
Internal Proofs of Strong Normalization

Cody Roux

AWS

Strong normalization (henceforth SN) is a useful property for a type theory to have. Among
other things, it usually provides

1. consistency of the system under scrutiny

2. the existence of canonical forms for every term

3. decidability of type checking

of course, this is not the only way to provide such guarantees. For consistency, any model will
suffice, and decidability of type checking, while quite nice in theory, is generally accompanied
by potential runtimes that strain the meaning of the word. Canonicity can also be achieved
nowadays via more subtle methods, like normalization-by-evaluation (NbE), which may be
available in cases where SN may not hold, e.g. in the presence of certain η-laws.

However, SN does have the advantage of being straightforward to state, and very effective,
leaving to the implementer the choice of normalization strategy, which is mostly delegated to
the meta-theory in the case of NbE. We also regard the proof of normalization to have a certain
combinatorial charm, with certain questions around it, notably the Barendregt-Geuvers-Klop
conjecture (see, e.g. Barthe & al [2]), being still open.

Most proofs of normalization involve a certain kind of model construction, the so-called
logical relations model. This is unsurprising based on point 1 above, for Gödelian reasons, as
the proof SN ⇒ consistency can often be carried out in a very weak system (and therefore
the ”tough bit” must be in the proof of normalization). This construction feels very similar to
the classic realizability interpretation t ⊩ P of Kleene which relates certain kinds of program
encodings t to propositions P , and indeed may be seen as a generalization of it.

It is a classical fact that, in Heyting arithmetic HA, any theorem P has a realizer t, and
that HA ”knows” that it is a realizer:

HA ⊢ P ⇒ HA ⊢ ⌜t ⊩ P⌝

This is nice, but the richness of HA allows for a lot of mess in this proof, e.g. there may
be some instances of induction required to carry out the second proof that are not obviously
related to the first, to deal with encoding issues.

We show that this is not necessarily the case, by working in a setting potentially much
poorer than HA, at least in terms of expressiveness, and adding only the requisite tools to
express and prove the strong normalization theorem (for a given well-typed term) without any
additional meta-theoretic tools.

It’s worth noting that such a proof translation will not really guarantee normalization,
of course: we need an additional fact, namely existence of normal forms. This may seem
redundant, but it is worth noting that existence of normal forms is actually weaker than strong
normalization! In essence our strategy is to bootstrap this stronger property from the weaker
one.

Our proof is quite similar to that of Berger & al [3] with the main difference being that
we aim to identify exactly which type theoretic mechanisms are required in the target logic,

Internal Proofs of Strong Normalization C. Roux

with the aim of identifying a natural map from theories to theories which can encode their own
normalization proof.

To translate the proof, move from a source type theory T to a richer theory T̂ which can
express facts about syntax.

We will need a new sort which we call Syn. This sort will contain a number of types (Term,
Var, . . .), which themselves contain symbols for terms, variables, substitutions etc. as well as
constructors for the normalization predicates, SN and neutral terms NE essential to the proof.
We do not need eliminators for any of these types, since induction shall (and must!) remain at
the meta-level.

We further extend the target type systems with a dependent product Πx : T.U in the case
that T : Syn is a syntax form and U is a well typed type in the original system, e.g. has type
Type or Prop. The resulting product is in the sort of T , allowing us to chain such products.
We note here that the fact that SN and NE eliminate into that sort as well requires us to have
at least a non-dependent function type of that sort, that is, if T, U : Type then T → U : Type.

Finally we extend the normal conversion rule of the theory, by adding rewrite rules over the
inhabitants of Syn to encode substitution, which can be taken, e.g. to be the σ-rules of Abadi
& al [1]. However, we do not add a β-rule for syntactic terms. Intuitively, these rules allow us
to reason modulo substitutions, as they are confluent and terminating in the absence of β.

