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Background. An elementary topos can be seen as a model of a version of the Calculus of
Constructions with an impredicative universe of propositions, where any two elements of a
proposition are definitionally equal. There is an extensive literature on topos theory (see, for
example, [10, 8, 9]) and many properties of this type theory can be proved using its topos-
theoretic semantics.

An important class of such toposes is the one obtained from locales. A locale L is a complete
poset in which the following distributive law holds:

a ∧
∨
b∈B

b =
∨
b∈B

a ∧ b,

when a ∈ L and B ⊆ L. Every topological space gives rise to a locale by considering its poset
of open subsets ordered by inclusion.

Whenever you have a locale, you can obtain a topos from it by taking the category of
sheaves over the locale: the result is called a localic topos. This category of sheaves over the
locale L is equivalent to a category that has a description in terms of logic. Indeed, there is an
equivalent category of L-sets, which are sets with an L-valued equality relation on them, where
this equality relation is required to be symmetric and transitive; the morphisms of L-sets are
L-valued functional relations.

The latter category can be understood as the result of a two-step process. First, one builds
a tripos out of the locale L and then one turns this tripos into a topos by the tripos-to-topos
construction [6]. Importantly, there are triposes that do not arise from locales, for instance,
the effective tripos, whose associated elementary topos is Hyland’s effective topos, a non-localic
(even non-Grothendieck) topos [5]. The effective topos and their subcategories are important
as models of polymorphic type theories [4, 7].

Contribution. The aim of this talk is to introduce arrow algebras and explain the work of
my former MSc students Marcus Briët and Umberto Tarantino [1, 15]. Arrow algebras are
algebraic structures generalising locales. The point is that they still allow you to construct a
tripos, an arrow tripos, and hence also an arrow topos by the tripos-to-topos construction.



These arrow toposes include the localic toposes, but also Hyland’s effective topos. Indeed,
many realizability toposes can be shown to be arrow toposes, because every pca (partial com-
binatory algebra) gives rise to an arrow algebra: this includes also “relative, ordered” pcas as
in, for example, Zoethout’s PhD thesis [16] (see also [3, 13]).

Crucially, Umberto Tarantino has developed a notion of morphism of arrow algebras which
correspond to geometric morphisms between the associated triposes. This has allowed us to
understand the following in purely arrow algebraic terms:

1. Every arrow morphism factors as a surjection followed by an inclusion, inducing the
corresponding factorisation on the level of triposes and toposes.

2. Every subtripos of an arrow tripos coming from an arrow algebra L is induced by a nucleus
on L. Given this nucleus, there is a simple construction of a new arrow algebra inducing
the subtripos.

As a result, arrow algebras provide a flexible framework for constructing and studing new
toposes.

Related work. Arrow algebras can be defined as follows:

Definition 0.1. An arrow algebra A is a complete lattice (A,4) with an implication operator
→:Aop ×A→ A and a separator S ⊆ A such that:

1. if a ∈ S and a 4 b, then b ∈ S.

2. if a, a→ b ∈ S, then also b ∈ S.

3. S contains the following combinators:

k : =
k

a,b

a→ b→ a

s : =
k

a,b,c

(a→ b→ c)→ (a→ b)→ (a→ c)

a : =
k

a,(bi)i∈I ,(ci)i∈I

(k

i∈I

a→ bi → ci
)
→ a→

(k

i∈I

bi → ci
)

Arrow algebras were directly inspired by Alexandre Miquel’s work on implicative algebras
[12]. His implicative algebras can be defined as arrow algebras in which the following axiom
holds:

a→
k

b∈B

b =
k

b∈B

a→ b.

We felt it was worthwhile to drop this axiom, because there are many natural examples of arrow
algebras that do not satisfy it: this includes arrow algebras obtained from pcas and the arrow
algebras obtained from nuclei. While it follows from Miquel’s work that every arrow algebra is
equivalent to an implicative algebra [1, 11], the equivalent implicative algebra is rather unwieldy
and for doing concrete calculations, working with the original arrow algebra is easier.

Implicative algebras are closely related to evidenced frames, as in [2]. Another framework
which subsumes both realizability and localic toposes is the work by Pieter Hofstra on BCOs



(basic combinatory objects) [3] (see also [14]). While every implicative algebra is a BCO, it is
not clear how to obtain a BCO from an arrow algebra in such a way that the associated triposes
are isomorphic. However, a more thorough investigation of these connections is left to future
work.

References
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