
Type-safe Bidirectional Channels in Idris 2

Guillaume Allais1

University of Strathclyde, Glasgow, Scotland, United Kingdom
guillaume.allais@strath.ac.uk

Introduction

Session types are a channel typing discipline ensuring that the communication patterns of
concurrent programs abide by a shared protocol. A meta-theoretical analysis of the typing
discipline can then ensure that the communicating processes will have good properties e.g.
deadlock-freedom. We show how to use a linear dependently typed programming language to
define a direct and type-safe embedding of expressive binary session types.

Expressive Session Types

p, q, . . . ::= x | µx. p | νx. p
| !A. p | ?A. p | end
| p& q | p⊕ q

init

eval

more

stop

false

true

recv N

send N

ready

done! greet

adder

false

true send S

send N

Our session types are closed under nested smallest (µx. ·)
and largest (νx. ·) fixpoints, typed sends (!A. ·) and
receives (?A. ·), the empty protocol (end) and binary
branch offerings (·& ·) and selections (· ⊕ ·).

The session νi. ((!N. end)&(?N. i)) types a server for
the ‘adder’ protocol represented as a finite state machine
on the right hand side. The server accepts an arbitrar-
ily long sequence of natural numbers (sent by a client
repeatedly selecting the more = (?N. x) branch) before
sending back their sum as a single number (when the eval
= (!N. end) branch is selected) and terminating. The en-
coding of the server’s type uses a largest fixpoint because
the client is the one responsible for ensuring the process
terminates by eventually selecting the eval branch.

We can use nested fixpoint to describe more com-
plex protocols. For instance, the session described by
νr. (end&(!S. νi. ((!N. r)&(?N. i))))) informally corre-
sponds to the finite state machine shown on the right
hand side. It types a server repeatedly offering to han-
dle the adder protocol described above after greeting the
user with a string. We replaced adder’s end with r to let
the protocol loop back to the ‘ready’ state once the adder
is done (in the state machine, that corresponds to merg-
ing ‘stop’ and ‘ready’ hence the bottom ‘send N’-labeled
arrow from the ‘adder’ sub-machine back to ‘ready’).

Type-safe Implementation

Pairs of Unityped Channels We represent a bidirectional channel parametrised by a session
type as a pair of unityped unidirectional channels. The key idea behind this safe implementation
is to collect all the received (respectively sent) types used in a protocol and to manufacture
a big sum type in which we can inject all of the received (respectively sent) values. Because

Type-safe Bidirectional Channels in Idris 2 Guillaume Allais

the received types of a protocol are equal to the sent types of its dual (and vice-versa), we can
prove that the directed channels of two communicating parties are indeed type-aligned. The
definition of this sum type is a type safe realisation of Kiselyov and Sabry’s open union type [5]
using the encoding of scope-safe De Bruijn indices [4] introduced by Brady in Idris 2’s core [3].
We include its definition below: given a list ts of values of type a and a decoding function
elt turning such values into types, (UnionT elt ts) defines a union type. Its one constructor
named Element takes a natural number k functioning as a tag, a proof of type (AtIndex t

ts k) that the value t is present at index k in ts and injects a value of type (elt t) into the
union. By picking elt to be the identity function, we recover the usual notion of tagged union
of types.

data UnionT : (elt : a -> Type) -> (ts : List a) -> Type where

Element : (k : Nat) -> (0 _ : AtIndex t ts k) -> elt t -> UnionT elt ts

Note that the proof of type (AtIndex t ts k) is marked as erased through the use of the
0 quantity which means this datatype compiles down to a pair of a GMP-style Integer (the
optimised runtime representation of the tag of type Nat) and a value of the appropriate type.
This gives us an encoding that has constant time injections and partial projections (via an
equality check on the Nat tag) in and out of the big sum type.

Dealing with Changing Sessions The session type, by design, changes after each commu-
nication but the big sum types used when communicating across the unityped channels need
to stay the same. Our solution is to record an offset remembering where we currently are in
the protocol and thus allowing us to keep injecting values into the initial shared sum types.
Our offsets are proven correct using a gadget that can be understood as a cut down version of
McBride’s one hole contexts [8]. Instead of recording the full path followed by our programs in
the finite state machine describing the protocol, we merely record a de-looped version.

Types of the Primitives We include code snippets showing the types of the primitives
dealing with communications. Note that Idris 2’s funny arrow (-@) denotes a linear function
space, and consequently all of these primitives are linear in the channel they take as an input
(ensuring it cannot be reused after the protocol has been stepped) and systematically return,
wrapped in a linear IO monad called IO1, a channel indexed by the updated protocol. First,
send and recv, the primitives dealing with sending arbitrary values back and forth. send takes
an argument of type ty while recv returns one as the Result of the communication.

send : Channel (Send ty s) e -@ (ty -> IO1 (Channel s e))

recv : Channel (Recv ty s) e -@ IO1 (Res ty (\ _ => Channel s e))

Second, offer and select, the primitives dealing with branching. Both involve a choice in the
form of a Bool named b that is used to compute the next channel state. offer gets it from
the other thread as a Result of some communication while select requires the caller to pass it
and will forward the decision to the other party.

offer : Channel (Offer s1 s2) e -@

IO1 (Res Bool (\ b => ifThenElse b (Channel s1 e) (Channel s2 e)))

select : Channel (Select s1 s2) e -@

((b : Bool) -> IO1 (ifThenElse b (Channel s1 e) (Channel s2 e)))

2

Type-safe Bidirectional Channels in Idris 2 Guillaume Allais

Third, unroll and roll, the primitives dealing with the iso-recursive nature of our (co)inductive
protocols. The types of these primitives reveal the role of Channel’s second parameter: it is
a stack of open session types corresponding to the bodies of the nested fixpoints encountered
during execution. unroll opens a fixpoint and thus pushes a new entry onto the stack e while
roll does the opposite.

