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Homotopy type theory (HoTT) has been proposed as a foundation of synthetic homotopy theory and
its usefulness was witnessed early on by e.g. Brunerie’s 2016 proof that π4(S

3) – the fourth homotopy
group of the 3-sphere – is isomorphic to Z/2Z [Bru16]. As Brunerie’s proof appeared only 78 years after
Pontrjagin’s original proof [Pon38], it is about time (if we wish to keep up with the classical homotopy
theorists) we start thinking about the next homotopy group in line: π5(S

3). In this note, we present a proof
that π5(S

3) ∼= Z/nZ for some (constructively defined) n ∈ {1, 2}. We have not yet been able to carry out a
(terminating) normalisation of this number in a constructive proof assistant such as Cubical Agda, but we
are hopeful – Pontrjagin and Whitehead only showed that π5(S

3) ∼= Z/nZ in 19501 [Pon50; Whi50], so we
can let Agda think for another couple of years before we hit the 78-year mark.

Concretely, our first key contribution – Theorem 1 – is a HoTT version of a theorem by Gray [Gra73]
which relates cofibres of certain so-called Whitehead products to the fibre of the pinch map. Using that such
cofibres are well known to be related to the homotopy groups of spheres, we are able to use Theorem 1 to
derive our second key contribution – Theorem 2 – which is a characterisation of π5(S

3). While we appreciate
that Theorem 1 is a somewhat niche result, we hope that Theorem 2 will be of interest to a broader audience
of type theorists as it presents a so-called ‘Brunerie number’. That is, it presents a constructively defined
n ∈ {1, 2} whose normalisation in a constructive proof assistant like Cubical Agda would yield a proof of a
non-trivial theorem: in this case, of the fact that π5(S

3) ∼= Z/2Z. We will discuss our struggles with actually
normalising/computing this number. While the formalisation of the proof that π5(S

3) ∼= Z/2Z is in its early
stages, the construction of our new Brunerie number is independent and can be defined in Cubical Agda

with little effort using the formalisation of π4(S
3) ∼= Z/2Z due to Ljungström and Mörtberg [LM23]. We

remark that we do also have a pen-and-paper proof of the fact that our Brunerie number is 2. Nevertheless,
we are still interested in producing a fully computer-assisted proof.

Preliminaries/notation We will not go into any detailed proofs and will not require too much knowledge
of classical homotopy theory. We do, however, rely on some basics of HoTT which we briefly rush through
here. The reader comfortable with HoTT can skim this section.

Pointed types and maps : a pointed type is a pair (A, ⋆A) where ⋆A : A. We will simply write A and leave
⋆A implicit. We use the same convention for pointed maps and write f : A→⋆ B for a pointed map from A
to B and leave the proof ⋆f : f(⋆A) = ⋆B implicit.

Loop spaces: given a pointed type A, we let Ω(A) := (⋆A = ⋆A) denote its loop space. Given a pointed
map f : A→⋆ B, we write Ω f : Ω(A)→⋆ Ω(B) for the functorial action of Ω.

Pushouts: given a span B
f←− A

g−→ D, we can form its pushout. This is the higher inductive type (HIT)
Pf,g with constructors inl : B → Pf,g inr : D → Pf,g push : (a : A)→ f(a) = g(a). Pushouts are

always taken to be pointed by inl(⋆B) when B is pointed. Important instances are:

Name Notation Pushout of span Comments

Join A ∗B A← A×B → B

Cofibre (of f) Cf 1← A
f−→ B

Wedge sum A ∨B A
x 7→⋆A←−−−− 1

x 7→⋆B−−−−→ B A and B are pointed types
When A is pointed, there is a

Suspension ΣA 1← A→ 1 ‘suspension function’ σA : A→ Ω(ΣA)
given by σA(x) := push(x) · push(⋆A)−1

Recall also that the n-sphere can be defined in terms of suspension by defining it to be the (n + 1)-fold
suspension of the empty type, i.e. Sn := Σn+1⊥.

