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Introduction Inductive types are ubiquitous building blocks in many programming and the-
orem proving languages. An inductive type is a closed set of constructors from which values of
the type can be created. That set of constructors cannot be extended though once a type is de-
fined. This limits extensibility, reuse, and modular separation of concerns when defining types
and functions operating over their values. The expression problem [13] is one manifestation of
this limitation, where extending an expression language with new syntactic constructors while
reusing existing ones without having to modify or re-compile them is a challenge in almost all
programming languages.

This extended abstract briefly presents a set of syntactic extensions to the Lean program-
ming language that allow the modular compositions of inductive types1. Lean 4 [7] includes
meta-programming constructs that allow developers to extend the syntax of the language, and
provide user-defined elaborators of the extended syntactic constructs. We utilize those meta-
programming facilities to allow the definition of inductive types that are built from clones of the
constructors of constituent types. In addition, we automatically generate coercion operators
that allow passing values of constituent types to functions expecting values of the extended
type, and vice versa when applicable.

namespace Boolean

inductive T where

| Bool

inductive Term where

| True
| False
| If (c t1 t2: Term)

inductive TRel: Term → T → Prop

| TT: TRel .True .Bool
| FF: TRel .False .Bool
| If: TRel c .Bool → TRel t1 τ → TRel t2 τ

→ TRel (.If c t1 t2) τ

end Boolean

(a) Boolean type definition.

namespace Nat

inductive T where

| N

inductive Term where

| Zero
| Succ (t: Term)
| Pred (t: Term)

inductive TRel: Term → T → Prop where

| Z: TRel .Zero .N
| S: TRel t .N → TRel (.Succ t) .N
| P: TRel t .N → TRel (.Pred t) .N

end Nat

(b) Nat type definition.

Figure 1: Separate definitions of Boolean and Nat types, syntactic terms, and type relation.

1Prototype implementation can be found at https://github.com/qualgebra/LeanToolkit/tree/TYPES2025

https://github.com/qualgebra/LeanToolkit/tree/TYPES2025
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inductive T := Boolean.T + Nat.T

⇓

inductive T : Type
| Bool : T
| N : T

(a) Composing Boolean.T and Nat.T.

inductive Term := Boolean.Term + Nat.Term
| isZero (t: Term)

⇓

inductive Term : Type
| True : Term
| False : Term
| If : Term → Term → Term → Term

| Zero : Term
| Succ : Term → Term

| Pred : Term → Term

| isZero : Term → Term

(b) Composing Boolean.Term and Nat.Term.

inductive TRel: Term → T → Prop := Boolean.TRel + Nat.TRel
| iz: TRel t T.N → TRel (.isZero t) T.Bool

⇓

inductive TRel : Term → T → Prop

| TT: TRel Term.True T.Bool
| FF: TRel Term.False T.Bool
| If: ∀{c t1: Term} {τ :T} {t2: Term}, TRel c T.Bool → TRel t1 τ → TRel t2 τ → TRel (c.If t1 t2) τ
| Z: TRel Term.Zero T.N
| S: ∀ {t : Term}, TRel t T.N → TRel t.Succ T.N
| P: ∀ {t : Term}, TRel t T.N → TRel t.Pred T.N
| iz: ∀ {t : Term}, TRel t T.N → TRel t.isZero T.Bool

(c) Composing Boolean.TRel and Nat.TRel.

Figure 2: Composing Boolean and Nat using the ‘+’ operator on inductive types.

Example This example is inspired by the Typed Lambda Calculus (TLC) presentation from [8].
We assume we are defining TLC with two native types: Boolean (Fig. 1a), and Nat (Fig. 1b).
Each of the two separate definitions includes inductive types for the set of relevant types (T),
the set of valid syntactic terms (Term), and a type relation (TRel) between terms and types.

Now we would like to compose the two sets of definitions into a language with both
Boolean and Nat native types. We use Lean meta-programming to extend the Lean syntax
with a new construct for summing up multiple inductive types. Fig. 2 shows three exam-
ples: composing Boolean.T and Nat.T (Fig. 2a), composing Boolean.Term and Nat.Term,
while adding an extra constructor isZero (Fig. 2b), and finally composing Boolean.TRel and
Nat.TRel, adding the extra constructor iz (Fig. 2c). The ‘+‘ operator (implemented and
elaborated using Lean meta-programming) is used in all three examples to compose multiple
inductive types, and optionally adding extra constructors like in the cases of Term and TRel.
Each of the examples shows the Lean definition automatically generated as a result.

In addition, instances of the Coe typeclass are also generated to allow safe automatic coer-
cion from values of the constituent types to the newly defined composite type. For example,
the following code snippet typechecks because the automatically generated coercion operator
converts Boolean.T.Bool into T.Bool:
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def x := Boolean.T.Bool
def y: T := x

Coercion in the opposite direction (e.g., from T.Bool to Boolean.T.Bool) is possible only
for values known at compile time. The Lean standard library includes the dependent coercion
typeclass CoeDep. We generate instances of this typeclass for each of the constructors of the
summed up type, coercing them back to their respective constituent types. As a result, the
following Lean definition typechecks:

def z: Boolean.T := T.Bool

Related Work Previous work tried to reuse proofs on modular definitions in Coq [2, 9], by
extending an inductive type by individual extra constructors, and functions with individual
pattern matching cases. Modular composition of definitions and theorems into feature-based
product lines was presented in [3]. Inspired by the data types a-la-carte work for Haskell [11],
similar approaches to solving the expression problem in theorem provers include Meta-theory
a la carte [4], Coq-a-la-carte [5], and extensible metatheory mechanization [6]. Other attempts
at solving the expression problem include four different solutions relying on generic data types
in Java-like languages are presented in [12], and a symmetric view of algebraic data types and
codata types [1].

Our approach of composing constructors is similar to that of Boite [2] with three main
differences that we know of.

1. Boite’s approach incrementally adds constructors to an existing type, while we focus on
composing multiple types, and also support adding extra constructors if needed. We also
rely on coercion operators for interoperation between composed and constituent types.

2. We heavily leverage Lean metaprogramming to simplify the implementation, while Boite’s
work predates MetaCoq [10].

3. This is more of a limitation on our side at this point, we do not support composing proof
objects. This is one of our future work directions.
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