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Peter Scholze and Dustin Clausen [CS24] introduced light condensed sets, defined as sheaves
on the site of light profinite sets. They can be used as an alternative to topological spaces.
Synthetic Stone duality is an extension of homotopy type theory by four axioms, which was
introduced in [Che+24]. In this article, it was proven that H1(S,Z) = 0 for S a Stone space,
that H1(X,Z) for X compact Hausdorff can be computed using Čech cohomology and that
H1(I,Z) = 0 where I is the unit interval. In this talk we will present the extension of these
results to higher cohomology groups with non-constant countably presented abelian groups as
coefficients. Those are synthetic analogues of results from Roy Dyckhoff [Dyc76a; Dyc76b].

Synthetic Stone Duality In our setting, Stone spaces are precisely countable sequential
limits of finite sets, making them analogous to light profinite sets. The construction of a model
making this analogy rigorous is still work in progress.

The axioms of synthetic Stone duality postulate Stone duality (Stone spaces are equivalent
to countably presented Boolean algebras), completeness (non-empty Stone spaces are merely
inhabited), dependent choice and a local-choice axiom. The latter says that given a Stone space
S and a type family B over S such that Πx:S∥B(x)∥, there merely is a Stone space T and
a surjection s : T ↠ S such that Πx:TB(s(x)). Local choice is crucial when performing the
cohomological computations mentioned below.

Many traditional properties of Stone spaces can be shown synthetically, sometimes phrased
in a more type-theoretic way, e.g. Stone spaces are closed under Σ-types. Open and closed
propositions can be defined, inducing a topology on any type such that any map is continuous.
This topology is as expected for Stone spaces and compact Hausdorff spaces (i.e. quotient of
Stone spaces by closed equivalence relations).

One important example of compact Hausdorff space is the real interval I, from which the
type R of real numbers is constructed. This is equivalent to the usual constructions of both
Cauchy and Dedekind reals. As in [Shu18], it is important to distinguish topological spaces like
S1 := {x, y : R | x2 + y2 = 1} from homotopical spaces like the higher inductive 1-type S1.

Despite topological spaces being sets, they can have non-trivial cohomology. Indeed, for any
type X and dependent abelian group A : X → Ab, we use the usual synthetic definition of the
n-th cohomology group Hn(X,A) as ∥Πx:XK(Ax, n)∥0 where K(Ax, n) is the n-th Eilenberg
Mac-Lane space with coefficient Ax. In [Che+24], it is proven that H1(S1,Z) = Z, despite S1
being a set.

We prove Barton and Commelin’s condensed type theory axioms [Bar24] in synthetic
Stone duality, as well as dependent generalisations of them. These are used to show that any
compact Hausdorff space X interact well with any family of countably presented abelian groups
A : X → Abcp.

Vanishing of higher cohomology of Stone spaces First we prove that H1(S,A) = 0 for
all S Stone and A : S → Abcp. We assume α :

∏
x:S K(Ax, 1), by local choice we get a surjection

p : T ↠ S with T Stone which trivialises α. Then we get an approximation of p as a sequential
limit of surjective maps pk : Tk → Sk between finite sets, we check that the induced trivialisation
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over Tk gives a trivialisation over Sk, and conclude through our dependent generalisations of
Barton and Commelin’s axioms that α is trivial over limkSk = S.

We follow an idea due to David Wärn [BCW23, Theorem 3.4] to go from H1(S,A) = 0 to
Hn(S,A) = 0 for all n > 0. The key idea is to proceed by induction on n > 0, generalising the
induction hypothesis from Hn(S,A) = 0 to:

(i) K(
∏

x:S Ax, n) →
∏

x:S K(Ax, n) is an equivalence, directly implying Hn(S,A) = 0.

(ii) K(
∏

x:S Ax, n+ 1) →
∏

x:S K(Ax, n+ 1) is an embedding.

Assume (i) and (ii) for n > 0, let’s prove (i) and (ii) for n+ 1. (ii) follows immediately from
(i). To prove (i), by induction hypothesis (ii) it is enough to prove that

∏
x:S K(Ax, n+ 1) is

connected, i.e. Hn+1(S,A) = 0. We assume α :
∏

x:S K(Ax, n + 1), by local choice we get a
trivialisation p : T ↠ S of α with T Stone. Denoting by Tx the fiber of p over x, we consider
the exact sequence 0 → Ax → ATx

x → Lx → 0 giving an exact sequence:

Hn(S,L) → Hn+1(S,A) → Hn+1(S, λx.ATx
x )

By induction hypothesis (i) we have that Hn(S,L) = 0 so we have an injection:

Hn+1(S,A) → Hn+1(S, λx.ATx
x )

By induction hypothesis (ii) the map:

Hn+1(S, λx.ATx
x ) → Hn+1(Σx:STx, Ax) = Hn+1(T,A ◦ p)

is an injection so that we get an injection:

p∗ : Hn+1(S,A) → Hn+1(T,A ◦ p)

But p trivialises α so p∗(α) = 0, therefore α = 0.

Čech cohomology for compact Hausdorff spaces Given a compact Hausdorff space X, a
Čech cover for X consists of a Stone space S and a surjective map p : S ↠ X. By definition any
compact Hausdorff space has a Čech cover.

Given such a Čech cover and A : X → Abcp, we define its Čech complex as:

Πx:XASx
x → Πx:XASx×Sx

x → · · ·

with the boundary maps defined as expected, and its Čech cohomology Ȟk(X,A) as the k-th
homology group of its Čech complex. It is clear that H0(X,A) = Ȟ0(X,A).

From hypothesis (i) in the previous paragraph, for n > 0 we get an exact sequences:

Hn−1(X,λx.ASx
x ) → Hn−1(X,L) → Hn(X,A) → 0

By direct computations, for n > 0 we get an exact sequence:

Ȟn−1(X,λx.ASx
x ) → Ȟn−1(X,L) → Ȟn(X,A) → 0

We conclude by induction on n that Hn(X,A) = Ȟn(X,A) for all n, so that in particular
Čech cohomology does not depend on the Čech cover. For this induction to go through it is
crucial that ASx

x is countably presented, which follows from Barton and Commelin’s axioms.
Using this result and finite approximations of a well-chosen Čech cover of I, we can check that
Hn(I, A) = 0 for all n > 0 and A : I → Abcp.
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