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Abstract

Given a topos E and a Lawvere-Tierney topology 2 : Ω → Ω on it, we develop a
realizability E-tripos using the internal logic of the topos. Instantiating E with a category
of presheaves, we recover a notion of realizability with choice sequences.

Choice sequences first appeared in Brouwer’s second act of intuitionism [14]. Brouwer
envisioned an idealised mathematician that would generate entries of an infinitely proceeding
sequence (α0, α1, α2, . . . ). At any given moment, the mathematician would only have access
to the entries generated so far, hence any deductions would necessarily rely on a finite number
of entries. The first formal systems of Brouwer’s intuitionism were developed by Kleene and
Vesley [9] and Kreisel and Troelstra [10] in which the authors investigated the Bar Theorem,
continuity principles, as well as different kinds of choice sequences.

More recently, interpretations of Brouwer’s choice sequences have been leveraged to give anti-
classical models of dependent type theories. In [4] the authors give a computational account of
forcing. Based on this view of forcing the authors of [5] produce a model of MLTT falsifying
Markov’s principle. This interpretation of choice sequences is combined with term models in a
series of papers [1, 2, 3, 11, 7] to explore principles such as bar induction, continuity of functions
on the Baire space and different versions of Markov’s principle. As pointed out by [12], there
is a common thread of constructions internal to sheaf models which links all the foregoing
works. In the tradition of Kripke and Beth semantics, by taking a category of sheaves over a
preordered set W of worlds and carrying out the standard operational constructions internally
to this model, we should expect to recover models akin to the above.

In what follows, we will start from this observation and attempt to connect these realizability
constructions, in the form of PER models with choice sequences, to categorical realizability over
categories of sheaves, rather than the category of sets. As in the abstract, we fix a topos E and
a Lawvere-Tierney topology 2 : Ω → Ω and proceed to define a realizability tripos over E . We
refer to [8] for an introduction to topos theory, in particular section A4.4 for a treatment of
Lawvere-Tierney topologies.

Definition 1. Given objects X and Y of E, we define partial morphisms from X to Y
as morphisms from X to Y⊥, where Y⊥ is the partial map classifier of Y [8, §A2.4]. In the
internal logic, given elements x and y of X⊥, we use x ↓ to mean that x is defined, x ≼ y to
mean that if x is defined then so is y and their values agree, and x ≃ y for the conjunction of
x ≼ y and y ≼ x.

Definition 2. An internal partial combinatory algebra consists of an object A of E, a
partial morphism − · − : A× A⇀ A and elements k, s : A satisfying the internal statements:

k · a ↓ s · a ↓ s · a · b ↓
a ≼ k · a · b a · c · (b · c) ≼ s · a · b · c

We define partial combinatory algebras (pca) using ≼ as opposed to ≃. It is shown in [6]
that any “weak” pca, that is using ≼, is isomorphic to a “strong” pca, that is using ≃, hence
this is mainly an aesthetic decision. Note that weak pcas differ from ordered pcas [17, §1.8].
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Whereas an ordered pca comes equipped with an ordering on the underlying object A, weak
pcas simply use the ordering ≼ on partial terms A⊥.

The usual story with partial combinatory algebras carries over to the internal setting. We
can still show that a pca is functionally complete and with that we get access to most program-
ming constructs needed for realizability such as pairings, booleans, coproducts, and whatever
else the mind might dream of. See [17, §1.1] for an elaboration on pcas and how to program
with them.

With an internal pca we could now define a realizability tripos akin to the usual set-based
realizability triposes. In fact this is done in [16], in which the author takes a pca internal to a
category of presheaves, takes its sheafification to get a pca internal to the relevant category of
sheaves, and then implicitly works in the realizability topos arising out of said pca object.

