
Linear Types inside Dependent Type Theory

Maximilian Doré

Department of Computer Science, University of Oxford, United Kingdom
maximilian.dore@cs.ox.ac.uk

Abstract

We propose a novel approach to combining linear and dependent type theory. By
deeply embedding the rules of linear logic inside dependent type theory, we obtain a linear
type system which is inherently also dependent. Moreover, we can dynamically compute
resource notations, which allows us to give precise types to programs which need a number
of copies of some input depending on some other input. We demonstrate our approach
with an implementation in Cubical Agda that allows us to program in a practical way. We
then propose a novel type theory which also has dependent linear function types.

Background Ever since the rise of dependent type theory and linear logic, the prospect of
having a type theory that has both predicates and allows for restricting variable use has inspired
research into dependent linear type theories [2, 3, 12, 4]. More recently, quantitative [5, 1] and
graded type theories [6, 9] have been proposed as practical programming languages in which
users can specify in the type of a program how often the program uses a given input, we call
this the multiplicity of this input. In many cases, the multiplicity of some input depends on
the value of some other input, consider for example the following Haskell program.

safeHead :: [a] -> a -> (a,[a])

safeHead [] y = (y,[])

safeHead (x:xs) y = (x,xs)

The program uses the backup element y only in case the given list is empty. However,
systems which have static multiplicities such as quantitative and graded type theories [1, 6, 9]
do not allow for precisely capturing this in the type system.

We propose a new approach of combining dependent type theory with linear logic that allows
for equipping inputs with multiplicities that depend on the values of other inputs. The main
idea behind our system is to deeply embed linear logic in dependent type theory and have the
structural rules of linear logic apply to terms of the host theory. More precisely, given a context
Γ of a standard dependent type theory, we require a symmetric monoidal category SupplyΓ
with bifunctor ⊗, plus a bit more structure to be made precise below. We call an object ∆ of
SupplyΓ a supply, and its morphisms productions where we write ∆0 ▷ ∆1 for the collection of
morphisms between ∆0 and ∆1. We impose this linear structure in the host dependent type
theory, i.e., each SupplyΓ and (−) ▷ (−) are themselves types, and its objects/morphisms are
terms. Lastly, any term that is derivable in Γ can be considered a singleton supply, i.e., for any
given Γ ⊢ a : A we have a ι(a) : SupplyΓ.

Using this structure, we define linear entailment as the following dependent type.

∆ ⊩ A := Σ(a : A)(∆ ▷ ι(a))

In words, to conclude A from a supply ∆, we need to give a term a : A as well as a produc-
tion that turns the supply into this term. We can regard our system as having two nested
entailments, where ⊢ is intuitionistic entailment and ⊩ is linear entailment.

Γ ⊢ ∆ ⊩ A

Linear Types inside Dependent Type Theory Doré

Having the linear judgment as a dependent type in the host theory has two crucial advan-
tages: we can use open terms of the host theory to compute supplies, which allows for dynamic
multiplicities; and we can derive linear elimination principles using normal dependent elimina-
tion, which simplifies the introduction of data types in our system in contrast to quantitative
type theories [7].

We can implement SupplyΓ as the finite multiset of pointed types in Cubical Agda [8, 13],
which we will sketch in Section 1. To add function types to our system, we need SupplyΓ
to have exponentials and a variable binding principle, which means we cannot define this in
Cubical Agda anymore and need to devise a new type theory, which we will outline in Section 2.
An experimental implementation of our system is online: https://github.com/maxdore/dltt.

The observation that equipping the output of a function with a bag of resources gives rise
to dynamic multiplicities is due to Pierre-Marie Pédrot [10, 11]. We show how to implement
this idea in Cubical Agda; and build on it to devise a novel dependent linear type theory.

1. Linear Types in Cubical Agda Cubical Agda’s higher inductive types allow for defining
finite multisets over some type. We define supplies as finite multisets of pointed types, which
allows us to put any term in a supply.

Supply : Type
Supply = FMSet (Σ[A ∈ Type] A)

We can readily define functions for constructing the supply containing a single term a,
written ι a, and for joining two supplies ∆0 and ∆1, written ∆0 ⊗ ∆1. We can compute the
supply containing n copies of some supply for a given natural number n with a straightforward
recursive definition.

ˆ : Supply → N → Supply
∆ ˆ zero = ⋄
∆ ˆ (suc n) = ∆ ⊗ (∆ ˆ n)

Supply can be regarded as a symmetric monoidal category whose laws hold up to proposi-
tional equality. However, we will need to add more morphisms between supplies to take into
account constructors of data types, which is why we introduce a dedicated type of morphisms,
called productions. This type will be extended with other constructors, we only give its main
constructors here.

data ▷ : Supply → Supply → Type where
id : ∀ ∆ → ∆ ▷ ∆
◦ : ∀ {∆0 ∆1 ∆2} → ∆1 ▷ ∆2 → ∆0 ▷ ∆1 → ∆0 ▷ ∆2

⊗f : ∀ {∆0 ∆1 ∆2 ∆3} → ∆0 ▷ ∆1 → ∆2 ▷ ∆3 → ∆0 ⊗ ∆2 ▷ ∆1 ⊗ ∆3

Every supply can be turned into itself with id (which allows us to lift equalities between
supplies to productions), while ◦ and ⊗f give transitivity and congruence principles for produc-
tions. We have omitted equality rules such as id being the unit for composition, these follow in
a standard way for symmetric monoidal categories.

Using this structure, we can define our linear judgment as a dependent type as follows.

