
A Generalized Logical Framework

András Kovács1 and Christian Sattler2

Chalmers University of Technology & University of Gothenburg, Sweden
1 andrask@chalmers.se 2 sattler@chalmers.se

Logical frameworks (LFs [3]) and the closely related two-level type theories (2LTTs [1]) let
us work in a mixed syntax of a metatheory and a chosen object theory. Here, we have a second-
order view on the object theory, where contexts, variables and substitutions are implicit, and
binders are represented as meta-level functions. There are some well-known limitations to LFs.
First, we have to pick a model of the object theory externally. Second, since we only have a
second-order view on that model, many constructions cannot be expressed; for example, the
induction principle for the syntax of an object theory requires a notion of first-order model,
where contexts and substitutions are explicit. Various ways have been described to make logical
frameworks more expressive by extending them with modalities (e.g. [9, 4, 8, 7]). In the current
work we describe an LF with the following features:

• We can work with multiple models of multiple object theories at the same time. By
“theory” we mean a second-order generalized algebraic theory (SOGAT [10, 6]); this
includes all type theories and programming languages that only use structural binders.

• We have both an “external” first-order view and an “internal” second-order view on each
model, and we can freely switch between perspectives. All models of object theories are
defined internally in the LF.

• The LF is fully structural as a type theory; no substructural modalities are used.

The Generalized Logical Framework (GLF). The basic structure is as follows.

• We have a universe U closed under the type formers of extensional type theory.

• We have Base : U, 1 : Base and PSh : Base → U, such that each PShi is a universe
that supports ETT. We have cumulativity: PShi ⊆ U. We can only eliminate from PShi
to PShi. Semantically, each PShi is a universe of presheaves over some base category
represented by i. The terminal category is 1.

• For convenience, we assume type-in-type everywhere, so that U : U and PShi : PShi.

• We define Cati : PShi as the type of categories internally to PShi, where types of objects
and morphisms are in PShi. We have In : {i : Base} → Cati → U and base : InC → Base.
Informally, InC is a type of “permission tokens” for working in a presheaf universe.

Let us look at a basic scenario in GLF. In the empty context, we have PSh1 as a universe of sets.
Internally to PSh1, we can define some C : Cat1. Now, under the assumption of i : InC, we can
form PSh(base i) as the universe of presheaves over C. Then, we may define another category D
inside PSh(base i), and get a new universe PShj under the assumption of j : InD. Hence, GLF
at its heart is a type theory for iterated internal categories and presheaves.

At this point there is no interesting interaction between presheaf universes, so we proceed to
specify some. Recall that the standard semantics of 2LTTs is in presheaves over a chosen model
of an object theory, where a model consists of a category of contexts plus extra structure. In
GLF, if we define a model M of a theory in some PShi universe, we would like to have a “view”



A Generalized Logical Framework easychair: Running author head is undefined.

on that model internally to presheaves over M , and also a way to move between the internal
view and the external M . Hence we specify that for any first-order model M of a second-order
generalized algebraic theory T , we have

1. A second-order model of T internally to PShi, assuming i : InM1. We write this second-
order model as Si.

2. Yoneda embedding as a certain family of maps from M to Sj .

We look at the example where T is pure lambda calculus. A second-order model of pure LC
in PShi is simply Tm : PShi together with an isomorphism Tm ≃ (Tm → Tm) for abstraction
and application. We write lam for the former and –$– for the latter. A first-order model is
a unityped category with families [2], where we write Con : PShi for the type of contexts,
Sub : Con → Con → PShi for substitutions, Tm : Con → PShi for terms, Γ ▷ : Con for the
extension of Γ : Con with a binding, and we have a natural isomorphism TmΓ ≃ Tm (Γ ▷)
to represent abstraction and application. Now, assuming a first-order model M in PShi and
j : PSh(base i), we can use the second-order view when working inside PShj . Let us define the
Y-combinator as an example:

YC : TmSj

YC := lamSj
(λ f. (lamSj

(λx. x $Sj
x)) $Sj

(lamSj
(λx. f $Sj

(x $Sj
x))))

With a reasonable amount of sugar, we may write YC := lam f. (lamx. x x) (lamx. f (xx)). In
other words, PShj now is effectively a presentation of a two-level type theory over pure LC where
Sj constitutes the inner level and the ETT type formers in PShj constitute the outer level. Since
we specify S for every second-order algebraic theory, all 2LTTs are syntactic fragments of GLF.
Next, Yoneda embedding for pure LC is as follows:

Y : ConM → ((j : InM ) → PShj)

Y : SubM Γ∆ ≃ ((j : InM ) → Y Γ j → Y∆ j)

Y : TmM Γ ≃ ((j : InM ) → Y Γ j → TmSj )

such that Y preserves empty context and context extension, so Y • j ≃ ⊤ and Y (Γ ▷) j ≃
Y Γ j × TmSj

, and Y preserves all other structure strictly. Notation: we write Λ for inverses of
Y. Now, Y and Λ allow ad-hoc switching between perspectives. Let’s redefine some operations
in M :

id : SubM ΓΓ comp : SubM ∆Θ → SubM Γ∆ → SubM ΓΘ

id := Λ (λ j γ. γ) compσ δ := Λ (λ j γ.Y σ (Y δ γ j) j)

With reasonable amount of sugar, this might look like

id := Λ γ. γ compσ δ := Λ γ.Y σ (Y δ γ)

Or, making Y implicit, we may even write compσ δ := Λ γ. σ (δ γ). We can develop this into
a “second-order notation” for object theories, which is nicely readable and can be rigorously
elaborated into annotated GLF operations. We only give here a glimpse of what this notation
could look like. The example below comes from a model construction involving models of MLTT

1Here we implicitly cast M to its underlying category.