Definition 3. Given an object X we define the type of realizability predicates on X as the
type X → PA. We further define an ordering on realizability predicates φ,ψ : X → PA by

φ ≤ ψ :≡ ∃e : A.∀x : X.∀a ∈ φ(x).2(e · a ↓ ∧ e · a ∈ ψ(x))

Given a realizability predicate φ : X → PA, for each x : X we think of the subobject φ(x) ↪→
A as the programs which evidence that x satisfies φ, i.e. its realizers. We say that φ implies ψ,
written φ ≤ ψ, if there exists a program e which for every x, will take evidence that x satisfies φ
and convert it to evidence that x satisfies ψ. We include the modality 2 to accommodate for
choice sequences. For example suppose the program e relies on the sixth entry of a choice
sequence α, but so far we have only generated the first three entries. In such a case, the 2

lets us generate more entries for α before requiring that e · a be defined. If we did not use the
modality then we would not be able to generate more entries in α, effectively disallowing the
use of choice sequences as realizers.

Using the internal language of E we can show that realizability predicates on an object X
with this particular ordering form a pre-ordered set. Furthermore, we can define reindexing
pre-Heyting algebra morphisms by precomposition, show these have left and right adjoints (as
monotone maps) satisfying the Beck-Chevalley condition, and finally we can give an appropriate
generic element giving us an E-tripos. For an introduction to the theory of realizability triposes
and constructions on these we refer the reader to [17, §2]. The definitions of the required left
and right adjoints, and generic element are very similar with the ones in the usual setting.

In [15] the authors also use the internal logic of a category E to define categories of assemblies
and show that these still give models of constructive set theories. While the authors assume less
about the category E to define assemblies, they stick to defining assemblies over the internal
version of Kleene’s first algebra K1. So while the tools used are similar, the classes of models
considered are different.

To talk about choice sequences we instantiate E to the category of presheaves over a posetW.
In the prototypical case where we want our pca to have a single choice sequence code δ, we
may take this poset to be the set of lists of natural numbers inversely ordered by prefix. The
generated values of δ at each world would then be decided by the underlying list of natural
numbers. For the modality 2, we take the Lawvere-Tierney topology associated with the
following notion of covering: an upwards closed set U ⊆ W covers a world w : W if all increasing
sequences of worlds starting at w intersect with U . The category of assemblies arising out of this
tripos seems like a particularly good setting for studying the realizability of choice sequences
themselves, it should contain interpretations of the natural numbers and the Baire space while
being simpler to work with than the realizability topos.

In this setting, an internal pca will consists of a pca Aw for each world w : W with application
maps (−) ·w (−) and transition maps (−)|w⊑v : Av → Aw. The application maps, which are
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partial functions, have to be monotone in their domain as well as natural. By choosing different
pca objects we expect to be able to handle different versions of choice sequences, from fully
lawless choice sequences, to lawful choice sequences and any variation sitting in between these.
This contrasts the situation with a sheafified pca object [16], where sheafification inadvertently
adds realizers which may not have been computable before. For example, consider the pca object
given by K1 at every world. In particular, application of terms is independent of the world and
so we have no choice sequence realizers, as their behaviour will be the same at every world. If
we take its sheafification, a realizer at a world w won’t be a single element e : K1 anymore,
but will instead be a compatible family of realizers (eu)u∈U indexed by a cover of w. Aside
from being compatible [8, Definition 2.1.2 in §C2.1], we have no restrictions on this family of
realizers, so sheafification has added realizers whose behaviour can vary wildly between different
worlds, despite starting with a pca object without choice sequences.

Towards the study of realizability of choice sequences, we now suggest two assemblies of
interest: that of pure natural numbers and that of effectful natural numbers.

Definition 4. The pure natural numbers assembly, denoted Npur, consists of the constant
presheaf ∆N along with the realizability relation e ⊨w n if and only if the code e : Aw equals the
Church encoding of n : N at w.

Definition 5. The effectful natural numbers assembly, denoted Neff , consists of the sheafi-
fication of ∆N. As for the realizability relation, if we have U covering w and and a compatible
family nu of natural numbers, then e ⊨w (nu)u∈U , if and only if there exists a cover V of w and
for all v ∈ U ∩ V and a : Av, (e|v⊑w) ·v a is defined and equals the Church encoding of nv at v.

At the level of underlying presheaves, the later is the sheafification of the former, so we hope
to find an analogous universal property to justify it as the correct definition of effectful natural
numbers. With this, we can then study choice sequences as the exponential object Neff → Neff

in this category.
We intend on using a theorem prover to formalise the arguments in the internal logic of E

as done in [13]. The formalisation is currently in its early stages, but we hope to progress more
on it once definitions are more settled.
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