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Meta-theoretical studies of type theories often rely on realizability techniques, including the
so-called “logical relations”, to establish interesting properties of the systems. The prototypical
examples of such results are normalization for simply typed lambda calculus with Tait’s com-
putability technique [Tai67], then System F with Girard’s reducibility candidates [Gir72], the
same year as Martin-Löf Type Theory (MLTT) with [Mar98].
However, type theorists and practitioners did not stop with MLTT, and newer, more

convenient systems were created and gradually refined for specific applications. Today, a
plethora of systems are used to prove and program, with examples as diverse as Homotopy Type
Theory (HoTT) and Cubical Type Theory for synthetic homotopy theory, Multi-Modal Type
Theory for the internal logic of specific toposes, or 2-Level Type Theory for interaction between
HoTT and a type theory with uniqueness of identity proofs (UIP). With a proliferation of new,
more exotic type systems, the demand for meta-theoretical verification has grown significantly.

Proving properties of such systems has also gotten harder, proportionally with their expressive
power and with the expectation that such proofs must now be formalized. Some formalization
efforts have focused on the engineering part of such proofs, while also providing a solid base
for experimentation with new features. Projects such as MetaCoq [Soz+20], Agda Core or
Lean4Lean [Car24] focus on the idiosyncrasies of specific proof assistants, while LOGREL-MLTT
[AÖV18] and its direct descendant LOGREL-COQ [Adj+24] study a more idealized version of
MLTT.

In the case of the latter, we have been trying to simplify its implementation, as some design
choices for the propagated invariants can sometimes feel very arbitrary and redundant. We are
also trying to precisely understand what comparisons can be made with high level abstractions
like proofs by normalisation by evaluation [Fio22] and Synthetic Tait Computability (STC)
[Ste21] and whether some of their tools can be used in our developments. I will present some
work-in-progress improvements, proof techniques, as well as future directions for the development,
highlighting our expectations for the project.

What’s in a logical relation formalization? Both of LOGREL-MLTT and LOGREL-COQ
follow a similar pattern of defining realizers in an inductive-recursive manner (with a trick when
encoding in ROCQ). What kind of information these realizers contain is not fixed though! The
definition of realizers is parametrized by another notion of “semantic typing”, which has to follow
quite a lot of axioms for the fundamental lemma to go through. The choice of semantic typing
influences what kind of result one gets via the logical relation argument, but also constrains
what kind of type theory we can interpret.

In the current development, to prove the decidability of typing and conversion, this semantic
typing is instantiated by the graph of a bidirectional typing algorithm. However, that system
does not satisfy the axioms mentioned above at first glance. To prove that it does, one needs to
go through the whole fundamental lemma with a different choice of semantic typing, which seems
very inefficient (and not very principled). We would like to only instantiate the construction
once with a system that gives us the expected corollaries directly.

Canonical derivations Standard presentations of dependent type theories include the general
application inference rule and its congruence counterpart
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Γ ⊢ 𝑓 ∶ Π 𝐴 𝐵 Γ ⊢ 𝑎 ∶ 𝐴
APP

Γ ⊢ 𝑓 ∶ 𝐵[↑ 𝑎]
Γ ⊢ 𝑓 ≡ 𝑔 ∶ Π 𝐴 𝐵 Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴

APPCONG
Γ ⊢ 𝑓 𝑎 ≡ 𝑔 𝑏 ∶ 𝐵[↑ 𝑎]

These inference rules, more specifically APPCONG, cause derivations of conversion to not
be unique, as for example Γ ⊢ (𝜆 𝑥 ∶ 𝐴, 𝑥) 𝑦 ≡ (𝜆 𝑥 ∶ 𝐴, 𝑥) 𝑦 ∶ 𝐴 can be derived because of
either APPCONG directly, or by a transitive combination of β-reductions. For the same reason,
derivations do not contain normal form information, as applications can be typed without
reducing them.

A different presentation of dependent type theory can also be given, with a work-in-progress
formalization, whose derivations all faithfully reflect β-normal η-long reduction information.
This can be achieved by avoiding the general APP and APPCONG rules, and instead always
relying on reduction, even for typing. This technique is reminiscent of cut-free presentations of
first-order logic, and is behind some bidirectional type systems, including the one present in
LOGREL-COQ, although only for the conversion judgements [Len21].
Once the system is established, a key property to show first is that derivations are indeed

unique, as well as inferred types. With this uniqueness result, basic properties like transitivity of
conversion are shown with straightforward strong inductions. Then, the crux of the realizability
technique should be able to show that general elimination rules are admissible for our new
system.

Proof-engineering techniques in ROCQ As is usual in meta-theory, proofs are conceptually
clear but require a lot of tedious work. I will also mention a couple of techniques that we employ
to stay within ROCQ’s restrictions while keeping our proofs manageable.
One drastic change is to only use partial equivalence relations (PERs) for the judgements

of our type theory, and create a completely binary version of the system. As an example, the
usual judgement Γ ⊢ 𝑎 ∶ 𝐴 would correspond to Γ ≡ Γ ⊢ 𝑎 ≡ 𝑎 ∶ 𝐴 ≡ 𝐴, and Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 to
Γ ≡ Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴 ≡ 𝐴. Though this might seem like a needless increase in complexity, this lets
us treat all rules uniformly while not repeating ourselves when proving properties about both
the typing rules and the congruence rules.

More pragmatically, mutual inductive types in ROCQ are quite impractical to use, especially
since one needs to manually generate the combined schemes, as well as provide numerous
induction motives on use. Instead, I use a single indexed inductive type, leading to a net gain in
conciseness when writing down the type signatures of properties. Using the unary parametricity
translation of that inductive lets me define a strong induction principle, along the lines of [Tas19].
With these generalizations, proving properties of our canonical system is relatively speedy.
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