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It is well-known that all computable functions are continuous. This result has been enshrined
in various kinds of Brouwerian intuitionistic mathematics through flavours of bar recursion [19]
with varying degrees of compatibility with classical mathematics. In type theory, continuity is
usually phrased as a property of functions φ : (N → A) → B for suitable types A and B, and
boils down to the fact that such a function can only depend on a finite prefix of any argument
α : N → A. In this abstract, we will care about the case A := B, for which N → B is known
as the Cantor space, and B is some hereditarily positive type, i.e. purely first-order inductive,
typically B := N.

Streams of booleans are incomprehensible beings. Infinite processions crawling around the
stars like never-ending snakes, they stay in the shadows, lurking in the outskirts of computa-
tion. For cardinality reasons, most of them cannot even be named. Ungraspable, continuity
of all functionals over the Cantor space means that they will forever stay alien to our human
understanding. No function can actually witness their horror unheeded. In Cantor space, no
one can hear you stream.

As anecdotal as it may seem, continuity and its alter-egos have extremely strong conse-
quences, at least when given internally. For instance, bar recursion is enough to realize the
principle known as double-negation shift, and thus to reach the logical strength of second-order
arithmetic in a system that is otherwise simply-typed [5]. This is one of the reasons for the
importance of such principles in the eyes of the Brouwerian crowd, who used them to develop
constructive analysis. Continuity is furthermore tightly related to choice principles [6].

There has been a revival around this topic in recent years. In addition to the already men-
tioned papers, Escardó gave a proof that System T enjoys continuity in an external way [13]
using a kind of side-effect reminiscent of interaction-trees [20]. Baillon et al. gave a generaliza-
tion of this proof to Baclofen Type Theory, a variant of MLTT with a restricted form of large
elimination [4]. Escardó and Xu also studied more semantical approaches to the same kinds of
questions [21, 12]. From the community of PER semantics, there was an important series of
papers by several authors including Rahli in the intersection of all of them [18, 16, 17, 7, 8, 9]
considering various forms of continuity in realizability models of MLTT.

The work we describe here can be seen as a variant on the models considered in the latter
trend. It lies in the continuity of the first author’s PhD thesis [3] and can be seen as a mechanized
refinement of a previous work by Coquand and Jaber [11]. We prove external continuity of
functionals over the Cantor space in MLTT, i.e. terms of type ⊢ M : (N → B) → N by
embedding them into a larger type theory MLTT𭟋 which is basically MLTT where terms are
extended with a single abstract oracle α : N → B and contexts with partial knowledge about
the oracle

Γ := . . . | Γ, α(n) 7→ b n ∈ N, b ∈ B

where N := {0, 1, . . .} and B := {tt, ff} stand respectively for integer and boolean literals.
Such a hypothesis intuitively means that the value of α at n is known to be b. This partial
knowledge can be reflected equationally through the conversion rule below.

α(n) 7→ b ∈ Γ

Γ ⊢ α n ≡ b : B
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Moreover, all kinds of judgements of MLTT𭟋 are extended with a built-in splitting principle
that allows accumulating knowledge about the oracle. For instance, for term typing we have

Γ, α(n) 7→ tt ⊢ M : A Γ, α(n) 7→ ff ⊢ M : A α(n) 7→ − ̸∈ Γ

Γ ⊢ M : A

It is somewhat immediate to the astute reader that the intended model for this theory is
some kind of sheaf model [15], i.e. a proof-relevant version of Beth semantics. Basing ourselves
upon the logrel-coq development [2], we prove in Coq that MLTT𭟋 enjoys a form of canonicity
and strong normalization using a logical relation model similar to the now famous NbE model
of Abel et al. [1]. While our syntax is essentially the same as the one from the Coquand-Jaber
note [11], we prove a somewhat more general result. Our model is indeed a kind of realizability,
i.e. based on reduction instead of evaluation in the metatheory. As a result, rather than just
equational canonicity, we also prove that well-typed terms actually reduce to a normal form.
As is usual in sheaf models, canonicity is weakened to some kind of decision tree, e.g. for N
it implies that for every closed ⊢ M : N there is a finite splitting tree such that M reduces
to an integer on each branch. This is a generalization of the trivial case of canonicity under
consistent, purely negative axioms [10].

Furthermore, our model features a first-class handling of variables, so it scales to open terms.
This is achieved by the standard trick ensuring that all relations are presheaves over contexts
and that neutrals are always realizers. While this technique is well-known, the resulting property
offers a stark contrast with the models of Rahli et al., such as TT2

C [9], where only closed terms
are manipulated in the semantics. The latter hardwires some logical consequences in the internal
language, such as equality reflection and, in particular, function extensionality. Unfortunately,
apart from not being provable in MLTT and making type-checking undecidable, extensionality
is often at odds with strong continuity principles. This forces some of the strongest continuity
principles to be made innocuous by squashing them, thus rendering them computationally
irrelevant.

Just like a proper handling of variables makes the notion of neutrals paramount, our work
highlights the importance of their sheaf equivalent, that we call α-neutrals. They are basically
the equivalent of neutrals, where the head is not a variable but α n with α(n) 7→ − ̸∈ Γ. Like
mere neutrals, they block computation but contrary to them, an α-neutral can be unlocked by a
weakening adding α(n) 7→ b. Indeed, extending contexts can increase computational knowledge
about the oracle. The resulting logical relation also smells very strongly of call-by-push-value
(CBPV) [14] and more generally of semantics of effectful languages. As a matter of fact, the
relation is split between a strong and a weak variant. The former corresponds to pure head
values that are not allowed to split, while the latter corresponds to effectful terms that require
splitting to be well-typed.

We will give insights about this model and describe some of the ongoing work on the for-
malization and the expected results to come.
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