
Commuting Rules for the Later Modality

and Quantifiers in Step-Indexed Logics

Bálint Kocsis and Robbert Krebbers

Radboud University Nijmegen, The Netherlands
balint.kocsis@ru.nl mail@robbertkrebbers.nl

Abstract

Step-indexing is a semantic tool for stratifying circular, non-wellfounded definitions. The
main idea is to use sequences of successive approximations to construct objects such as types,
propositions, and functions. It can be formalised in a logical, or type-theoretical, setting,
through a modality, called later, which allows us to talk about the next approximation.

The internal logic of the topos of trees provides a full-fledged higher-order logic with
dependent types and built-in step-indexing. As in any modal logic, it is desirable to have
commuting rules for modalities and quantifiers. However, the current known such rules are
not satisfactory since they depend on an assumption on the domain of quantification.

We propose novel rules as alternatives from which the former ones can be derived. Our
insights are based on the observation that the later modality can be decomposed into two
parts. We have formalised our results in the Rocq Prover.

Step-indexing and the topos of trees. Step-indexing is a widely used semantic tool for
stratifying circular, non-wellfounded definitions [2], particularly in program logics (e.g., Iris [11])
and logical relation models of type systems with general recursive types [2] and dynamically
allocated higher-order references [1]. Noteworthy recent applications of step-indexing involve a
logical relation model of Rust [10] and a program logic based on session types [9].

The key idea of step-indexing is to use sequences of successive approximations to construct
objects such as types, propositions, and functions, where the n-th approximation describes the
object under the assumption that we only have n available computation steps to reason about
it. To avoid tedious and low-level reasoning about step-indexed arithmetic, the logical approach
to step-indexing [3, 8] employs the the later modality [12] to provide an abstraction.

The internal logic of the topos of trees [4] provides a full-fledged higher-order logic with
dependent types, extended with a later modality on propositions (▷) and a later modality on
types (▶). This rich logic is a good candidate for defining program logics and logical relation
models for complex programming languages internally.

Problem statement. Ideally, a logic should have neat and general rules for describing the
interaction of the connectives. Unfortunately, the naive rules for commuting the later modality
with quantifiers are unsound. Take the naive rule for commuting existentials and later:

▷(∃x ∶ A.P )⊣⊢ ∃x ∶ A. ▷ P

While the right-to-left direction follows from basic rules involving ∃ and ▷, the left-to-right
direction does not hold because we quantify over different approximations of the domain A.

The current solution is to demand that the domain A is total and inhabited [4, 6]. This
property can be expressed in the internal logic of the topos of trees as

TI(A) ∶= ∀y ∶ ▶A.∃x ∶ A. nextx = y.



Commuting Rules for the Later Modality and Quantifiers in Step-Indexed Logics Kocsis and Krebbers

Then we get the following inference rule:

▷-∃-TI
⊢ TI(A) Γ, x ∶ A ⊢ P ∶ Prop

Γ ∣▷(∃x ∶ A.P ) ⊢ ∃x ∶ A. ▷ P

This rule is not ideal for two reasons. Firstly, it only works for total and inhabited types.
Secondly, the assumption TI(A) has to be proved valid without any hypotheses. The second
issue can be addressed by considering the following modified inference rule:

▷-∃-TI-2
Γ, x ∶ A ⊢ P ∶ Prop

Γ ∣ TI(A) ∧▷(∃x ∶ A.P ) ⊢ ∃x ∶ A. ▷ P

This rule is also sound in the topos of trees, and it implies ▷-∃-TI. However, the restriction on
the domain of quantification remains.

Solution. Our proposed solution rests on the observation (first made by [4]) that, semantically
speaking, the later modality ▷∶ Prop → Prop can be decomposed as ▷ = lift ◦ next, where
next∶ Prop → ▶Prop and lift∶▶Prop → Prop (here, Prop is the type of propositions, i.e., the
subobject classifier in the topos of trees). Thus, we can study the interaction of the quantifiers
with next and lift separately.

It follows from the homomorphism property of applicative functors that next commutes
with the quantifiers, in the sense that we have equalities

next (∃x ∶ A.Px) = next ex⊛ nextP and next (∀x ∶ A.Px) = next all⊛ nextP,

where ex, all∶ (A → Prop) → Prop are defined as:

ex(P ) = ∃x ∶ A.Px and all(P ) = ∀x ∶ A.Px.

