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Overview. We investigate connections between cyclic proof theory and recursive functions
defined by (co)pattern matching. Cyclic proof systems replace (co)induction rules with sound
forms of circular reasoning. For example, by adding a cycle between the green nodes we get a
cyclic proof:

+0
0 + 0 = 0

+suc
0 + sucx′ = suc(0 + x′)

0 + x′ = x′
congsuc

suc(0 + x′) = sucx′
trans

0 + sucx′ = sucx′
casex,

0 + x = x

This proof is sound because the variable x is decreased to its predecessor x′ before we cycle
back, and so it represents a proof by infinite descent. The advantage of these systems lies
in proof search: to apply (co)induction we need to guess the right (co)induction hypothesis,
whereas with cycles we can start generating the proof until our current goal matches one that we
have seen before. Under the Curry-Howard correspondence, such cycles correspond to recursive
function calls, while the soundness condition ensure that the function always terminates:

cyclic proof recursive function
fixpoint formula (co)inductive type

cycle recursive function call
soundness condition termination checking

In this way, recursive functions defined with dependent (co)pattern matching can be seen as
a proof-relevant and dependent generalisation of cyclic proofs. In addition, there is a corre-
spondence between type-based termination checking, in the form of sized-types, and ordinal
approximations of fixpoint formulas. Our goal is to explain these correspondences and to use
these connections to extend type theoretic conservativity results.

Proof Assistants. Proof assistants like Agda, Dedukti, Rocq, and Lean allow the user to
define functions using recursive calls. Which functions are accepted depends on a unification
algorithm, and this determines in particular whether we can prove axiom K. For both cases —
with and without K — we have conservativity results: we can already implement these functions
using the primitive rules (turn these cyclic proofs into (co)inductive proofs) [GMM06, CDP16,
Thi20]. Such a reduction is needed to show that any function accepted by the proof assistant
has an interpretation in any model of the type theory. However, these conservativity results
only cover ‘simple cycles’: there is one inductive input that is decreased in every recursive call,
or one coinductive output that is productive before every recursive call. Some proof assistants,
like Agda and Dedukti, allow more complex interleaving of recursive calls. To implement
these functions using primitive (co)induction rules, we need to apply induction and coinduction
multiple times, and often in a specific order. For example, for the Ackermann function we need
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a lexicographical order on inputs:

ack : N → N → N,

ackmn := casem

{
0 7→ sucn,

sucm′ 7→ casen

{
0 7→ ackm′ 1,

sucn′ 7→ ackm′ (ack (sucm′)n′).

While the following example mixes induction and coinduction:

complog : N → N → StreamN,

complog t r := case t

 0 7→ record

{
head 7→ r,

tail 7→ complog r r,

suc t′ 7→ complog t′ (r!).

And this one uses induction on both inputs simultaneously:

aggr : N → N → N,

aggrmn := casem

{
0 7→ 0,

sucm′ 7→ casen

{
0 7→ suc 0,

sucn′ 7→ aggrm′ m′ + aggr n′ n′.

In addition, there are more complicated examples using dependent types and mutually recursive
functions. The general soundness condition is the following: for any infinite sequence of function
calls that might occur, there should eventually be an input/output that we can track, where
progress is made infinitely often. This can either be an inductive input that is decreased
infinitely often, or a coinductive output that is productive infinitely often. This is known as
the size-change termination principle [LJBA01, Wah07], which can be implemented both with
and without sized-types. Although this problem refers to infinite sequences, it can be shown
to be PSPACE-complete, and can be solved using ω-automata or call graphs. This principle
ensures termination, but it is no longer clear how the accepted functions can be implemented
using primitive (co)induction rules.

Cyclic proofs. A similar problem has been studied in the cyclic proof theory literature
[SD03b, CD23]. Here the setting is non-dependent and proof-irrelevant, but we see the same
complex interleaving of cycles. Instead of tracing inputs and outputs for functions, we are
tracing formulas through an infinite sequent calculus derivation, which is obtained by unfolding
the cyclic derivation. We then have a similar PSPACE-complete soundness condition: for every
infinite branch of the derivation, we can eventually trace a fixpoint formula that makes progress
infinitely often [SD03a]. By a well-known strategy from cyclic proof theory, one can turn this
global soundness condition into a local one by adding so-called annotations to formulas [Sti14,
Jun10, DKMV23, LW24]. These annotations are based on Safra’s determinisation construction
[Saf88] for ω-automata.

Outlook. Inspired by the proof-theoretic picture, we hope to extend the current type theoretic
conservativity results by allowing more complex interleaving function calls. Our hope is that
by annotating the call graph, we can move from a global to a local soundness condition. These
annotations then inform us on the order of (co)induction, which in turn should allow us to
turn cyclic proofs into inductive proofs, following a similar approach to Sprenger and Dam
[SD03b].
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