Extending the groupoid mode

D2SFibs

Summary 00

Dependent two-sided fibrations for directed type theory

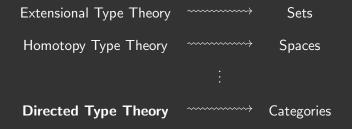
Fernando Chu

Extending the groupoid mode

D2SFibs

Summary 00

Motivation



Extending the groupoid mode

D2SFibs

Summary 00

The idea

1. We start with MLTT and the groupoid model.

- Import the rules we see in the semantics back to the syntax, e.g.:
 - Add an op type constructor
 - Add a hom type constructor
 - Add a new context extension operation, capturing dependent 2-sided fibrations.

D2SFibs

- 1. We start with MLTT and the groupoid model.
- 2. Import the rules we see in the semantics back to the syntax, e.g.:
 - Add an op type constructor
 - Add a hom type constructor
 - Add a new context extension operation, capturing dependent 2-sided fibrations.

D2SFibs

- 1. We start with MLTT and the groupoid model.
- 2. Import the rules we see in the semantics back to the syntax, e.g.:
 - Add an op type constructor
 - Add a hom type constructor
 - Add a new context extension operation, capturing dependent 2-sided fibrations.

D2SFibs

- 1. We start with MLTT and the groupoid model.
- 2. Import the rules we see in the semantics back to the syntax, e.g.:
 - Add an op type constructor
 - $\circ~$ Add a \hom type constructor
 - Add a new context extension operation, capturing dependent 2-sided fibrations.

- 1. We start with MLTT and the groupoid model.
- 2. Import the rules we see in the semantics back to the syntax, e.g.:
 - Add an op type constructor
 - $\circ~$ Add a \hom type constructor
 - Add a new context extension operation, capturing dependent 2-sided fibrations.

The groupoid model

The Hofmann and Streicher 1998 model is as follows:

- Contexts → Groupoids
 - Empty context → ★
- Types in context \rightsquigarrow Functors • $(\Gamma \vdash A : U) \rightsquigarrow (A : \Gamma \rightarrow \mathsf{Grpd})$

- Context extension → Grothendieck construction
 - $(\Gamma, x : A) \rightsquigarrow (\Gamma.A)$
- Terms in context ~>> Sections
 - $\bullet \ (\Gamma \vdash x : A) \rightsquigarrow (\Gamma \to \Gamma . A)$

Hence, we interpret:

$$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \to \mathsf{Grpd}) \rightsquigarrow \text{ a groupoid } A$$

 $(a:A \vdash Fa:B) \leadsto$ a section $A \to A.B \leadsto$ a functor $A \to B$

The groupoid model

The Hofmann and Streicher 1998 model is as follows:

- Contexts → Groupoids
 - Empty context → ★
- Types in context → Functors
 (Γ⊢ A : U) → (A : Γ → Grpd)

- Context extension → Grothendieck construction
 - $(\Gamma, x : A) \rightsquigarrow (\Gamma.A)$
- Terms in context ~>
 Sections
 - $(\Gamma \vdash x : A) \rightsquigarrow (\Gamma \rightarrow \Gamma . A)$

Hence, we interpret:

$$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \to \mathsf{Grpd}) \rightsquigarrow \mathsf{a} \mathsf{groupoid} A$$

 $(a:A \vdash Fa:B) \leadsto$ a section $A \to A.B \leadsto$ a functor $A \to B$

The category model

The Hofmann and Streicher 1998 model is as follows:

- Contexts ~> Categories
 - Empty context → ★
- Types in context \rightsquigarrow Functors • $(\Gamma \vdash A : U) \rightsquigarrow (A : \Gamma \rightarrow Cat)$

- Context extension → Grothendieck construction
 - $(\Gamma, x : A) \rightsquigarrow (\Gamma.A)$
- Terms in context \rightsquigarrow Sections
 - $\bullet \ (\Gamma \vdash x : A) \rightsquigarrow (\Gamma \to \Gamma . A)$

Hence, we interpret:

$$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \to \mathsf{Cat}) \rightsquigarrow$$
 a category A

