
A Quantitative Dependent Type Theory with Recursion

Oskar Eriksson, Nils Anders Danielsson, Andreas Abel

Chalmers University of Technology and University of Gothenburg, Sweden

In graded modal type theories the type system is parameterized by an algebraic structure,
typically some form of semiring, containing grades. One use of grades, which we focus on, is to
encode quantitative aspects like erasure, linear types, and affine types [3, 4, 5, 6].

In previous work, we have developed an Agda formalization of a graded modal type theory
with dependent types [1] supporting Π-types, strong and weak Σ-types, an empty type, natural
numbers, and a universe. Certain parts of the syntax, notably lambda abstractions and appli-
cations, are annotated with grades corresponding to how many times some part of the program,
in this case the function argument, is used. This is checked primarily by a form of typing for
grades, the usage relation γ ▶ t between a grading context γ and an expression t. Here is a
selection of rules (note that our formalization uses de Bruijn indices instead of variables):

0. x :1.0 ▶ x

γ. x :p ▶ t

γ ▶ λpx.t

γ ▶ t δ ▶ u

γ + pδ ▶ tpu 0 ▶ zero

γ ▶ t

γ ▶ suc t

γ ▶ t

δ ▶ t
δ ≤ γ

In essence, the relation counts the uses of the free variables of t in terms of the operators of the
semiring, lifted pointwise to contexts γ. Usage counting is not necessarily exact: the semiring is
equipped with an order relation interpreted as usage subsumption or compatibility—a variable
that is used p times can also be considered to be used q times if q ≤ p. We proved key properties
for usage such as a substitution lemma and subject reduction, and showed correctness of erasure,
in the sense that parts marked as erasable can be safely removed during compilation.

Building on this work, we extend the formalization [2] with a correctness proof that goes
beyond erasure: we prove that variables are used as many times as specified when a program is
evaluated. Our approach is based on the work of Choudhury et al. [4] and involves a heap-based
abstract machine with the capability to track how many times lookups may be performed. In
contrast to their formulation, our machine uses an explicit stack of continuations. We also
fix a problem with the usage relation in our previous work [1]: variable usage was sometimes
handled incorrectly for natrec, the eliminator for natural numbers. As an example, our previous
method allowed the program λ1n.plus n n to be considered linear (here plus denotes addition
for natural numbers, defined in a standard way).

In natrecrp (xn.A) z (xp.xr.s) n, the arguments z and s are the zero and suc branches, re-
spectively, and n is the natural number argument. The s argument binds two variables, xp,
corresponding to the predecessor of the natural number, and xr, corresponding to the recursive
call. These are assigned the grades p and r, respectively (predecessor and recursive call). There
is also an explicit motive A dependent on the eliminated number (bound as xn).

In order to find a correct usage count for natrec we make the following ansatz (which comes
from following the structure of e.g. the eliminator for pairs):

γz ▶ z γs. xp :p. xr :r ▶ s γn ▶ n

qγn + δ ▶ natrecrp (xn.A) z (xp.xr.s) n

This work is licensed under a Creative Commons “Attribution 4.0
International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

A Quantitative Dependent Type Theory with Recursion Eriksson, Danielsson, Abel

Here q is some grade indicating the number of copies of n that are used and δ is a context
representing the usage contributions from z and s. The main difficulty in finding proper values
for q and δ comes from the recursion: whatever usage counts we choose to assign, they should
work for all values of n, i.e. regardless of how deep the recursion is.

Let δi be the usage contribution from z and s for the number i. First, δ0 corresponds to
the zero case where only z is used, so we get δ0 = γz. Similarly, δi+1 corresponds to a successor
case which uses s once (with γs resources) and the recursive call r times (up to subsumption).
A single recursive call uses δi resources, so we get δi+1 = γs + rδi. Now we let δ be the
approximation that we get by taking the infimum of the δi (for i ∈ N): if such an infimum does
not exist then natrecrp (xn.A) z (xp.xr.s) n is not considered to be well-resourced.

Analogously, we obtain q as the infimum of the sequence qi, where q0 = 1 since in the base
case n is “consumed fully” by the match, and qi+1 = p + rqi since n is used p times by s and
the recursive call is again used r times.

With this usage rule, we can show the same substitution, subject reduction and erasure
correctness properties as before [1] (for semirings with well-behaved greatest lower bounds).
However, it also allows us to show a more precise form of resource correctness, stated using an
abstract machine with a heap and a stack.

