of quot∗ D R.
In the case of streams, we take the dual notion: a quotient. To define this quotient, we define
a relation CoLimStr that relates streams σ and τ if they can be translated into each other by
some stream-morphism.

CoLimStr σ τ := ∃(X,Y : U).∃ (h:X→E)
(h′:Y→E)

.∃(t:X→X)
(t′:Y→Y )

.∃(f : X → Y ).∃(x : X)

(MorphStream X h t Y h′ t′ f) ∧
σ = corec∗s X h t x ∧ τ = corec∗s Y h′ t′ (f x)

We use the infix notation (σ ≡ τ) to denote that (CoLimStr σ τ) holds. The relation CoLimStr

is neither symmetric nor transitive. This does not hinder us since the equality relation on the
quotient is an equivalence relation and we will have clsσ = cls τ if (CoLimStr σ τ) holds. The
coinductive stream type Stream is defined to be quot Stream∗ CoLimStr. To define the
new head and tail functions as lifted functions of hd∗ and tl∗ we need to show that hd∗ and
tl∗ respect ≡. Using that we define the destructors for the new stream type: hd : Stream → E
and tl : Stream → Stream. Finally, we define the corecursor corecs : Π(X : U).(X → E) →
(X → X) to be cls ◦ corec∗s . Using this we can show the η-rule for Stream∗: For all (X :
U), (h : X → E), (t : X → X) and (f : X → Stream), if (MorphStream X h t Stream hd tl f),
then we have (f = corecs X h t).

Two streams σ, τ are bisimilar, σ ∼ τ , if there is a bisimulation relation that relates them,
where R is a bisimilation if for all σ, τ : Stream we have that hd σ = hd τ and R (tl σ) (tl τ)
whenever R σ τ . We have the coinduction proof principle, stating that bisimilarity and equality
coincide. More precisely: for all σ, τ : Stream, we have σ ∼ τ if and only if σ = τ .

We used the limit predicate to encode the inductive data types, similar to [1]. For coinductive
data types, we dually used the colimit. It is also possible to directly encode the induction
principle within the embedding, by creating a predicate Ind as was done in [5]. Similarly for
coinductive types, one can use the CoInd principle by quotienting with bisimilarity relation. It
is also possible to encode the η-rule directly by representing the uniqueness requirement, using
a predicate Unq.

2



Impredicative Encodings of Inductive and Coinductive Types Bronsveld, Geuvers van der Weide

References

[1] Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive types.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 76–85. ACM, 2018.

[2] Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson
Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Conference, TLCA
2001, Krakow, Poland, volume 2044 of Lecture Notes in Computer Science, pages 166–181. Springer,
2001.

[3] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge University Press,
1993.

[4] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, Proceedings
Colloque sur la Programmation, Paris, France, April 9-11, 1974, volume 19 of Lecture Notes in
Computer Science, pages 408–423. Springer, 1974.

[5] Xavier Ripoll Echeveste. Alternative impredicative encodings of inductive types. Master’s thesis,
Universiteit van Amsterdam, 2023.

[6] Ivar Rummelhoff. Polynat in PER models. Theor. Comput. Sci., 316(1):215–224, 2004.

3


