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Quotient Inductive Types (QITs) are a family of inductive types supporting not only the
declaration of generators but also equations. A well-known example of QIT is the following
type of finite multisets, whose elements are basically lists considered up to permutation.

Inductive MSet (A : Type) : Type :=

| [] : MSet A

| :: (x : A)(m : MSet A) : MSet A

| MSet= (x y : A)(m : MSet A) : (x :: y :: m) = (y :: x :: m)

QITs are a special case of Higher Inductive Types (HITs) in which the defined type is implic-
itly declared to be an hSet. Such types has been gaining much interest in the last years [Uni13].
Notably, Altenkirch and Kaposi have proposed the use of Quotient Inductive-Inductive Types
(QIITs), an extension of QITs with induction-induction, to formalize the metatheory of type
theory in an intrinsic fashion [AK16].

QI(I)Ts have been investigated in works by Kovács et al. [KKA19, KK20] and Fiore et
al. [FPS22], in both cases by proposing universal types which can be used for encoding other
QI(I)Ts. However, they only focus on the case of extensional type theory (ETT), which is hard
to implement in proof assistants due to its undecidable conversion. On the other hand, it is also
known that the intensional type theories of proof assistants such as Rocq, Lean and Agda do not
behave well with QITs. Indeed, the equality axioms that are added when declaring a QIT break
canonicity, given that J does not reduce when eliminating them. Thankfully, we can instead shift
the focus to Observational Type Theory (OTT) [AMS07, PT22], in which the eliminator for
equality does not inspect the equality proof but instead computes using its endpoints. Because of
this, (consistent) equality axioms can be safely added to the theory without breaking canonicity.

This work We report a work in progress metatheoretic study of OTT with QITs. In order
to achieve this, many directions seem possible. Pujet and Tabareau have recently justified
extensions of OTT with both quotient types Q [PT22] and inductive types [PLT25]1, therefore
it can seem tempting to justify QITs by encoding them as regular inductive types quotiented
by Q. Unfortunately, this encoding does not yield an eliminator with the proper definitional
equalities, and for infinitary QITs this construction does not seem even possible [LS20]. Another
approach would be to directly extend OTT with an inductive scheme for QITs and try to
prove its metatheory, yet inductive schemes are hard to study in a formal manner due to the
proliferation of indexes and vector notations. Therefore, we instead take a similar approach
as the previous work on QITs, and extend OTT with a universal type which can be used to
encode (non-indexed) QITs, by proposing an adaptation of Fiore et al.’s QW types.

1A version of OTT with Q and inductive types was actually already implemented in the Epigram 2 proof
assistant, though, to the best of our knowledge, their metatheory had not yet been studied.
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A universal QIT We now present a finitary version of our universal QIT, an infinitary version
can also be found in the formalization.2 Similarly to QW types, our definition goes in two steps:
we start by defining a (unquotiented) type Tm, required to formulate the equations used for the
quotient later. To do this, let signatures Sig be the record type with a field C : Type to represent
the type of constructors, and a field arity : C → Nat which maps each constructor to its number
of recursive arguments. We then define Tm in the following way. Here, the parameter Γ : Type
should be seen as a context which adds a new inhabitant var x for each x : Γ.

Inductive Tm (Σ : Sig)(Γ : Type) : Type :=

| var (x : Γ) : Tm Σ Γ

| sym (c : Σ.C) (t : Vec (Tm Σ Γ) (Σ.arity c)) : Tm Σ Γ

Using the above type, we define equational theories EqTh Σ to be the record type with a
field E : Type for the type of equations, a field Ctx : E → Type mapping each equation to a type
representing its context, and fields lhs, rhs : (e : E) → Tm Σ (Ctx e) mapping each equation to
its left- and right-hand sides. We then define our universal QIT in the following manner. In
the type of eq, we write ⟨ ⟩ : Tm Σ Γ → (Γ → Tm Σ E) → Tm Σ E for the “substitution”
function defined by (sym c [t1 . . . tk])⟨γ⟩ := sym c [t1⟨γ⟩ . . . tk⟨γ⟩] and (var x)⟨γ⟩ := γ x.