 $(a:A \vdash Fa:B) \leadsto$ a section $A \to A.B \leadsto$ a functor $A \to B$

Extending the groupoid model 0 = 0

D2SFibs

Summary 00

The hom-Form rule

$\frac{\vdash A:\mathcal{U}}{a:A,b:A\vdash \mathsf{Id}_A(a,b):\mathcal{U}} \mathsf{Id}\text{-}\mathsf{Form}$

This is interpreted as the functor $\hom:A.A
ightarrow{\mathsf{Grpd}}.$

$$\begin{array}{c} a \xrightarrow{\cong} a' \\ \downarrow \\ b \xrightarrow{\cong} b' \end{array}$$

Extending the groupoid model 0 = 0

D2SFibs

Summary 00

The hom-Form rule

$$rac{dash A:\mathcal{U}}{a:A,b:Adash \mathsf{Id}_A(a,b):\mathcal{U}}$$
 Id-Form

This is interpreted as the functor $hom: A.A \rightarrow \mathsf{Grpd}$.

$$\begin{array}{c} a \xrightarrow{\cong} a' \\ \downarrow & \downarrow \\ b \xrightarrow{\cong} b' \end{array}$$

Extending the groupoid model 0 = 0

D2SFibs

Summary 00

The hom-Form rule

$$rac{dash A:\mathcal{U}}{a:A,b:Adash \mathsf{Id}_A(a,b):\mathcal{U}}$$
 Id-Form

This is interpreted as the functor hom : $A.A \rightarrow \mathsf{Grpd}$.

$$\begin{array}{c} a \xrightarrow{\cong} a' \\ \downarrow & \downarrow \\ b \xrightarrow{\cong} b' \end{array}$$

Extending the groupoid model 0 = 0

D2SFibs

Summary 00

The hom-Form rule

$$rac{dash A:\mathcal{U}}{a:A,b:Adash \operatorname{hom}_A(a,b):\mathcal{U}} ext{ hom-Form}$$

This is interpreted as the functor $hom : A.A \rightarrow Cat$.

$$\begin{array}{c} a \xrightarrow{\cong} a' \\ \downarrow & \downarrow' \\ b \xrightarrow{\cong} b' \end{array}$$

Extending the groupoid model 0 = 0

D2SFibs

Summary 00

The hom-Form rule

$$\frac{\vdash A:\mathcal{U}}{a:A^{\mathsf{op}},b:A\vdash \hom_A(a,b):\mathcal{U}} \text{ hom-Form}$$

This is interpreted as the functor $hom: A^{op}.A \rightarrow Cat$.

Extending the groupoid model 000

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash \mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{ Id}\text{-}\mathsf{Intro}$$

Extending the groupoid model $\circ \circ \circ$

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash \mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{ Id}\text{-}\mathsf{Intro}$$

Extending the groupoid model $\circ \circ \circ$

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash \mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{ Id}\text{-}\mathsf{Intro}$$

Extending the groupoid model

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash \mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{Id}\text{-}\mathsf{Intro}$$

Extending the groupoid model

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash \mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{ Id}\text{-}\mathsf{Intro}$$

Extending the groupoid model

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash\mathsf{refl}_a:\mathsf{Id}_A(a,a)} \mathsf{Id}\text{-Intro}$$

Extending the groupoid model $\circ \circ \circ$

D2SFibs

Summary 00

The hom-Intro rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash\mathsf{refl}_a:\hom_A(a,a)} \text{ hom-Intro}$$

$$\begin{array}{ccc} A \xrightarrow{\rightarrow} & a \xrightarrow{\alpha} a' \\ & & & \downarrow^{\mathsf{refl}} & \downarrow^{\langle \mathsf{dom}, \mathsf{cod} \rangle} & & \mathsf{id}_a \\ A \xrightarrow{\Delta} A.A & a \xrightarrow{\alpha} a' \end{array}$$

Extending the groupoid mode

D2SFibs

2-sided fibrations

Definition (2SFib, Street 1974)

Let A: Cat and B: Cat. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

- 1. A span (p,q) from A to B.
- 2. Evidence that p is an opfibration.
- 3. Evidence that q is a fibration.
- 4. Such that some coherences hold.