A Generalized Logical Framework easychair: Running author head is undefined.

as CwFs, which looks fairly obtuse with explicit substitutions and De Bruijn indices [5, Section
5]:

Con◦ Γ := Ty (F Γ)

Ty◦ Γ◦ A := Ty (F Γ ▷ Γ◦ ▷ F A[p])

Tm◦ Γ◦ A◦ t := Tm (F Γ ▷ Γ◦) (A◦[id, F t[p]))

Γ◦ ▷◦ A◦ := Σ(Γ◦[p ◦ F▷.1])(A
◦[p ◦ F▷.1 ◦ p, q, q[F▷.1 ◦ p]])

...

but which looks reasonable in sugary GLF notation:

Con◦ Γ := Ty (γ : F Γ)

Ty◦ Γ◦ A := Ty (γ : F Γ, γ◦ : Γ◦ γ, α : F Aγ)

Tm◦ Γ◦ A◦ t := Tm (γ : F Γ, γ◦ : Γ◦ γ) (A◦ (γ, γ◦, F t γ))

Γ◦ ▷◦ A◦ := Λ (F▷.2(γ, α)).Σ(γ
◦ : Γ◦ γ)×A◦ (γ, γ◦, α)

...

Sketch of the semantics. First, we give a short motivation. In the semantics, each PShi
should be an universe of internal presheaves over an internal category. Clearly the semantics
should involve categories, but there are well-known complications with the category of cate-
gories: a) there is no general Π type b) Π-types of presheaves and universes of presheaves are
not stable under reindexing by arbitrary functors. The former issue could be addressed by hav-
ing a “directed type theory”, while the latter could be addressed with modalities. In the case
of GLF we don’t need either of these solutions. The reason is that we can’t do any interesting
categorical reasoning in GLF, and Base and In are used purely for managing internal/external
languages, and it suffices to have enough semantic structure to represent the internal/external
shifts.

The model of GLF is constructed in two steps. First, we give a model for the theory that
has PSh, Base and In as sorts but does not support U, and then take presheaves over that model
to obtain a model of a 2LTT where U represents the outer layer. In the inner model, we start
with an inductive definition of certain trees of categories:

dataTree (B : Cat) : Setwhere

node : (Γ : PShB)(n : N)(C : Finn → Fib (B ▷ DiscΓ))

→ ((i : Finn) → Tree (B ▷ DiscΓ ▷ C i))

→ TreeB

Here, PSh means presheaves in sets, Fib is cartesian fibrations, Disc creates a discrete fibration
from a presheaf and – ▷ – takes the total category of a fibration. Now, the objects of the
semantic base category are elements of Tree 1, and morphisms between trees are level-wise
natural transformations between the Γ components together with Finn → Finm renamings of
subtree indices. The non-discrete Fib components are preserved by morphisms.

In a nutshell, each node represents a presheaf universe and each edge represents an inter-
nal/external switch. A semantic element of Base selects a node of a tree, while an In is an index
that points to a subtree of a node. A semantic PSh is a dependent presheaf over a Γ in a given
node. Extending a context with an In binding adds a new empty subtree to a given node, and
extending a context with a presheaf variable extends the Γ presheaf in a node with a dependent
presheaf.



A Generalized Logical Framework easychair: Running author head is undefined.

References

[1] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory and
applications. ArXiv e-prints, may 2019.

[2] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019.

[3] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, January 1993.

[4] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213. IEEE
Computer Society, 1999.

[5] Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman Geuvers,
editor, 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 25:1–25:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[6] Ambrus Kaposi and Szumi Xie. Second-order generalised algebraic theories: Signatures and first-
order semantics. In Jakob Rehof, editor, 9th International Conference on Formal Structures for
Computation and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia, volume 299 of
LIPIcs, pages 10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[7] Ian Orton and Andrew M. Pitts. Axioms for Modelling Cubical Type Theory in a Topos. In
Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual Conference on Computer
Science Logic (CSL 2016), volume 62 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:19, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau, and Rébecca Zucchini.
Cocon: Computation in contextual type theory. CoRR, abs/1901.03378, 2019.

[9] Jonathan Sterling. First Steps in Synthetic Tait Computability. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, 2021.

[10] Taichi Uemura. A general framework for the semantics of type theory. CoRR, abs/1904.04097,
2019.