1The original proofs concerned π6(S4) but this group is isomorphic to the one in question by the quaternionic Hopf
fibration [BR18].
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Homotopy groups : given a pointed type A, we define its nth homotopy group by πn(A) := ∥Sn →⋆ A ∥0.2
Here, ∥ − ∥0 denotes set truncation, i.e. the operation which takes a type and forces it to satisfy UIP. The
type πn(A) has a natural group structure when n ≥ 1 which is abelian when n ≥ 2. Given a pointed map
f : A →⋆ B, there is an induced homomorphism f∗ : πn(A) → πn(B). This yields a long exact sequence

· · · → πn+1(B)→ πn(fibf )
fst∗−−→ πn(A)

f∗−→ πn(B)→ πn−1(fibf )→ . . . where fibf is short for fibf (⋆B), the

fibre of f over ⋆B , i.e. (a : A)× (f(a) = ⋆B).
Connectedness: a type A is n-connected if its n-truncation, ∥A ∥n, is contractible. We say that a

map f : A → B is n-connected if all its fibres are n-connected. The key thing we will need to know
about connectedness is that if f : A → B is an n-connected and pointed map, then the induced map
f∗ : πm(A)→ πm(B) is an isomorphism when m ≤ n and surjective when m = n+ 1.

The pinch map: an important map for us will be the so-called pinch map. Given a function f : A→ B,
we define pinchf : Cf → ΣA by

pinchf (inl(⋆1)) := inl(⋆1) pinchf (inl(b)) := inr(⋆1) appinchf (push(a)) := push(a).

The main results In order to state our main results, we will need a key construction from homotopy
theory called Whitehead products [Ark62]. These turn homotopy groups into a graded Lie superalgebra and
provide us with principled ways of constructing elements of homotopy groups. All you need to know for
this presentation, however, is that (just like the original Brunerie number [Bru16]), the Brunerie number
we present here will be defined in terms of a certain Whitehead product. The most bare-bones definition
of the Whitehead product is called the generalised Whitehead product : given two functions f : ΣA → D,
g : ΣB → D, we define their (generalised) Whitehead product to be the function [f, g] : A ∗B → D defined
by

[f, g](inl(a)) := ⋆D [f, g](inr(b)) := ⋆D ap[f,g](push(a)) := (Ω g)(σB(b)) · (Ω f)(σA(a))

This definition follows those of Brunerie and Ljungström & Mörtberg [Bru16; LM24].
It turns out that some homotopy groups of spheres correspond to homotopy groups of cofibres of certain

Whitehead products. Indeed, Brunerie showed that πk+1(S
n+1) ∼= πk(C[idSn ,idSn ]) for k ≤ 3n − 2.3 This

allowed him to define his (in)famous Brunerie number and, later, characterise π4(S
3). Here, we are interested

in the next homotopy group, π5(S
3) and, as it happens, this group too can be understood in terms of the

cofibre of a Whitehead product. To get there, let us state our first main theorem – it is a HoTT counterpart
of a classical theorem by Gray [Gra73] and relates the (homotopy groups of) cofibres of Whitehead products
of the form [idΣB , f ] to fibres of the pinch map.

Theorem 1. Let A be an (a− 1)-connected pointed type and B be any pointed type. Let f : ΣA→⋆ ΣB. In
this case, there is a 2a-connected map γ : C[idΣB ,f ] → fibpinchf where, recall, pinchf : Cf → Σ2A.

Assume further that B in Theorem 1 is (b− 1)-connected. In this case, we get that πn(fibpinchf )
∼= πn(ΣB)

when n ≤ a+ b for elementary connectedness reasons. Combining this information with Theorem 1 and the
long exact sequence associated with the fibration sequence fibpinchf → Cf → Σ2A, we obtain a new sequence
of the form

· · · → πn+1(Σ
2A)→ πn(Fn)→ πn(Cf )→ πn(Σ

2A)→ πn−1(Fn−1)→ . . . where

Fn≤a+b := ΣB Fa+b<n≤2a := C[idΣB ,f ] F2a<n := fibpinchf

Let us instantiate this sequence with A := S2, B := S1, f := [idS2 , idS2 ], a = 2 and b = 1. Note that this is
well-typed because the domain of f is S1 ∗ S1 which is equivalent to S3. The conflation of these spaces will
be used without comment from now on. We get

π5(S
4)→ π4(C[idS2 ,[idS2 ,idS2 ]])→ π4(C[idS2 ,idS2 ])→ π4(S

4)→ π3(S
2)→ π3(C[idS2 ,idS2 ]).