(2
/	\backslash
p	$\setminus q$
/	
\downarrow	Ţ
A	B

Extending the groupoid mode

D2SFibs

2-sided fibrations

Definition (2SFib, Street 1974)

Let A: Cat and B: Cat. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A span (p,q) from A to B.

- 2. Evidence that p is an opfibration.
- 3. Evidence that q is a fibration.
- 4. Such that some coherences hold.

(2
/	\backslash
p /	$\setminus q$
\downarrow	\sum
A	B

2-sided fibrations

Definition (2SFib, Street 1974)

Let A: Cat and B: Cat. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

- 1. A functor $q: C \to A \times B$.
- 2. Evidence that $\pi_A \circ q$ is an opfibration.
- 3. Evidence that for each a : A, the restriction of q to the fiber over a is a fibration.

 $\downarrow^{q} \\ A \times B \\ \downarrow^{\pi_{A}} \\ A$

C

4. Such that some coherences hold.

2-sided fibrations

Definition (2SFib, Street 1974)

Let A: Cat and B: Cat. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A functor $q: C \to A \times B$.C2. Evidence that $\pi_A \circ q$ is an opfibration. $\downarrow q$ 3. Evidence that for each a: A, the
restriction of q to the fiber over a is a
fibration. $\downarrow q$ 4. Such that some coherences hold.A

Extending the groupoid model

D2SFibs

Dependent 2-sided fibrations

Definition (D2SFib)

Let A: Cat and $B : A \to Cat$. A Dependent 2-Sided Fibration (D2SFib) from A to B is a category C equipped with the following data

- 1. A functor $q: C \to A.B$.
- 2. Evidence that $\pi_A \circ q$ is an opfibration.
- 3. Evidence that for each a : A, the restriction of q to the fiber over a is a fibration.

\mathbf{C}
\downarrow^q
A.B
$\int \pi_A$
A

 \sim

4. Such that some coherences hold.

Extending the groupoid model

D2SFibs o●oooo Summary 00

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

 $\mathsf{Fib}_{split}(A) \simeq \mathsf{Functor}(A^{\mathsf{op}},\mathsf{Cat})$

Proposition

Let A and B be categories. There is an equivalence of categories

2SFib_{split} $(A, B) \simeq$ Functor $(A \times B^{op}, Cat)$

Extending the groupoid model

D2SFibs o●oooo Summary 00

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

 $\mathsf{Fib}_{split}(A) \simeq \mathsf{Functor}(A^{\mathsf{op}},\mathsf{Cat})$

Proposition

Let A and B be categories. There is an equivalence of categories

 $2\mathsf{SFib}_{split}(\overline{A,B}) \simeq \mathsf{Functor}(\overline{A \times B^{\mathsf{op}}},\mathsf{Cat})$

Extending the groupoid model

D2SFibs o●oooo Summary 00

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

 $\mathsf{Fib}_{split}(A) \simeq \mathsf{Functor}(A^{\mathsf{op}},\mathsf{Cat})$

Proposition

Let A be a category and $B: A \to \mathsf{Cat}$ a functor. There is an equivalence of categories

 $\mathsf{D2SFib}_{\textit{split}}(A, B) \simeq \mathsf{Functor}(A.(\mathsf{op} \circ B), \mathsf{Cat})$

Extending the groupoid mode

D2SFibs

Summary 00

A new context extension

In addition to

$$\frac{-A:\mathcal{U} \quad a:A \vdash B(a):\mathcal{U}}{a:A,b:B(a)\operatorname{\mathsf{ctx}}} \operatorname{CTx-Ext}_1$$

We now add

 $\begin{array}{l} \vdash A : \mathcal{U} & a : A \vdash B(a) : \mathcal{U} \\ \hline a : A, b : B(a)^{\mathsf{op}} \vdash C(a, b) : \mathcal{U} \\ \hline a : A, b : B(a), c \stackrel{2\mathsf{f}}{:} C(a, b) \mathsf{ctx} \end{array} \mathsf{Ctx-Ext}_2 \end{array}$

