
A Timed Predicate Temporal Logic Sequent Calculus
Javier Enríquez Mendoza1, Sam Speight1, and Vincent Rahli1

1University of Birmingham, UK

Abstract

Our society strongly depends on critical information infrastructures such as autonomous
vehicles, blockchain applications, IoT infrastructures, etc. Because of the complexity of
these systems, guaranteeing that they operate in a correct and timely fashion is hard to
achieve. In this abstract, we present a logical framework that allows reasoning about timing
properties of such systems, and demonstrate its applicability through a series of examples.

Temporal Logic Temporal logic is used to describe and reason about the behavior of sys-
tems over time. A prominent example of such a logic is Timed Propositional Temporal Logic
(TPTL) [4, 1, 2], an extension of Linear Temporal Logic (LTL) [6] with explicit clock variables
that facilitates reasoning about time-bound properties. TPTL has notably been extended with
past operators (TPTL + Past) in [5], which allows for reasoning about both past and future
events, as well as quantifiers in [1]. Other “timed” temporal logics have been proposed such
as Timed CTL [3, Sec.9.2], which most notably extends CTL with clocks and constraints on
clocks, and for which model checking algorithms exist. We focus here on designing a calculus
for a variant of TPTL + Past with quantifiers, which is fully formalised in Agda.

The syntax of TPTL is as follows, where U and ⃝ are the usual “until” and “next” LTL
operators; p is an atomic proposition; x is a clock variable; c ∈ Q; ∼ ∈ {≤, <,=, >,≥} allows
comparing two time expressions; and the “freeze” formula x ·φ binds the current time to x in φ:

φ ::= p | φ ∧ φ | ¬φ | φUφ | ⃝φ | x ∼ c | x · φ

Temporal operators such as “eventually” and “always” are defined as usual: ♢φ := trueUφ
and □φ := ¬♢¬φ. Using the “freeze” operator, one can then capture that the formula φ
eventually occurs by “time” c: x·♢(x ≤ c ∧ φ). To understand this, let us consider the semantics
of a subset of TPTL, given in terms of a mapping ρ = (σ, τ) from N to states, where a state is
the pair of a valuation on atoms and a timestamp, a i ∈ N, and a variable valuation v:

ρ, i, v |= φUψ ⇐⇒ ∃j > i.(ρ, j, v |= ψ) ∧ ∀k ∈ [i, j).(ρ, k, v |= φ)
ρ, i, v |= x ∼ c ⇐⇒ τi − v(x) ∼ c
ρ, i, v |= x · φ ⇐⇒ ρ, i, v[x 7→ τi] |= φ

The semantics of x · ♢(x ≤ c ∧ φ) w.r.t. ρ, i, v states that there exists a time τj at which φ is
true, for some j > i such that τj ≤ τi + c.
Our Calculus We now present an extension of TPTL + Past, with quantifiers, a more general
comparison operator, a “discrete” semantics, and a sequent calculus.

The syntax of this calculus is as follows (some operators are omitted for space reasons),
where S and Y are the “since” and “yesterday” past counterparts of U and ⃝; the Data
type is used to capture the information exchanged between agents; i ranges over a set of agents
Agent; d ranges over a set of data Data; A ranges over a set of sets of agents Agents; an atom
a is either an atomic proposition p, or a “send” atom send(i, d, A) stating that agent i sent the
data d to the set of agents A, or a “receive” atom recv(i, d, j) stating that agent i received
the data d from agent j, or an “internal event” atom inter(i, d) stating that d happened at
agent i. It can be observed that the set of comparison operators only includes strict less-than

J. Enríquez Mendoza

and equality, unlike TPTL’s operators. This is because the remaining operators can be defined
using these two along with conjunction and disjunction, thanks to the fact that our comparison
operators are not dependent on the current time.

φ ::= a | φ ∧ φ | φ ∨ φ | ¬φ | φUφ | ⃝φ | φSφ | Yφ | t ∼ t | x · φ | ∀u : T.φ | ∃u : T.φ
T ::= Agent | Agents | Data
t ::= x | 0 | t • t | s(t)

∼ ::= < | =
a ::= p | send(i, d, A) | recv(i, d, j) | inter(i, d)

Let us now adapt and extend TPTL’s semantics to our calculus. There, formulas are
interpreted w.r.t.: (1) a timestamp t; (2) a function r from timestamps to states, called a run;
(3) an interpretation function π, which given a state and an atom, captures whether the atom
is true in that state; and (4) a variable valuation (we only present a subset for space reasons):

