
Extending Sort Polymorphism with Elimination

Constraints

Tomás Dı́az1, Johann Rosain2, Matthieu Sozeau2, Nicolas Tabareau2, and
Théo Winterhalter3

1 University of Chile, Chile
2 LS2N & Inria de l’Université de Rennes,

Nantes, France
3 LMF & Inria Saclay,

Saclay, France

Sort Polymorphism [1] provides a new axis for parameterizing definitions in dependent type
theory by sorts, extending universe polymorphism which allows parameterization by universe
levels and, in cumulative systems, universe constraints modeling predicative universe inclusion.
In this talk, we will present a refinement of sort polymorphism with a different kind of con-
straints to model the elimination rules from one sort to another. These constraints can model
the existing sort elimination constraints used in the Rocq Prover to specify the interactions
between: an impredicative, definitionally proof-irrelevant SProp sort, an impredicative Prop sort
with so-called “(sub)singleton” elimination, and a predicative and cumulative Type hierarchy.
Using bounded quantification on sorts with elimination constraints, we can derive a single,
most-general induction principle on each inductive type, reducing code duplication, and give
an elegant treatment to primitive record types and their projections. We will demonstrate
the usefulness of this generalization, on existing sorts and new ones. During the talk, we will
discuss the state of the implementation in the Rocq Prover and its formal verification in the
MetaRocq project.

The Need for Sort Elimination Constraints

Sort polymorphism [1] has been integrated in the Rocq Prover since version 8.19 [4]; see the
Reference Manual for an introduction. It basically provides a way to parameterize over sort
quality variables in addition to universe level variables in definitions. A sort is then thought
of as a pair of a sort quality and a universe level. This enables the definition of generic con-
nectives like the unit type/true proposition, the empty type/absurd proposition, the Cartesian
product/conjunction and sums/disjunctions, as unique inductive types, interpretable in various
sorts. For example sums can be defined as:

Inductive sum@{sl sr s | ul ur} (A : U@{sl | ul}) (B : U@{sr | ur}) : U@{s | max(ul,ur)} :=
| inl : A → sum A B

| inr : B → sum A B

Herein, sum quantifies over sort qualities sl and sr for its parameters, and over sort s for its
return type. It can thus be instantiated to the usual sum type A + B by using Type everywhere,
to disjunction A ∨ B in either Prop or SProp, or to a combination of those, mixing propositional
and computational content:

Definition decidable@{i} (A : Prop) : Type@{i} := sum@{Prop Prop Type | 0 i} A (¬ A).
Definition type_excluded_middle@{i} (A : Type@{i}) : Prop := sum@{Type Type Prop | i i 0} A (¬ A).

Sort polymorphism introduces a simple rule to determine which eliminations are allowed for
a sort polymorphic inductive type: by default only elimination for motives in the same sort

https://metacoq.github.io
https://coq.inria.fr/doc/v8.19/refman/addendum/universe-polymorphism.html#sort-polymorphism

Sort Polymorphism with Elimination Constraints Dı́az, Rosain, Sozeau, Tabareau and Winterhalter

quality as the inductive’s type quality is allowed. For sums, this means the following constant
is derived:

sum_elim@{sl sr s| ul ur i} A B {P : sum A B → U@{s | i}} : (∀ a, P (inl a)) → (∀ b, P (inr b)) → ∀ s, P s.

This models in particular that type_excluded_middle A B may only be eliminated to Prop, re-
specting the elimination constraints of Rocq (Prop cannot be eliminated to Type except in the
particular case of singleton types). However, it sadly forbids elimination of A + B, which lives
in Type, into Prop or SProp, even though it is entirely sound: one can still explicitly define an
eliminator from A + B to Prop.

To remedy this situation, we propose to enable the definition of a single eliminator whose
instantiations are restricted depending on a set of sort elimination constraints. They are of the
form s → s′, meaning that inductive types in sort s can safely be eliminated to sort s′. This
leads to sum_elim below.

Definition sum_elim@{sl sr s s′ | ul ur u’ | s → s′} A B (P : sum@{sl sr s| ul ur} A B → U@{s′ | u’})
(fl : ∀ a, P (inl a)) (fr : ∀ b, P (inr b)) x : P x :=
match x with inl a ⇒ fl a | inr b ⇒ fr b end.