Extending the groupoid mode

D2SFibs

Summary 00

A new context extension

In addition to

$$\frac{-A:\mathcal{U} \quad a:A \vdash B(a):\mathcal{U}}{a:A,b:B(a)\operatorname{\mathsf{ctx}}} \operatorname{Ctx-Ext}_1$$

We now add

$$\begin{array}{l} \vdash A : \mathcal{U} & a : A \vdash B(a) : \mathcal{U} \\ \\ \hline a : A, b : B(a)^{\mathsf{op}} \vdash C(a, b) : \mathcal{U} \\ \hline a : A, b : B(a), c \stackrel{2\mathsf{f}}{:} C(a, b) \operatorname{ctx} \end{array} \operatorname{Ctx-Ext}_2 \end{array}$$

D2SFibs

Summary 00

A new hom-intro rule

This lets us derive

$$\begin{array}{l} \vdash A : \mathcal{U} & a : A \vdash A : \mathcal{U} \\ \hline b : A, a : A^{\mathsf{op}} \vdash \hom_A(a, b) : \mathcal{U} \\ \hline b : A, a : A, f \stackrel{2\mathsf{f}}{:} \hom_A(a, b) \mathsf{ctx} \end{array} \mathsf{CTX-Ext}_2 \end{array}$$

Which let us make sense of our introduction rule

 $\frac{\vdash A:\mathcal{U}}{a:A\vdash\mathsf{refl}_a\stackrel{\circ}{:}\hom(a,a)} \text{ hom-Intro}$

D2SFibs

Summary 00

A new hom-intro rule

This lets us derive

$$\begin{array}{ll} \vdash A: \mathcal{U} & a: A \vdash A: \mathcal{U} \\ \hline b: A, a: A^{\mathsf{op}} \vdash \hom_A(a, b): \mathcal{U} \\ \hline b: A, a: A, f \stackrel{2\mathsf{f}}{:} \hom_A(a, b) \mathsf{ctx} \end{array} \mathsf{CTX}\mathsf{EXT}_2 \end{array}$$

Which let us make sense of our introduction rule

$$\frac{\vdash A:\mathcal{U}}{a:A\vdash\mathsf{refl}_a\stackrel{\circ}{:}\hom(a,a)}\hom\operatorname{INTRO} \qquad \overbrace{A\xrightarrow{}}^{\mathsf{refl}} \bigvee \langle \mathsf{cod},\mathsf{dom} \rangle \\ A\xrightarrow{} A.A$$

Extending the groupoid mode

D2SFibs

Summary 00

A new hom-elim rule

We now obtain a new elimination rule

$$\frac{\Gamma, b: A, a: A, f \stackrel{2^{\mathsf{f}}}{:} \hom_{A}(a, b) \vdash D: \mathcal{U}}{\Gamma, a: A \vdash d: D[a/b, \mathsf{refl}_{A}/f]} \operatorname{hom-ELIM}_{\Gamma, b: A, a: A, f \stackrel{2^{\mathsf{f}}}{:} \hom_{A}(a, b) \vdash j_{d}: D} \operatorname{hom-ELIM}$$

Extending the groupoid mode

D2SFibs

Summary 00

A new hom-elim rule

We now obtain a new elimination rule

$$\begin{split} & \Gamma, a: A \vdash X: \mathcal{U} \\ & \Gamma, b: A, a: A, f \stackrel{2^{\mathrm{f}}}{:} \hom_{A}(a, b), x: X^{\mathrm{op}} \vdash D: \mathcal{U} \\ & \frac{\Gamma, a: A, x: X \vdash d \stackrel{\circ}{:} D[a/b, \mathsf{refl}_{A}/f]}{\Gamma, b: A, a: A, f \stackrel{2^{\mathrm{f}}}{:} \hom_{A}(a, b), x: X \vdash j_{d} \stackrel{2^{\mathrm{f}}}{:} D} \text{ hom-ELIM} \end{split}$$

Some solutions

The D2SFib approach gives some partial solutions:

• Terms are fully functorial in all variables:

 $a:A\vdash Fa:B$

 $b: A, a: A, f \stackrel{\text{2f}}{:} \hom(a, b) \vdash Ff : \hom(Fa, Fb)$

• The analog of a homotopy in HoTT

$$a: A \vdash \varphi_a \stackrel{\circ}{:} \hom(Fa, Ga)$$

is interpreted as a natural transformation $F \to G$ in the model.

