
Thinning Thinnings: Safe and Efficient Binders

April Gonçalves1 and Wen Kokke2

1 University of Strathclyde, Glasgow, UK
2 Well-Typed

Abstract

Binding is notoriously difficult to implement both correctly and efficiently. When using
names, one must be ever vigilant for name capture. When using de Bruijn indices and
thinnings, one must correctly adjust them whenever their scope changes. These invariants
have tripped up even the most seasoned compiler writers. Using dependent types, it is
straightforward to ensure the correct use of de Bruijn indices and thinnings. Unfortunately,
such implementations are often inefficient. Moreover, this requires that the compiler is
written in a dependently-typed language.

We present a Haskell library that provides an implementation de Bruijn indices and
thinnings that is both correct and efficient. The library exports the usual inductive defi-
nitions for de Bruijn indices and thinnings, indexed on the type-level with the size of their
scope and scopes, respectively. However, it implements these efficiently as machine words
and bit vectors. We test the correctness of the efficient implementation using QuickCheck.
We intend to benchmark the library against the usual inductive definitions, to ensure that
it is more efficient, and against the unsafe efficient implementation, to ensure that the
type-level indices do not incur any runtime overhead.

Background. Logicians, type theorists, and compiler writers have struggled with syntax
and binding for over a century [3]. Compiler writers, especially, struggle with representing
binding. Named representations of binding use matching names—be they strings or numbers—
for binding sites and bound variables. Using names, one must work to avoid name capture
and ensure α-equivalence. Nameless representations of binding got their party started with de
Bruijn and his indices [1] which represent bound variables as numbers that index into the list
of enclosing scopes, writing, e.g., λ.(λ.1) for λx.(λy.x). For the remainder of this abstract, we
leave our stringly-named friends behind and focus on indices.

De Bruijn Indices and Thinnings, Inductively. A de Bruijn index selects an element
from a list—be it a typing context or an evaluation environment, and we can represent them
in Haskell as we will show. . . Everybody brace for length-indexed vectors! Nat is the kind of
type-level natural numbers:

type data Nat = Z | S Nat -- We write 0 for Z, 1 for S 0, 2 for S 1, 3 for S 2, etc.

Env n is the type of lists of length n and Ix n is the type of indices into such lists:

data Env n a where
Nil :: Env Z a
Cons :: a → Env n a → Env (S n) a

data Ix n where
FZ :: Ix (S n)
FS :: Ix n → Ix (S n)

Where an index selects a single element from a list, a thinning selects a sublist. Th m n is the
type of thinnings that thins a list of length m out to a list of length n by either keeping or
dropping each element:

Thinning Thinnings Gonçalves and Kokke

data Th m n where
Done :: Th Z Z
Keep :: Th m n → Th (S m) (S n)
Drop :: Th m n → Th (S m) n

ex1 :: Th 4 2 -- [A, B, C, D] to [C, D]
ex1 = Drop ◦Drop ◦Keep ◦Keep $Done

ex2 :: Th 4 2 -- [A, B, C, D] to [A, C]
ex2 = Keep ◦Drop ◦Keep ◦Drop $Done

Both ex1 and ex2 are examples of thinnings that select a sublist of length 2 from a list of
length 4. Both have type Th 4 2. However, they are distinct: ex1 drops elements 1 and 2
and ex2 drops elements 2 and 4. The type Th 4 2 is inhabited by all combinations of selecting
2 elements from a list 4. This is such a general concept that thinnings, for compiler writers,
pop up all over. In evaluation, a thinning can represent a batch of adjustments to the bound
variable indices [5]. In dependent type checking, a thinning can represent the portion of its
context to which a meta-variable has access. Using co-de Bruijn representation [5], thinnings
can even be used to represent binding, obviating the need for indices.

De Bruijn Indices and Thinnings, Efficiently. The inductive definitions Ix and Th are
correct but inefficient. The index 3, represented as FS (FS FZ), takes up five machine words. I
hope we can agree that one machine word should suffice. If you really need more than 264 nested
binders1, you can use Haskell’s efficient arbitrary-precision Integer type2. Likewise, ex1 and ex2
each take up nine machine words, where 4 bits would suffice to represent each Keep and Drop.
Such optimisations are often found in the wild. Both smalltt [4] and ask [6] represent indices
as Int and thinnings as bit vectors—smalltt uses Int , which is efficient but limits the number
of nested binders to 64, and ask uses Integer as an infinite bit vector. Unfortunately, these
optimisations lose the type-level safety guarantees of the inductive definitions. Anecdotally, the
most error-prone parts of both ask and Idris 1 [2] was in their implementations of binders.

Contribution. Our contribution is a library that provides an efficient implementation of de
Bruijn indices and thinnings, representing indices as words and thinnings as bit vectors, but
whose API matches the inductive definitions, including type-level safety guaratees. Our library
leverages bidirectional pattern synonyms, view patterns, and—most importantly—lies to mimic
the inductive data type definitions down to their constructors. Our technique leverages unsafe
projection and embedding functions between the efficient representation and the inductive base
functor, generating the inductive constructors on a by-need basis, e.g., indices are defined as:

data IxF f n where
FZF :: IxF f (S n)
FSF :: f n → IxF f (S n)

newtype Ix (n ::Nat) = Ix Word16
unsafeProject :: Ix n → IxF Ix n
unsafeEmbed :: IxF Ix (S n)→ Ix (S n)

pattern FZ ← (unsafeProject → FZF) where FZ = unsafeEmbed FZF
pattern FS i ← (unsafeProject → FSF i) where FS i = unsafeEmbed (FSF i)

We test the equivalence of the inductive and the efficient definitions using a QuickCheck suite.
In the future, we hope to benchmark our library against the inductive definitions. While the
data type definitions make it sufficiently clear that our library is more space efficient, such a
benchmark would test whether or not our library is more time efficient. Furthermore, we hope
to benchmark our library against the efficient definitions without type-level safety guaratees,
which would test whether or not our type-level indices introduce any runtime overhead.

1For simplicity, we assume a 64-bit architecture.
2But you should, probably, re-evaluate the decisions that led to you needing 18446744073709551615 variables.

2

Thinning Thinnings Gonçalves and Kokke

References

[1] N. G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Pro-
ceedings), 75(5):381–392, January 1972.

[2] The Idris Developers. Idris 1. https://github.com/idris-lang/Idris-dev, 2025.

[3] Gottlob Frege. Uber sinn und bedeutung. Zeitschrift für Philosophie Und Philosophische Kritik,
100(1):25–50, 1892.

[4] András Kovács. smalltt. https://github.com/AndrasKovacs/smalltt, 2023.

[5] Conor McBride. Everybody’s Got To Be Somewhere. Electronic Proceedings in Theoretical Com-
puter Science, 275:53–69, July 2018.

[6] Conor McBride, Guillaume Allais, Fredrik Nordvall Forsberg, and Jules Hedges. ask. https:

//github.com/msp-strath/ask, 2025.

3

https://github.com/idris-lang/Idris-dev
https://github.com/AndrasKovacs/smalltt
https://github.com/msp-strath/ask
https://github.com/msp-strath/ask