Theory

We propose to define the sort elimination relation, denoted → , as the reflexive and transitive
closure of a set of elimination constraints, defining a partial order. The motivations for such a
behavior are twofold: (i) it allows the user to define only the elimination constraints that are
strictly necessary, and (ii) it enables the checking mechanism to easily find inconsistencies, e.g.
in the case where the user wants a sort s such that SProp → s and s → Type.

Moreover, we postulate that giving an antisymmetric structure to this relation is sound,
and even quite helpful: having two sorts s and s′, such that s → s′ and s′ → s, means that the
same types (up to isomorphism) inhabit the two sorts: we do not actually want to differentiate
them.

These properties make elimination constraints akin to universe level constraints [3], and
allow us to reuse the same data-structure for both kinds of constraints: an acyclic graph.
One still has to be careful to add the ground elimination constraints Type → Prop → SProp,
something that was not needed for universe level constraints but which is necessary here to
forbid equating e.g. Prop and Type due to user-imposed elimination constraints.

Implementation

The implementation of elimination constraints inRocq was also the opportunity to refactor and
harmonize the internal handling of elimination. Indeed, previously, sort-quality-related logic
was scattered across multiple files, with ad-hoc implementations, duplication and an unclear
separation of concerns. For instance, some parts of the code used direct sort quality compar-
isons, while others used set membership checks or variables relevance to validate eliminations
between sorts. In addition, these were often mixed with orthogonal universe level checks.

To address this, we refactored the implementation into two dedicated modules: the existing
Sort module, responsible for basic sort quality manipulation, and a new quality elimination
constraint graph, which gathers elimination rules and ensures consistency through an acyclicity
check.

On top of that, we also cleaned-up the full elimination mechanism implemented in Rocq.
It is based on a finer-grained principle than the acyclicity check, and enables a more subtle
management of elimination on a match on an inductive I in sort s when the motive has sort s′.

2

Sort Polymorphism with Elimination Constraints Dı́az, Rosain, Sozeau, Tabareau and Winterhalter

The following table summarizes it: Here, by instantiating s by SProp, Prop or Type, it is clear that

#constructors(I) Elimination constraint between s and s′

0 s → SProp or s → s′

1 (sort(arg) → s for every arg and s → Prop) or s → s′

2 or more s → s′

one finds back the expected behavior: zero-constructor inductives in SProp/Prop/Type eliminate
to any sort, while singleton inductives in Prop and Type have no elimination restriction.

Nevertheless, a special case persists in the form of elimination in fixpoints, which is still
managed in an ad-hoc way: only the acyclicity check is used, together with a rule that al-
ways allows fixpoints on inductives in Prop. A useful instance of this occurs on fixpoints on
accessibility proofs Acc (when using its projector Acc_inv).

Verification

As our design is now stabilizing, we are aiming at a mechanized formal model of elimination
constraints and the new elimination checks along with sort polymorphism in the MetaRocq
framework [2], which currently only handles Prop and Type with (sub)singleton elimination.
While parameterizing definitions with sorts and (proof-irrelevant) elimination constraints should
be a straightforward extension of bounded universe polymorphism, adapting the definition and
formalization of erasure and its correctness proof will be an interesting challenge, we hope to
report on this by the time of the conference.

Acknowledgments We are thankful to Pierre-Marie Pédrot and Gaëtan Gilbert for insightful
discussions on the sort polymorphism and elimination restriction implementations in the Rocq
Prover.

3

Sort Polymorphism with Elimination Constraints Dı́az, Rosain, Sozeau, Tabareau and Winterhalter

References

[1] Josselin Poiret, Gaëtan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Matthieu Sozeau,
Nicolas Tabareau, and Éric Tanter. All Your Base Are Belong to Us: Sort Polymorphism
for Proof Assistants. Proc. ACM Program. Lang., 9(POPL):2253–2281, 2025.

[2] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Nielsen, Nicolas
Tabareau, and Théo Winterhalter. Correct and Complete Type Checking and Certified
Erasure for Coq, in Coq. J. ACM, 72(1), January 2025. ISSN 0004-5411.

[3] Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq. In Gerwin Klein
and Ruben Gamboa, editors, ITP 2014, volume 8558 of Lecture Notes in Computer Science,
pages 499–514. Springer, 2014.

[4] The Coq Development Team. The Coq Proof Assistant, version 8.19. June 2024.

4

https://doi.org/10.1145/3704912
https://doi.org/10.1145/3704912
https://doi.org/10.1145/3706056
https://doi.org/10.1145/3706056
http://dx.doi.org/10.1007/978-3-319-08970-6
https://doi.org/10.5281/zenodo.11551307

	References

