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The type theory Catt [FM17] is a dependently typed language which models weak ∞-
categories [Ben20]. Recent work has introduced Cattsu [FRVR22] and Cattsua [FRV24], which
extend Catt with a non-trivial definitional equality relation and respectively model strictly
unital ∞-categories and strictly unital and associative ∞-categories. Normalisation algorithms
for both of these theories are given by demonstrating the existence of a reduction system which
is both strongly terminating and confluent. Naively implementing a typechecker based on such
a system can be inefficient, due to the overhead of generating each intermediate term produced
by these reductions.

The reductions found in these systems are non-standard, with neither theory containing
lambda abstraction, application, or beta reduction, preventing techniques from existing litera-
ture (e.g. [Abe13, GSB19, GSA+22, AHS95]) from being directly applicable. These reductions
are also syntactically complex, and have non-trivial interactions, which motivates further study
of normalisation procedures for these theories.

In the talk I will introduce an implementation of Catt, Cattsu, and Cattsua, which can
be found at:

https://github.com/alexarice/catt-strict

Instead of delving too heavily on the specifics of the languages being typechecked, the
talk will instead focus on the overall structure of the tool, some of the decisions made in its
construction, and more generally my experience and the lessons learnt on the way.

When implementing a typechecker, there are multiple fundamental design decisions with
different tradeoffs. The chosen design was optimised to achieve the following objectives, which
don’t necessarily fall within the core remit of a typechecker or interpreter.

• Type Inference: type information can be omitted in places where it can be inferred.

• Efficient evaluation: by utilising Normalisation by Evaluation (NbE) [Abe13, BSV91],
evaluation of larger terms is near instantaneous.

• Preservation of variable names: variable names are often chosen by the user to convey
content, but named variables are problematic to deal with due to alpha equivalence. Our
tool utilises de Bruijn levels to represent variables but stores the original variable names
in the context.

• Top-level bindings: Terms can be bound to global symbols. Furthermore, the tool is
careful not to eagerly replace a top-level symbol by its definition, as similarly to the
above point, the name of a top level symbol often conveys the intent of the user, making
the term easier to read.

• Detailed error reporting: The majority of a user’s interaction with a typechecker will likely
be receiving error messages while debugging. The errors in our tool take the following
form:

https://github.com/alexarice/catt-strict
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Error: Given term "x" does not match inferred term "y"
╭─[examples/test.catt:19:34]
│

19 │ def error_test x{f}y = comp ⟨x{f}x⟩
│ ┬
│ ╰── Given term

────╯

Displaying such errors requires a correspondence between parsed terms in the memory of
the tool and their location in the text.

While these problems, in particular the first two, have been individually studied, figuring out
how to combine these into a single tool can be difficult. This is amplified when working on a
non-standard language, as much of the existing literature focuses on the lambda calculus and
its extensions.

The core of the typechecker is based on a bidirectional typechecking algorithm (see [DK21]),
which splits the various typing rules into inference rules and checking rules. Contrary to more
familiar type theories, all types in Catt are inferable, and we instead find a split between rules
where the context can be inferred or checked.

The form of NbE implemented in the tool is largely inspired by the paper “Implementing
a modal dependent type theory” [GSB19], although we note that the theory Catt is vastly
different to the type theory they present.

The tool contains 3 main representations of syntax:

• Raw syntax: the raw syntax is intended to match the written syntax of the language as
closely as possible, and represents variables by their names. Its primary purpose is to be
the target of parsing and the source of printing; terms are only displayed by converting
them to raw syntax first.

The data structure implementing the raw syntax has a generic type parameter which
can be used to add optional annotations to each constructor. We instantiate this type
parameter to a type of “text locations” when the syntax arises from parsing and can
otherwise instantiate it to the unit type. These (optional) text locations enable more
informative error information.

• Core syntax: this syntax represents typechecked terms, and uses de Bruijn levels. Our
typechecking procedure takes raw syntax and produces core syntax.

• Normal form syntax: this represents the possible normal forms of evaluation within the
theory. The NbE evaluation algorithm converts a core syntax term to a normal form
syntax term, and these terms can be quoted back to core syntax terms.

In practice, the use of all three types of syntax are heavily intertwined, due to the nature of
dependent typing. During the talk, I will explain how this split simplifies various stages of the
typechecking algorithm.

I will also explain what I believe is the largest flaw of this setup, the difficulty of debugging;
core and normal form syntax is hard to print in an informative way, and implementation errors
were often not caught early, making it difficult to implement the non-trivial reductions of these
theories.

2



Implementing a Typechecker for an Esoteric Language Alex Rice

References
[Abe13] Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity. Habili-

tation thesis, Ludwig-Maximilians-Universität München, 2013.
[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction

of a reduction free normalization proof. In Category Theory and Computer Science, volume
953, pages 182–199, 1995.

[Ben20] Thibaut Benjamin. A Type Theoretic Approach to Weak Omega-Categories and Related
Higher Structures. Theses, Institut Polytechnique de Paris, November 2020.

[BSV91] Ulrich Berger, Helmut Schwichtenberg, and R. Vermuri. An inverse of the evaluation
functional for typed Lambda-calculus. In R. Vermuri, editor, 6th Annual IEE Sympo-
sium on Logic in Computer Science (LICS’91), pages 203–211, Amsterdam, 1991. Ludwig-
Maximilians-Universität München.

[DK21] Jana Dunfield and Neel Krishnaswami. Bidirectional Typing. ACM Comput. Surv.,
54(5):98:1–98:38, May 2021.

[FM17] Eric Finster and Samuel Mimram. A type-theoretical definition of weak ω-categories. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–12, June 2017.

[FRV24] Eric Finster, Alex Rice, and Jamie Vicary. A Syntax for Strictly Associative and Unital ∞-
Categories. In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’24, pages 1–13, New York, NY, USA, July 2024. Association for Computing
Machinery.

[FRVR22] Eric Finster, David Reutter, Jamie Vicary, and Alex Rice. A Type Theory for Strictly
Unital ∞-Categories. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’22, pages 1–12, New York, NY, USA, August 2022. Association
for Computing Machinery.

[GSA+22] Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand, and Lars Birkedal.
Controlling unfolding in type theory, October 2022.

[GSB19] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a modal dependent
type theory. blott: An Implementation of a Modal Dependent Type Theory, 3(ICFP):107:1–
107:29, July 2019.

3