Inductive Tm (Σ : Sig) (E : EqTh Σ) : Type :=

| sym (c : Σ.C) (t : Vec (Tm Σ E) (Σ.arity c)) : Tm Σ E
| eq (e : E .E) (γ : E .Ctx e → Tm Σ E) : (E .lhs e)⟨γ⟩ = (E .rhs e)⟨γ⟩

The above type can be used to define other (non-indexed) QITs. For instance, in the
formalization we use it to define the type of finite multisets as well as the untyped SK calculus.
We also provide the example of countably-branching trees, using the infinitary version of Tm.

Compared with QW types, our type is designed to employ a first-order representation of
recursive arguments (an approach notably promoted by Dagand and McBride [Dag13]), by
using vectors instead of functions. This aspect seems essential if we want encodings of QITs
to satisfy canonicity: for instance, the encoding of the boolean type using QW types would
have infinitely many normal inhabitants in the empty context.3 Moreover, unlike with W and
QW types, encodings using our type do not require functional extensionality or fancy tricks like
[Hug21]: they work directly in intensional type theory, as witnessed by our Agda formalization.

The plan We plan to provide a metatheoretic justification of OTT with QITs using the
above universal type, in three steps. (1) First, we will give an inductive scheme for non-indexed
QITs and prove that all types can be encoded using our universal QIT. Importantly, we aim
at obtaining eliminators that compute definitionally, and types that satisfy canonicity (eg., the
encoding of the boolean type should only have two normal forms in the empty context). (2)
Then, the second step will be to prove normalization of OTT extended with our universal QIT.
While a pen-and-paper proof seems within reach, we expect that a formalization would require
some important effort. Indeed, to the best of our knowledge, even the simpler W types lack a
formalized normalization proof. (3) Finally, because in OTT consistency is not a consequence
of normalization, we will adapt the set-theoretic model of Pujet and Tabareau to handle our
universal QIT. Putting (2) and (3) together, we will then conclude canonicity of the type theory,
from which we can also deduce canonicity of the encoded QITs.

2https://github.com/thiagofelicissimo/universal-QITs
3In the case of ITT, this can be fixed using Jasper Hugunin’s trick [Hug21], however this is not sufficient in

the case of OTT because equality does not satisfy canonicity in this setting.
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Based on the above metatheoretic justification, we plan in the future to add QITs to the
Rocq implementation of OTT [PLT25, Section 7]. We would of course also like to consider
more complex classes of types, such as indexed QITs and QIITs. A promising direction would
be to consider the universal type of Kovács et al. [KKA19]. However, because of the size of its
definition, we are worried that a normalization proof would be harder to achieve. A different
approach would be to justify this type using more basic type formers [Kov23, Section 4.6],
however we are not sure this can be made to yield an eliminator with the proper definitional
equalities.

Finally, an alternative approach to the one we propose here would be to instead consider
Cubical Type Theory [CCHM18], which also behaves well with QITs, and whose implementation
in Cubical Agda supports HITs in general [VMA19]. Although canonicity and normalization are
known to hold in the presence of some specific HITs [Ste22, Hub19], to the best of our knowledge
a full metatheoretic treatment of QITs in Cubical Type Theory is also lacking. A possible way
to address this could be to use van der Weide and Geuvers’s construction of finitary QITs
from quotient types and proposition truncation in HoTT [vG19], yet the elimination principles
they obtain only satisfy the expected equalities propositionally. Alternatively, one could try to
adapt the strategy we propose here, by first constructing QITs from Tm and then studying the
metatheory of Cubical Type Theory with Tm. Yet here we chose to focus only on the case of
OTT, because we want a type theory for set-level mathematics.
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[PLT25] Löıc Pujet, Yann Leray, and Nicolas Tabareau. Observational Equality Meets CIC. ACM
Trans. Program. Lang. Syst., February 2025. Just Accepted.
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