unroll : Channel (Fix nm s) e -@ IO1 (Channel s (s :: e))

roll : Channel s (s :: e) -@ IO1 (Channel (Fix nm s) e)

Last but not least, rec steps a channel that has reached a recursive call to a fixpoint by looking
up the open session and environment associated to the specified position in the stack and
reinstating them.

rec : {pos : _} -> Channel (Rec pos) e -@

IO1 (Channel (Fix nm (SessionAt pos e)) (EnvAt pos e))

Example Server Omitting the somewhat horrifying types, we include the implementation of
the server repeatedly offering to greet the user and execute the adder protocol that we sketched
earlier. We use Idris 2’s named argument syntax to explicitly pass the name nm to the unroll
and rec calls in order to clarify what step of the protocol is being reached.

server id ch = do

ch <- unroll {nm = Nu "ready"} ch

b # ch <- offer ch

if b then close ch else do

let msg = "Hello n°\{show id}!"
ch <- send ch msg

ch <- adder 0 ch

server (1 + id) ch

adder acc ch = do

ch <- unroll {nm = Nu "adder"} ch

b # ch <- offer ch

if b then do

ch <- send ch acc

rec {nm = Nu "ready"} ch

else do

(n # ch) <- recv ch

ch <- rec {nm = Nu "adder"} ch

adder (acc + n) ch

On the left-hand side we are acting as a server parametrised by a client id number. We
first unroll the largest fixpoint corresponding to the ‘ready’ state repeatedly offering the adder
protocol, and wait for the client to choose one of the branches we offer. If they are done we
close the channel and terminate, otherwise we send a greeting, call the adder routine, and
eventually continue acting as the server with an incremented id number.

On the right-hand side we are acting as the adder parametrised by an accumulator acc.
We unroll the largest fixpoint corresponding to the ‘adder’ protocol and offer the client a
choice between getting the running total or sending us more numbers. If they are done, we
send back the value in the accumulator and, having reached a Rec variable in the protocol, use
rec to jump back to the ‘ready’ state. Otherwise we recv an additional number, add it to the
accumulator, use rec to jump back to the ‘adder’ state and continue acting as the adder.

Limitations and Future Work

Encoding Uniqueness via Linear Types Unlike Brady’s prior work in Idris 1 [2], we are
using Idris 2 which does not currently have uniqueness types. We are forced to use the linearity
granted to us by Quantitative Type Theory (QTT) [9, 1] to emulate uniquess via a library-wide

3

Type-safe Bidirectional Channels in Idris 2 Guillaume Allais

invariant. This adds a degree of noise and trust to the implementation. We would ideally want
a host system combining both linearity and uniqueness to benefit from enhanced expressivity
and efficiency as described by Marshall, Vollmer, and Orchard [7].

Small Runtime Overhead In the current version of our library, we compute a handful of
key offset values by induction over the protocol. Correspondingly the protocol is not marked as
erased anymore and, if compilation does not specialise the relevant combinators agressively, then
we may very well be evaluating these relatively small computations at runtime. As far as we
understand, directly adding typed staging to Idris 2 through the use of a two-level type theory
à la Kovács [6] would not be enough to solve our issue: for typing purposes, the protocol does
need to persist through staging. But it should be possible to move it from QTT’s unrestricted
to its erased modality.

Ergonomics We found writing the types of inner loops of programs with non-trivial commu-
nication patterns to be tedious as they expose quite a lot of the powerful but noisy encoding of
syntaxes with binding we use. Figuring out a more user-friendly surface syntax for our protocols
is left as future work.

Totality Checking Our lightweight embedding does distinguish smallest and largest fixpoints
but Idris 2’s productivity checker does not currently take advantage of the knowledge that the
user is making steady progress in a potentially infinitely repeating protocol (νx. P) to see that
a program is total. Experiments suggest we may be able to introduce a lightweight encoding
of a Nakano-style modality [10] for guarded programming to let the user justify that their
co-recursive calls are all justified by regular progress.

References

[1] Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.

[2] Edwin C. Brady. Type-driven development of concurrent communicating systems. Comput. Sci.,
18(3), 2017.

[3] Edwin C. Brady. Idris 2: Quantitative type theory in practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming, ECOOP 2021,
July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages 9:1–9:26.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[4] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972.

[5] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to monad
transformers. In Chung-chieh Shan, editor, Proceedings of the 2013 ACM SIGPLAN Symposium
on Haskell, Boston, MA, USA, September 23-24, 2013, pages 59–70. ACM, 2013.

[6] András Kovács. Staged compilation with two-level type theory. Proc. ACM Program. Lang.,
6(ICFP):540–569, 2022.

[7] Danielle Marshall, Michael Vollmer, and Dominic Orchard. Linearity and uniqueness: An entente
cordiale. In Ilya Sergey, editor, Programming Languages and Systems - 31st European Symposium
on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, volume 13240
of Lecture Notes in Computer Science, pages 346–375. Springer, 2022.

4

Type-safe Bidirectional Channels in Idris 2 Guillaume Allais

[8] Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting data structures. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 287–295. ACM, 2008.

[9] Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder, and
Donald Sannella, editors, A List of Successes That Can Change the World - Essays Dedicated to
Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes in Computer
Science, pages 207–233. Springer, 2016.

[10] Hiroshi Nakano. A modality for recursion. In 15th Annual IEEE Symposium on Logic in Computer
Science, Santa Barbara, California, USA, June 26-29, 2000, pages 255–266. IEEE Computer
Society, 2000.

5

