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We report our progress in developing an assembly language with fully dependent types to
support type-preserving compilation of dependent type theory, and thus improving the compi-
lation of existing systems which erase types at an early stage. In this abstract, we outline the
fundamental design principles of the language and present our encoding of it in Agda.1

A type-preserving compiler [8] transforms the source code into a strongly typed assembly
language with a series of typed compiler transformations, preserving types through all phases.
Many optimizations benefit from type information. With dependent types, type signatures can
contain code specifications and type-checking the assembly language verifies that the specifica-
tions are met, essentially implementing proof-carrying code [9].

Earlier attempts towards dependent assembly languages, such as Ritter’s categorical ab-
stract machine [10] and Winwood’s Singleton [11], are incompatible with recent advances in
dependently-typed transformations like CPS [3], ANF [6], closure conversion [2], and defunc-
tionalization [4]. A desirable target language should both accommodate fully dependent types
and be able to compile from the intermediate representations of previous transformations.

We propose a two-level design. The syntax of the typed assembly language consists of a set
of instructions of a stack machine (I) and a dependently typed calculus of specifications (e,A).

I ::= LIT c | APP | CLO n lab | POP | I ;I ′ | . . .
e, A ::= x | e e′ | lab {e1, . . . , en} | Πx:A.B | U | . . .

The type judgement for each instructionmodels the computation like an abstract interpreter,
in the form of Γ ⊢ I : σ → σ′. A stack σ is a list of specification terms. The judgement
states that instruction I transforms stack σ to σ′, similar to the conventional stack typing (e.g.
WebAssembly [1]), but it keeps track of the stack’s content instead of the types of the contents.
For example, the rule for pushing a literal constant c in our language is Γ ⊢ LIT c : σ → σ ::c.

Tracking stack contents is necessary to support fully dependent types (since computation
happens at type level), and separating specification from instructions avoids problems such as
the need to check equality of instruction sequences during type checking. Function applica-
tion, which is complicated by type dependency, is simply described by an application in the
specification calculus (shown at the left below, note that B does not appear in the specification).

Γ ⊢ e : Πx:A.B Γ ⊢ e′ : A
Γ ⊢ APP : σ ::e::e′ → σ ::e e′

lab(∆, x:A 7→ e : B) ∈ Γ Γ ⊢ e1, . . . , en : ∆

Γ ⊢ CLO n lab : σ ::e1 :: . . . ::en → σ ::lab {e1, . . . , en}
The specification language is a defunctionalized calculus, an intermediate representation

from dependently typed defunctionalization [4]. It has no lambda abstractions and no way to
create new functions. We can only create a closure of type Πx:A.B by paring a labelled code
lab (from a fixed set of labels, defined in the context Γ) with a list of terms e1, . . . , en (of
types ∆) instantiating the free variables in the code. In assembly, it is reflected by an operation
CLO n lab that takes the top n elements of the stack and forms a closure object with the label
lab on top of the stack, as shown in the judgement at the right above.

The specification calculus is shown to be consistent [4]. We need to prove type safety for
the assembly, in other words, that the typing rule’s abstract interpretation correctly models
runtime behaviour.

1See https://github.com/H-Yulong/ShallowStack.

https://github.com/H-Yulong/ShallowStack
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We are in the process of encoding the assembly language in Agda to formally verify its
meta-theory. The encoding is challenging: besides the classic problem of encoding dependent
type theory in itself, we also have to find a suitable representation for labelled defunctionalized
code.

We use shallow embedding [7, 5] to encode syntax, which coincides the definitional equality
of the object theory and the host language to avoid the problem of having tedious equality
conversions (known as “transport hell”) — every equation in the object theory is trivially
resolved to refl in the host.

Defunctionalization is trickier. As we have previously observed [4], the usual method of
representing each function label with a constructor of a GADT fails to extend to inductive
families, because it requires the data type to be indexed by itself (hence failing positivity
checks), and the interpretation function for code labels is not obviously terminating.2

We have found a workaround for the positivity checks to define an indexed family Pi over the
shallow-embedded syntax for defunctionalized code and an interpretation function interp that
passes Agda’s termination checker, and we will present the techniques used in the talk. Below
shows the (simplified) type signatures of Pi and interp, and code labels for two functions.3

data Pi : (id : N) (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Set where

CNat : Pi 0 · Nat U · ⊢ λx:Nat.Nat
App : Pi 0 (·, U, Π 0 U, Π 1 (app 1 0)) 2 (app 2 0) A : U,B : ΠA:U.U, f : Πx:A.B ⊢ λx:A.f x

interp : Pi id Γ A B → Tm (Γ , A) B

The intrinsic typing rules of the stack machine are straightforward to express with shallow-
embedded syntax and defunctionalization. The rules for LIT and APP are exactly like their
typing judgements. Instruction CLO n lab takes an instance argument pf which proves that the
first n items on the stack have types ∆, and Agda can find this proof automatically. We also
have rules for creating and eliminating base types such as booleans and natural numbers.

data Instr (Γ : Con) : Stack Γ m → Stack Γ n → Set where

LIT : (n : N) → Instr Γ σ (σ :: nat n)

APP : {f : Tm Γ (Π A B)} {a : Tm Γ A} → Instr Γ (σ :: f :: a) (σ :: app f a)

CLO : (n : N)(lab : Pi id ∆ A B)

{{ pf : Γ ⊢ (take n σ) of ∆ }} → Instr Γ (drop n σ :: lab [[ pf ]]s)

Here is a type-checked example of an instruction sequence that computes 5 via App and Add

(which corresponds to λy :Nat.x+ y). Firstly, it creates a closure for App, instantiating the free
variables to Nat, CNat{}, and Add{2}, then applies the closure to 3, eventually computing 2+3.
The assembly code type-checks because 2 + 3 = 5, which Agda can realize without proofs.

code : Is · · (· :: nat 5)

code = TLIT Nat

>> CLO 0 CNat

>> LIT 2

>> CLO 1 Add

>> CLO 3 App

>> LIT 3

>> APP

>> RET

Abstract stack content

Nat

Nat :: CNat{}

Nat :: CNat{} :: 2

Nat :: CNat{} :: Add{2}

App{Nat, CNat{}, Add{2}}

App{Nat, CNat{}, Add{2}} :: 3

5

5

Our dependent assembly language uses a two-level design that leaves the machine’s model
simple, but maintains a rich and expressive type system to accommodate type-preserving com-
pilation. We plan to use this Agda formalization to investigate type erasure, assembly code
generation and optimization, and incorporating quantitative type theory in the future.

2We use type-in-type in this abstract and omitted a problem with universe levels for simplicity.
3We use de-Bruijn indices (bold numbers) for variables.
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