⊩ : Supply → Type → Type
∆ ⊩ A = Σ[a ∈ A] (∆ ▷ ι a)

2

https://github.com/maxdore/dltt

Linear Types inside Dependent Type Theory Doré

We can conveniently program using this notion of linear judgment. For example, we can
implement an analogue of safeHead from above in Cubical Agda and give it the following type.

safeHead : (xs : List A) → (y : A) → ι xs ⊗ (ι y) ˆ null xs ⊩ A × List A

We need a single instance of xs in our program, while the multiplicity of y depends on
whether xs is null, which is a program that returns 1 if the given list is empty and 0 otherwise.
To implement safeHead, we need to add more productions to ▷ , e.g., a rule to remove a cons
constructor from a supply ι (x :: xs) ▷ ι x ⊗ ι xs. This rule captures that the free variables of
a non-empty list are the same as the free variables of head and tail considered separately.

2. Linear dependent functions In order to add function types to our system, we need
additional structure which is not present in Cubical Agda. First, we require that our supplies
have exponentials, i.e., each SupplyΓ is a symmetric monoidal closed category where we write
[∆0,∆1] for the supply which internalises productions between ∆0 and ∆1. Second, we need to
be able to bind free variables in supplies, i.e., we require a functor

Λx:A : SupplyΓ,x:A → SupplyΓ

Furthermore, Λx:A has to be right adjoint to context extension of supplies (context extension
of dependent type theory entails that any term of SupplyΓ is also a term of SupplyΓ,x:A). Using
this structure we can define dependent linear function types as follows.

(−) ⊸ (−) : (A : Type) → (B : A → Type) → Σ(C : Type)(C → Supply)

(x : A) ⊸ B(x) = ((x : A) → B(x)) , (λf → Λx:A[ι(x), ι(f x)])
(1)

In words, a dependent linear function is a dependent function f and a production that witnesses
that any input x : A represents the same resources as the output of applying f to x. To iterate
this function type, we need to slightly generalise the above definition, we refer the interested
reader to the formalisation.

We can derive natural introduction and elimination principles for our functions.

Γ, x : A ⊢ ∆⊗ ι(x) ⊩ b : B(x)

Γ ⊢ ∆ ⊩ λx.b : (x : A) ⊸ B(x)
(x /∈ fv(∆))

Γ ⊢ ∆0 ⊩ f : (x : A) ⊸ B(x) Γ ⊢ ∆1 ⊩ a : A

Γ ⊢ ∆0 ⊗∆1 ⊩ f a : B(a)

These rules can be generalised to take in n copies of the input for some open term n of
the natural numbers, we write (x : A)n ⊸ B for such a function. Using these functions with
multiplicities, we can write safeHead from above as a proper linear dependent function.

safeHead : (xs : List A)1 ⊸ (y : A)null xs ⊸ A× List A

Our system therefore has both dependent types and dependent multiplicities, giving an expres-
sive language to type many programs that cannot be precisely typed otherwise.

Acknowledgments I am indebted to Valeria de Paiva and Pierre-Marie Pédrot for introduc-
ing me to the Dialectica construction; and to Nathan Corbyn and Daniel Gratzer for clearing up
my type-theoretic confusions. I am grateful for helpful discussions with Thorsten Altenkirch,
Pedro H. Azevedo de Amorim, Evan Cavallo, Jeremy Gibbons, Sean Moss and Sam Staton;
and for the comments of several anonymous reviewers.

3

Linear Types inside Dependent Type Theory Doré

References

[1] Robert Atkey. Syntax and semantics of quantitative type theory. Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, (LICS):56–65, 2018.

[2] Iliano Cervesato and Frank Pfenning. A linear logical framework. Information and computation,
179(1):19–75, 2002.

[3] Neelakantan R Krishnaswami, Pierre Pradic, and Nick Benton. Integrating linear and dependent
types. Principles of Programming Languages 2015 (POPL), 50(1):17–30, 2015.

[4] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Substructural
and Modal Logics. In Dale Miller, editor, 2nd International Conference on Formal Structures for
Computation and Deduction (FSCD 2017), volume 84 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 25:1–25:22, Dagstuhl, Germany, 2017.

[5] Conor McBride. I got plenty o’nuttin’. A List of Successes That Can Change the World: Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, pages 207–233, 2016.

[6] Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded modal dependent type theory.
In Nobuko Yoshida, editor, Programming Languages and Systems, pages 462–490, Cham, 2021.
Springer International Publishing.

[7] Georgi Nakov and Fredrik Nordvall Forsberg. Quantitative polynomial functors. In Henning
Basold, Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types for
Proofs and Programs (TYPES), volume 239 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 10:1–10:22, Dagstuhl, Germany, 2022.

[8] Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,
Chalmers University of Technology and Göteborg University, 2007.

[9] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program reasoning
with graded modal types. Proceedings of the ACM on Programming Languages, 3(ICFP):1–30,
2019.

[10] Pierre-Marie Pédrot. A functional functional interpretation. Proceedings of the Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science Logic and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS/CSL), 2014.

[11] Pierre-Marie Pédrot. Dialectica the ultimate. Talk at Trends in Linear Logic and Applications
(https://www.p%C3%A9drot.fr/slides/tlla-07-24.pdf), 2024.

[12] Matthijs Vákár. A categorical semantics for linear logical frameworks. In Andrew Pitts, editor,
Foundations of Software Science and Computation Structures, pages 102–116, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[13] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: a dependently typed pro-
gramming language with univalence and higher inductive types. Journal of Functional Program-
ming, 31:e8, 2021.

4

https://www.p%C3%A9drot.fr/slides/tlla-07-24.pdf