Our contributions are the following two dual rules that relate lift with the quantifiers:

lift-∃
Γ ⊢ Q ∶ ▶(A → Prop)

Γ ∣ lift (next ex⊛Q)⊣⊢ ∃y ∶ ▶A. lift (Q⊛ y)

lift-∀
Γ ⊢ Q ∶ ▶(A → Prop)

Γ ∣ lift (next all⊛Q)⊣⊢∀y ∶ ▶A. lift (Q⊛ y)

It can be shown that lift-∃ implies ▷-∃-TI-2 and thus also ▷-∃-TI. Hence, our new rules
really are generalisations of the previously studied rules. This can be seen as an argument for
the claim that lift is more primitive than ▷, and that step-indexed logics should focus on
axiomatising the former.

Conclusion. We have found new and more general reasoning rules in the topos of trees for
commuting the later modality with quantifiers. We proved the soundness of our new rules and
showed that previously known rules can be derived from them. To ensure confidence in our
results, we have formalised the topos of trees and its internal logic in the Rocq Prover [7].

2



Commuting Rules for the Later Modality and Quantifiers in Step-Indexed Logics Kocsis and Krebbers

It remains to be investigated how to apply our rules in practice. For instance, we would
like to define a model of a step-indexed program logic (such as Iris [11]) in the internal logic of
the topos of trees and see if our new rules are of use. Furthermore, one should investigate the
interaction of lift with the other connectives in order to get a more complete axiomatisation
of the internal logic.

We note that an operation similar to lift, called ▷̂, has already been studied in the context
of guarded dependent type theory [5]. This operation is used to turn a code a for a type A to a
code ▷̂ a for the type ▶A. Under the Curry-Howard correspondence, propositions are expressed
as types in dependent type theory, and thus, ▷̂ can be seen as a generalised version of lift. In
such a setting, the rule lift-∃ corresponds to the principle that the later type former preserves
sigma types.

Finally, it would be worthwhile to investigate whether principles similar to lift-∃ and
lift-∀ also hold in other models of step-indexing. In particular, it is conceivable that these
rules are also valid in models where step-indexing is done over an ordinal larger than ω, such as
Transfinite Iris [13].

Acknowledgments. We thank the anonymous reviewers for their helpful feedback.

References

[1] Amal J. Ahmed. Semantics of types for mutable state. PhD thesis, Princeton University,
2004.

[2] Andrew W. Appel and David A. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.
doi:10.1145/504709.504712.

[3] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A
very modal model of a modern, major, general type system. In POPL, pages 109–122, 2007.
doi:10.1145/1190216.1190235.

[4] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

[5] Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded dependent type theory with coinductive types. In FoSSaCS, volume
9634 of LNCS, pages 20–35, 2016. doi:10.1007/978-3-662-49630-5 2.

[6] Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. The guarded
lambda-calculus: Programming and reasoning with guarded recursion for coinductive types.
Log. Methods Comput. Sci., 12(3), 2016. doi:10.2168/LMCS-12(3:7)2016.

[7] The Rocq development team. The Rocq prover, 2025. URL https://rocq-prover.org/.

[8] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations. Log.
Methods Comput. Sci., 7(2), 2011. doi:10.2168/LMCS-7(2:16)2011.

[9] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris 2.0: Asyn-
chronous session-type based reasoning in separation logic. Log. Methods Comput. Sci., 18
(2), 2022. doi:10.46298/LMCS-18(2:16)2022.

3

https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.2168/LMCS-12(3:7)2016
https://rocq-prover.org/
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.46298/LMCS-18(2:16)2022


Commuting Rules for the Later Modality and Quantifiers in Step-Indexed Logics Kocsis and Krebbers

[10] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: securing
the foundations of the rust programming language. Proc. ACM Program. Lang., 2(POPL):
66:1–66:34, 2018. doi:10.1145/3158154.

[11] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and
Derek Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.

[12] Hiroshi Nakano. A modality for recursion. In LICS, pages 255–266, 2000.
doi:10.1109/LICS.2000.855774.

[13] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek
Dreyer, and Lars Birkedal. Transfinite Iris: Resolving an existential dilemma of step-indexed
separation logic. In PLDI, pages 80–95, 2021. doi:10.1145/3453483.3454031.

4

https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/3453483.3454031