π, r, t, v |= a ⇐⇒ π(r(t))(a)
π, r, t, v |= φSψ ⇐⇒ ∃t′ < t.(π, r, t′, v |= ψ) ∧ ∀t′′ ∈ (t′, t].(π, r, t′′, v |= φ)
π, r, t, v |= Yφ ⇐⇒ t > 0 and π, r, t− 1, v |= φ
π, r, t, v |= t1 ∼ t2 ⇐⇒ Jt1Kv ∼ Jt2Kv
π, r, t, v |= x · φ ⇐⇒ π, r, t, v[x 7→ t] |= φ
π, r, t, v |= ∀u : T.φ ⇐⇒ π, r, t, v[u 7→ z] |= φ for all z ∈ JT K
JxKv := v(x)
J0Kv := 0
Jt1 • t2Kv := Jt1Kv + Jt2Kv
Js(t)Kv := JtKv + 1

JAgentK := Agent
JAgentsK := Agents
JDataK := Data

Thanks to the more general comparison operator, a time bounded version of the ♢ operator
can now be defined in a more straightforward way: ♢tφ := x ·♢(y · y ≤ x • t ∧ φ), stating that φ
happens sometime in the future by “time” t (where t1 ≤ t2 stands for t1 < t2 ∨ t1 = t2).

Several proof systems have been proposed for LTL-like logics. However, the until operator is
known to pose difficulties. A labeled Natural Deduction system was proposed in [7] to circum-
vent those difficulties. Simplifying and generalizing that system, we propose a labeled sequent
calculus that allows reasoning about until and timing properties using the same machinery. We
show below the until rules, which illustrate key aspects of our calculus:

Γ ⊢t t < t1 Γ ⊢t1 ψ Γ, t ≤ x, x < t1 ⊢x φ

Γ ⊢t φUψ
UR

Γ, t < x, (ψ)x, (φ)[t,x) ⊢t1 γ

Γ, (φUψ)t ⊢t1 γ
UL

A sequent is of the form Γ ⊢t φ, stating that φ holds at time t in the context Γ. An hypothesis
is of the form (ψ)r, where r is a time annotation, which can either be: (1) a time expression t,
(2) a time interval such as [t1, t2] or [t1, t2), or (3) an “empty” annotation stating that the
hypothesis holds at all times. The UR rule states that for φUψ to be true at time t it must
be that there exists a time t1 greater than t at which ψ holds, and that φ holds between t
and t1. The UL rule states that if φUψ is true at time t then there must be a time x (a
variable) greater than t at which φ holds, and φ must be true between t and x.

Let us illustrate this calculus through a straightforward example where all nodes are correct
and communication is synchronous, ensuring that all sent messages are received within a time
interval T , captured by the following formula (if an agent sends a message d at time t to a
group, all members of that group will receive the message by time t+ T):

∀a : Agent.∀d : Data.∀A : Agents.∀b : Agent.□(send(a, d,A) → ♢T (b ∈ A→ recv(a, d, b)))

2

J. Enríquez Mendoza

Additionally, we assume that any information received by a node is immediately shared with
other node (whenever an agent b receives a message, it immediately sends it to the set of nodes
containing only c):

∀a : Agent.∀d : Data.∀b : Agent.∀c : Agent.□(recv(a, d, b) → send(b, d, {c}))

Using our calculus, from the above assumptions, one can then derive the following formula,
stating that if a node a sends a message d to node b, then c will also receive d before 2T :

∀a : Agent.∀d : Data.∀b : Agent.∀c : Agent.send(a, d, {b}) → ♢2T (recv(b, d, c))

Based on this calculus, we now plan on designing a type system tailored to the unique de-
mands of distributed systems, aligning type-based constraints with the above logical framework.

References
[1] Rajeev Alur and Thomas A. Henzinger. Real-time logics: complexity and expressiveness. In LICS,

pages 390–401, June 1990. URL: https://ieeexplore.ieee.org/document/113764/?arnumber=
113764, doi:10.1109/LICS.1990.113764.

[2] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–203,
January 1994. doi:10.1145/174644.174651.

[3] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
[4] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of tptl and mtl.

In Proceedings of the 25th International Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS ’05, page 432–443, Berlin, Heidelberg, 2005. Springer-
Verlag. doi:10.1007/11590156_35.

[5] Laura Bozzelli, Aniello Murano, and Loredana Sorrentino. Alternating-time temporal logics with
linear past. Theoretical Computer Science, 813:199–217, April 2020. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0304397519307546, doi:10.1016/j.tcs.2019.11.028.

[6] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

[7] Marco Volpe. Labeled natural deduction for temporal logics. PhD thesis, University of Verona, Italy,
2010. URL: https://opac.bncf.firenze.sbn.it/bncf-prod/resource?uri=TD11087417.

3

https://ieeexplore.ieee.org/document/113764/?arnumber=113764
https://ieeexplore.ieee.org/document/113764/?arnumber=113764
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1145/174644.174651
https://doi.org/10.1007/11590156_35
https://linkinghub.elsevier.com/retrieve/pii/S0304397519307546
https://linkinghub.elsevier.com/retrieve/pii/S0304397519307546
https://doi.org/10.1016/j.tcs.2019.11.028
https://doi.org/10.1109/SFCS.1977.32
https://opac.bncf.firenze.sbn.it/bncf-prod/resource?uri=TD11087417