A machine state ⟨H; t; ρ; S⟩ consists of a heap H, head t, environment ρ, and stack S.
Environments map variable names to pointers (again, note that our formalization uses de Bruijn
indices instead of variables, we have not proved that the rules involving variables below actually
work). Heap entries x 7→p (t, ρ) are associated with a grade p, indicating how many times lookup
may be performed. They also contain an environment ρ that maps the variable names of t to
the pointers of the heap. The evaluation stack S is a list of continuations that represent the
context “around” the term that is currently being evaluated (the head). Like entries, each
continuation contains an environment mapping variables to pointers. Reduction is performed
in a call-by-name style; these are the rules for the lambda calculus part:

⟨H. ρ(x) 7→p (t, ρ′). H ′; x; ρ; S⟩ → ⟨H. ρ(x) 7→q (t, ρ′). H ′; t; ρ′; S⟩ if p− |S| = q

⟨H; tpu; ρ; S⟩ → ⟨H; t; ρ; •pu[ρ]. S⟩
⟨H; λpx.t; ρ; •pu[ρ′]. S⟩ → ⟨H. y 7→|S|p (u, ρ′); t; ρ[x 7→ y]; S⟩ y ̸∈ H

For variables, a lookup is performed and the grade of the corresponding entry is updated,
indicating that some allowed lookups have been “used”. We do not require the semiring to be
equipped with subtraction (i.e. to be a ring) and instead define a form of “partial” subtraction
via the relation p− q = r, defined to hold if r is the least grade such that p ≤ r+ q (we require
that if there is such an r then there is a least one). Because an eliminator is not necessarily
linear in its scrutinee, a given lookup might “consume” multiple copies. For instance, for
natrecrp (xn.A)z (xp.xr.s)n the grade q is assigned to the argument n (where q is the infimum of
1, r+p, r2+rp+p, and so on), so the machine is set up so that when natrecrp (xn.A)z (xp.xr.s)x
is evaluated (in an empty stack) the lookup of x consumes q copies. The stack could contain
several eliminators, so the variable rule uses |S|, a grade associated to all the eliminators in S
(note that this grade might not be defined if some infimum does not exist).

The non-variable cases are mainly concerned with the stack. For eliminators like applications
and natrec, a corresponding continuation is put on the stack and evaluation continues with the
scrutinee. If the result is a compatible value, then the continuation is removed from the stack
and zero or more new entries are added to the heap. The number of allowed lookups |S|p for
a new heap entry is given by a corresponding annotation p on the syntax, scaled by the stack
multiplicity |S|.

2

A Quantitative Dependent Type Theory with Recursion Eriksson, Danielsson, Abel

We show termination: evaluation of a well-resourced term of type N, starting with an empty
heap and stack, will reach a final state with a numeral in head position and an empty stack.
This implies that evaluation does not use variables more times than specified, since doing so
is prevented by the reduction semantics. We also show that variables are not used fewer times
than specified: the final heap does not contain any entries for which lookups are “necessary”.
For instance, if the linearity semiring is used, then there is no heap entry with the grade 1.

Acknowledgements. We would like to thank the reviewers. Andreas Abel and Oskar Eriks-
son acknowledge support by Vetenskapsr̊adet (the Swedish Research Council) via project 2019-
04216 Modal typteori med beroende typer (Modal Dependent Type Theory). Oskar Eriks-
son additionally acknowledges support by Knut and Alice Wallenberg Foundation via project
2019.0116. Nils Anders Danielsson acknowledges support from Vetenskapsr̊adet (2023-04538).

References

[1] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. A graded modal dependent type
theory with a universe and erasure, formalized. Proc. ACM Program. Lang., 7(ICFP), August
2023. doi:10.1145/3607862.

[2] Andreas Abel, Nils Anders Danielsson, Oskar Eriksson, Gaëtan Gilbert, Ondřej Kubánek, Wo-
jciech Nawrocki, Joakim Öhman, and Andrea Vezzosi. An Agda Formalization of a Graded
Modal Type Theory with a Universe Hierarchy and Erasure, 2025. URL: https://github.com/
graded-type-theory/graded-type-theory.

[3] Robert Atkey. Syntax and semantics of quantitative type theory. In LICS ’18: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 56–65, 2018. doi:

10.1145/3209108.3209189.

[4] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded
dependent type system with a usage-aware semantics. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434331.

[5] Conor McBride. I got plenty o’ nuttin’. In A List of Successes That Can Change the World, volume
9600 of LNCS, pages 207–233, 2016. doi:10.1007/978-3-319-30936-1_12.

[6] Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded modal dependent type theory.
In Programming Languages and Systems, 30th European Symposium on Programming, ESOP 2021,
volume 12648 of LNCS, pages 462–490, 2021. doi:10.1007/978-3-030-72019-3_17.

3

https://doi.org/10.1145/3607862
https://github.com/graded-type-theory/graded-type-theory
https://github.com/graded-type-theory/graded-type-theory
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3434331
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17