Now we can translate term derivations in the source theory into derivations of computability
in the target theory. The idea is to translate each type T : Type (or any other sort) into a
predicate [[T]] : Term → Type, and prove, by (meta-)induction on the type derivation,

Γ ⊢T t : T ⇒ [[Γ]] ⊢T̂ (|t|) : [[T]] ⌜to⌝

where ⌜to⌝ is the open syntactic form of t, containing variables of type Term appearing in
[[Γ]] which correspond to the original t variables. Predictably, the translation of non-dependent
arrow types will be the ”realizability arrow”

[[A → B]] := λt : Term.Πu : Term.[[A]] u → [[B]] (t u)

but type variables X will need their own variable predicates X , along with additional con-
structors

ne : Πt : Term.NE t → X t

sn : Πt : Term.X t → SN t

wh : Πt u t′ : Term.SN u → WHExp t t′ u → X t′ → X t

The predicate WHExp expresses that t is the weak head expansion of t′ by u, that is, t =
(λx.t1) u t2 . . . tn and t′ = t1[u/x] t2 . . . tn.

These conditions are exactly the Girard conditions (at least, the so-called ”saturated sets”
form), and sadly, we must add with them some common sense reductions. Thankfully these
conversions do not interact with β-reductions, and so do not threaten weak normalization.

Finally, from there we build a proof G ⊢ snt : SN ⌜t⌝ for a well chosen G (closely related to
Γ), a surprisingly non-trivial task in the absence of induction over syntax! This time, ⌜t⌝ is the
actual syntax of t, variables and all. From there we may conclude, if the original type theory
admits normal forms, that t is indeed strongly normalizing. This relies on a simple induction
on normal forms of terms of type SN t, along with the following meta-theorem:

Theorem 1. If T admits normal forms, so does T̂ .

2

Internal Proofs of Strong Normalization C. Roux

The feasibility of our translation, and of course, the correctness of our final conclusion (that t
is strongly normalizing) will depend on exactly which constructors we give for SN, and whether
they are true in the meta-theory. Here, again, we proceed similarly to Berger & al [3] and add
the (folklore) inductive characterizations of strong normalization using weak-head expansions,
and an additional fact: SN t holds if SN (t x) holds for any variable x.

We give, as illustration, a representation of the normal form of the proof of SN for (λx.x) y,
which, while not eminently surprising, may illustrate the strategy.

A : Term → ∗,

neA : Πt : Term.NE t → A t, snA : Πt : Term.A t → SN t,

whA : Πt t′ u.WHExp t t′ u → SN u → A t′ → A t,

⊢

whSN ⌜(λx.x) y⌝ ⌜y⌝ ⌜y⌝ (neSN (neVar⌜y⌝)) (neSN (neVar⌜y⌝)) : SN ⌜(λx.x) y⌝

here whSN, neSN, neVar etc. are part of the constructors for the type families SN and NE, and
as a result the normalization of the top-level term can simply be read off of the proof, and the
occurrences of whA were reduced away as the semantic variable y was replaced by its syntactic
counterpart ⌜y⌝.

As a conclusion, we note that the idea of conducting a logical relations argument within
its own type theory is not new; our work is inspired from Bernardy & Lasson [4], where they
introduce, for a given type theory, an enriched theory capable of expressing logical relations
between the terms of the original theory.

There are many similar such categorical investigations (see e.g. Bocquet & al [5, 6]), though
the author is at the moment incapable of determining the exact relationship with this more
syntactic argument. The main novelty here is to carry out the combinatorial argument for
normalization internally, including the last step of ”extracting” the normal form.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional
Programming, 1(4):375–416, 1991.

[2] Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. Weak normalization implies strong
normalization in a class of non-dependent pure type systems. Theoretical Computer Science,
269(1):317–361, 2001.

[3] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program extraction
from normalization proofs. Studia Logica: An International Journal for Symbolic Logic, 82(1):25–49,
2006.

[4] Jean-Philippe Bernardy and Marc Lasson. Realizability and parametricity in pure type systems.
In Martin Hofmann, editor, Foundations of Software Science and Computational Structures, pages
108–122, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[5] Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the metatheory of type theory, internal
sconing is enough, 2023.

[6] Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical
Type Theory. PhD thesis, Carnegie Mellon University, 2022.

3

	References