All of these groups have alternative descriptions.

• The first group, π5(S
4), is isomorphic to π4(S

3) by stability [UF13, Corollary 8.6.15], which we know
is further isomorphic to Z/2Z.

2We could equivalently have set πn(A) := ∥Ωn(A) ∥0. While this definition makes the group structure on πn(A) very clear
(it is simply path composition), it makes some other constructions (most importantly for us, Whitehead products) somewhat
more roundabout.

3Concretely, Brunerie shows in the proof of Proposition 3.4.4 that J2(Sn) ≃ C[idSn ,idSn ], where the former type denotes the

second type in the James construction on Sn – a type which, by Brunerie’s Proposition 3.2.1, has πk isomorphic to πk+1(S
n+1)

for k ≤ 3n− 2.
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• For the second group, we have that [idS2 , [idS2 , idS2 ]] = [idS2 , 2η] = 2[idS2 , η] = 0 where the first
equality is (in essence) the original Brunerie number, the second follows from bilinearity of Whitehead
products [Lju25] and the third follows from 2-torsion. Thus, C[idS2 ,[idS2 ,idS2 ]] is the cofibre of the

constant map S4 →⋆ S2 and is, as such, equivalent to S5 ∨ S2. Furthermore, we have π4(S
5 ∨ S2) ∼=

π4(S
5) × π4(S

2) ∼= π4(S
2) ∼= π4(S

3) ∼= Z/2Z, where the second to last isomorphism comes from the
Hopf map [Bru16, Proposition 2.6.8].

• The third and sixth groups, πn(C[idS2 ,idS2 ]) for n ∈ {3, 4}, are isomorphic to πn+1(S
3) by (as mentioned

briefly earlier) Brunerie’s work [Bru16, Section 3.4].

• The fourth and fifth groups, π4(S
4) and π3(S

2) respectively, are well known to be isomorphic to the
integers [UF13, Theorem 8.6.17, Corollary 8.6.19].

With this information, we can rewrite this instance of the sequence as follows.

Z/2Z
d−→ Z/2Z→ π5(S

3)→ Z→ Z→ Z/2Z

It follows completely abstractly, i.e. without knowing any details about either of the maps in the above
sequence, that the second map must be surjective, and thus we have constructed our Brunerie number:

Theorem 2. π5(S
3) ∼= Z/(2− d(1))Z.

The situation we find ourselves in now should seem awfully familiar to anyone familiar with Brunerie’s
thesis... We need to compute d(1) : Z/2Z. By unfolding its definition, we see that this number can be
understood as the result of applying the isomorphism ϕ : π4(S

2) ∼= Z/2Z (in HoTT, due to Brunerie [Bru16]

and formalised by Ljungström & Mörtberg [LM23]) to the composite map S4 Ση−−→ S3 [idS2 ,idS2 ]−−−−−−→ S2 (viewed

as an element of π4(S
3)) where η : π3(S

2) is the generator. This composite map is equal to S4 Ση−−→ S3 2η−→ S2.
Although the easiest approach would be to simply compute d(1) := ϕ(2η ◦Ση) in Cubical Agda, we have not
had much success.4 It is, however, relatively easy to prove that d(1) = 0 by showing that 2η ◦ Ση = 0 by
hand. This is a consequence of the fact that the precomposition map (−)◦Ση defines a group homomorphism
π3(S

2)→ π4(S
2) and therefore must vanish on 2η due to 2-torsion in π4(S

2). Hence, we may conclude that
π5(S

3) ∼= Z/2Z.
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