Stellar - A Library for API Programming

André Videla

Glaive, Glasgow, UK
andre@glaive-research.org

Dependently typed programming language manipulate types, but types aren’t enough to rep-
resent the general interface of programs. An Application Programming Interface (API) isn’t
defined using a type, but a container [2] instead. Defining APIs this way allows a declarative
style of programming where manipulating APIs is the primary tool for building software. There
already exist tools that represent APIs in software, for example the OpenAPI standard [1], or
command-line interface DSLs. But we have no way of relating those two APIs. Containers and
their morphisms give us the tools to talk about APIs in a principled ways and design complex
software in a modular way.

APIs as Containers, What?

Containers defined as a pair of shape and positions can be reinterpreted as a pair of query and
response (query : Set > response : query — Set). With this interpretation, monoidal operators
like coproducts (4), tensors (X), composition (o), perfectly represent valid operations on APIs.

A coproduct of APIs (query, &> response; ) + (query, > response,) constructs an API that gives
the choice of what query to send query, + query, and return a response that matches the query
that was send [response;, response,].

A tensor of APIs (query, I> response;) x (queryy > response,) produces an API that expects
both queries at once, and returns both response at the same time (query, X query,>response; x
response,).

The composition of APIs (query, I>response; ) o (query, > response,) defines a specific sequence
of operations starting with query, and depending on its response, sending another query querys,
from which we derive the response for both ((g, k) : X(q : query, ).reponse;(q) — query, > 3(r :
response,(q)).reponses (k(r))

An example could help here

For sure! Let’s say we are working with the movie database. It advertises a GET endpoint with
path /movie/{movie_id} and this endpoint return responses 200 OK with a JSON content
body representing the movie’s data. This API can be equally represented as the container
Info = (movie_id>Movie). Another endpoint GET /movie/{movie_id}/alternative_titles
returns a list of titles given a movie id, so as a container it can be represented as Titles =
(movie_id > List Title). A server exposing this API gives any client the choice of what
endpoint to call, and therefore, can be represented as the container Info+ Titles = (movie_id>
Movie) 4 (movie_id [> List Title).

What About Morphisms?

Morphisms of APIs tell us how to delegate from a higher-level API to a more specialised
one. For example, a command line interface is an API represented with a container CLI =


https://www.themoviedb.org

Stellar - A library for API Programming Andr’e Videla

Mouse event HTTP request SQL query
— — —
Ul Client Server Database
Rendering HTTP response SQL response
(»

| T T

Figure 1: An illustration of a compositional pipeline of API morphisms. Containers are the
vertical interstices between colors, the color blocks are container morphisms. The lifecycle of a
single interaction can be read clockwise starting from the UI.

(List String > String) indicating that it expects a list of string as input and returns a string
to print as output. A morphism CLI =% DB converts messages from List String into database
queries and, converts back responses from Table to String to print in the standard output.

Reusing the example of the movie database, if we want to create a program that exposes a
command-line interface and forwards requests to the movie database, we could conceptualise
this program as the morphism CLI =>> Info + Titles. Such morphisms in inhabited by two
maps, one to convert command-line arguments to requests:

parseArgs : List String -> Movie_id + Movie_id

And one to convert http responses into strings we can display in the terminal:
convertResponses : Movie + List Title -> String

Those two functions can be combined in a single container morphism:

app : CLI =>> Info + Titles
app = !'! \x => parseArgs x ## convertResponses

Surely This Can’t Deal With Effects, Can It?

Yes it can! In fact there are many ways to express effectful computation with containers, the
most common effects, non-determinism, and failure, can be represented as a List and Maybe
monad [6] on containers.

The Maybe monad on container is defined by Maybe(q > r) = (Maybe q > Any r) and the list
monad on container is defined by List(q > r) = (List g > All r).

Something like the previous mapping parsing command-line argument can now be written using
the Maybe monad on containers to accurately represent the fact that parsing might fail: app :
CLI =>> Maybe (Info + Title).

Additionally, we can perform effect like 7O by mapping the responses of a container with
the () operation which applies a monad on types to turn it into a comonad on containers:
fe(gr>r) = (g for). For example a program that prints its output can be seen as the
morphism 10 e (String > ()) = (String > String) where the forward map is an identity and
the backward map is given by putStrLn : String -> I0 (), this is an example of a monadic
lens [3].



Stellar - A library for API Programming Andr’e Videla

I Get the Idea, But How Do You Even Run Those Things?

A container morphisms which codomain is the monoidal unit can be converted into a function
from its query to its response. The function costate : (¢>7) = I — (z : q¢) — r(x) does exactly
that. Those leaf morphisms represent computation that can be done immediately and are often
found the end of a long sequence of API transformations converting APIs into increasingly
simpler ones. Typically, sending an HTTP request amounts to implementing the morphism
HTTP =» I, likewise for database queries and their responses DB = [

Conclusion

Implementing containers in a dependently-typed programming language we can create a library
which sole purpose is to describe API-level architecture. There are many use-cases for such a
library and architecture, including server development, command-line tools, compilers, microser-
vices, and more. We chose Idris [4, 5] for its package manager, ecosystem of low-level libraries,
and flexible FFI.



Stellar - A library for API Programming Andr’e Videla

References

[1] OpenAPI Specification v3.1.0 | Introduction, Definitions, & More.
[2] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives of Containers.

In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Martin Hofmann, editors, Typed Lambda
Calculi and Applications, volume 2701, pages 16-30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003.

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. Reflec-
tions on Monadic Lenses. In Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella, editors,
A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion
of His 60th Birthday, pages 1-31. Springer International Publishing, Cham, 2016.

Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23(5):552-593, September 2013.

Edwin Brady. Idris 2: Quantitative Type Theory in Practice. arXiv:2104.00480 [cs], April 2021.
arXiv: 2104.00480.

Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92,
July 1991.



	APIs as Containers, What?
	An example could help here
	What About Morphisms?
	Surely This Can't Deal With Effects, Can It?
	I Get the Idea, But How Do You Even Run Those Things?
	Conclusion