• We can prove Yoneda inside this theory!

Extending the groupoid mode

D2SFibs

Summary •0

Summary

We start form the groupoid model and add:

- Categories as types.
- A hom-type constructor.
- The op type constructor.
- A new context extension, which recovers the arrow category.

Future work

• Better understanding of D2SFibs

- (D2S) factorization systems?
- Stability under pullback?
- $\circ~$ How do they interact with $\Pi\mbox{-types}?$
- $\circ~$ Characterization as a lax normal functor $A.B \rightarrow \mathsf{Prof}?$
- \circ Dependent *n*-sided fibrations?
- Remove of explicit substitutions?
- How to write a typechecker for this?

Thank you!

The straightening operation

Given:

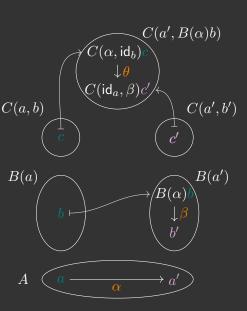
 $\begin{array}{l} A:\mathsf{Cat}\\ B:A\to\mathsf{Cat}\\ C:A.(\mathsf{op}\circ B)\to\mathsf{Cat} \end{array}$

The associated D2SFib is

$$A.\big(\sum_{\mathsf{op}\circ B}(\mathsf{op}\circ C)\big)^{\mathsf{op}}$$

We picture a morphism

$$(\alpha, \beta, \theta) : (a, b, c) \to (a', b', c')$$



Definition (D2SFib)

Let A be a category and $B: A \to Cat$ a functor. A **dependent 2-sided fibration** (D2SFib) from A to B is a category C equipped with the following data

1. A functor $q: C \to A.B$, together with data specifying that for each a: A, the restriction $q_{|a|}$ as below

$$\begin{array}{c} C(a) \xrightarrow{q_{|a|}} (A.B)(a) \longrightarrow 1 \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow a \\ C \xrightarrow{q} A.B \xrightarrow{\pi_A} A \end{array}$$

is a fibration.

2. Evidence that $p := \pi_A \circ q : C \to A$ is an opfibration.

Dependent 2-sided fibrations

Definition (D2SFib (cont.))

Such that

- 1. q is an opcartesian functor.
- 2. For each $\alpha: pe \to a$ in A and $\beta: b \to qe$ in B(p(e)), the canonical morphism

 $\alpha_!\beta^*e \to (B(\alpha)\beta)^*\alpha_!e$

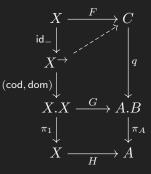
given by any of the universal properties is an identity.

$$C \\ \downarrow^{q} \\ A.B \\ \downarrow^{\pi_{A}} \\ A$$

A lifting property

Proposition

Let X be a category. If $q: C \rightarrow A.B$ is a D2SFib, and we have a commutative diagram as below, with G mapping chosen opcartesian lifts to chosen opcartesian lifts, then there exists a lift as making everything commute.



References

- Hofmann, Martin and Thomas Streicher (1998). "The groupoid interpretation of type theory". In: Twenty-five years of constructive type theory (Venice, 1995) 36, pp. 83–111.
- Street, Ross (1974). "Fibrations and Yoneda's lemma in a 2-category". In: *Category Seminar*. Ed. by Gregory M. Kelly. Vol. 420. Series Title: Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 104–133. ISBN: 978-3-540-06966-9 978-3-540-37270-7. DOI: 10.1007/BFb0063102.