Löb's Theorem and Provability Predicates in Rocq

TYPES 2025, Glasgow

Janis Bailitis

Dominik Kirst

Yannick Forster

June 9, 2025

- Sufficiently strong formal systems S have **provability predicates** Pr(x) : \mathbb{F}
 - $ightharpoonup S \vdash \varphi \text{ iff } S \vdash \Pr(\overline{\varphi})$

- Sufficiently strong formal systems S have **provability predicates** Pr(x) : \mathbb{F}
 - $ightharpoonup S \vdash \varphi \text{ iff } S \vdash \Pr(\overline{\varphi})$
 - ➤ Many different of various strengths, even for same formal system

- Sufficiently strong formal systems S have **provability predicates** Pr(x) : \mathbb{F}
 - $ightharpoonup S \vdash \varphi \text{ iff } S \vdash \Pr(\overline{\varphi})$
 - ➤ Many different of various strengths, even for same formal system

Theorem (Gödel, 1931)

If $\Pr(x)$ and S are sufficiently strong, and $S \vdash \varphi \leftrightarrow \neg \Pr(\overline{\varphi})$, then φ is independent.

- Sufficiently strong formal systems S have **provability predicates** Pr(x) : \mathbb{F}
 - $ightharpoonup S \vdash \varphi \text{ iff } S \vdash \Pr(\overline{\varphi})$
 - ➤ Many different of various strengths, even for same formal system

Theorem (Gödel, 1931)

If $\Pr(x)$ and S are sufficiently strong, and $S \vdash \varphi \leftrightarrow \neg \Pr(\overline{\varphi})$, then φ is independent.

Problem (Henkin, 1952)

What if $S \vdash \varphi \leftrightarrow \Pr(\overline{\varphi})$?

- Sufficiently strong formal systems S have **provability predicates** Pr(x) : \mathbb{F}
 - $ightharpoonup S \vdash \varphi \text{ iff } S \vdash \Pr(\overline{\varphi})$
 - ➤ Many different of various strengths, even for same formal system

Theorem (Gödel, 1931)

If $\Pr(x)$ and S are sufficiently strong, and $S \vdash \varphi \leftrightarrow \neg \Pr(\overline{\varphi})$, then φ is independent.

Problem (Henkin, 1952)

What if $S \vdash \varphi \leftrightarrow \Pr(\overline{\varphi})$?

Theorem (Löb, 1955)

If Pr(x) and S are sufficiently strong, and $S \vdash \varphi \leftrightarrow Pr(\overline{\varphi})$, then $S \vdash \varphi$.

Theorem (Löb's theorem, 1955)

$$S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi \text{ implies } S \vdash \varphi.$$

Theorem (Löb's theorem, 1955)

Let $\Pr(x)$ and S be sufficiently strong. For all sentences φ , $S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi$ implies $S \vdash \varphi$.

• Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)

3

Theorem (Löb's theorem, 1955)

Let $\Pr(x)$ and S be sufficiently strong. For all sentences φ , $S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi$ implies $S \vdash \varphi$.

- Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)
 - ➤ Mechanised only once: Paulson (2015, Isabelle). Tedious details.

Theorem (Löb's theorem, 1955)

$$S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi \text{ implies } S \vdash \varphi.$$

- Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)
 - ➤ Mechanised only once: Paulson (2015, Isabelle). Tedious details.
 - ➤ We extend Paulson's proof to Löb's theorem

Theorem (Löb's theorem, 1955)

$$S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi \text{ implies } S \vdash \varphi.$$

- Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)
 - ➤ Mechanised only once: Paulson (2015, Isabelle). Tedious details.
 - ➤ We extend Paulson's proof to Löb's theorem
- Gödel's first incompleteness theorem mechanised often¹

¹Shankar (1986); O'Connor (2005); Harrison (2009); Paulson (2015); Popescu and Traytel (2019); Kirst and Peters (2023)

Theorem (Löb's theorem, 1955)

$$S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi \text{ implies } S \vdash \varphi.$$

- Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)
 - ➤ Mechanised only once: Paulson (2015, Isabelle). Tedious details.
 - ➤ We extend Paulson's proof to Löb's theorem
- Gödel's first incompleteness theorem mechanised often¹
- Kirst and Peters: Computational proof of first theorem, synthetic
 - ➤ Based on Beklemishev (2011) and textbooks by Kleene

¹Shankar (1986); O'Connor (2005); Harrison (2009); Paulson (2015); Popescu and Traytel (2019); Kirst and Peters (2023)

Theorem (Löb's theorem, 1955)

$$S \vdash \Pr(\overline{\varphi}) \rightarrow \varphi \text{ implies } S \vdash \varphi.$$

- Implies Gödel's second incompleteness theorem (If $S \vdash \neg Pr(\overline{\bot})$, then $S \vdash \bot$)
 - ➤ Mechanised only once: Paulson (2015, Isabelle). Tedious details.
 - ➤ We extend Paulson's proof to Löb's theorem
- Gödel's first incompleteness theorem mechanised often¹
- Kirst and Peters: Computational proof of first theorem, synthetic
 - ➤ Based on Beklemishev (2011) and textbooks by Kleene
 - ➤ Leave second theorem as future work

¹Shankar (1986); O'Connor (2005); Harrison (2009); Paulson (2015); Popescu and Traytel (2019); Kirst and Peters (2023)

Is there a less tedious proof of Löb's theorem?

• Gross, Gallagher, Fallenstein (2016): Löb's theorem in Agda

- Gross, Gallagher, Fallenstein (2016): Löb's theorem in Agda
- Historically known to have intricate proof

- Gross, Gallagher, Fallenstein (2016): Löb's theorem in Agda
- Historically known to have intricate proof
- Many proof techniques known to fail

- Gross, Gallagher, Fallenstein (2016): Löb's theorem in Agda
- Historically known to have intricate proof
- Many proof techniques known to fail
- Can a synthetic perspective simplify arguments?

- Gross, Gallagher, Fallenstein (2016): Löb's theorem in Agda
- Historically known to have intricate proof
- Many proof techniques known to fail
- Can a synthetic perspective simplify arguments?
 - ightarrow Usually, technically intricate details vanish, up to 90% shorter proofs

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

Pr(x): \mathbb{F} satisfies

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

 $Pr(x) : \mathbb{F}$ satisfies

• **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

Pr(x) : \mathbb{F} satisfies

- **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$
- the distributivity law if $S \vdash \Pr(\overline{\varphi} \to \overline{\psi}) \to \Pr(\overline{\varphi}) \to \Pr(\overline{\psi})$

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

Pr(x): \mathbb{F} satisfies

- **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$
- the distributivity law if $S \vdash \Pr(\overline{\varphi} \to \overline{\psi}) \to \Pr(\overline{\varphi}) \to \Pr(\overline{\psi})$
- internal necessitation if $S \vdash \Pr(\overline{\varphi}) \rightarrow \Pr(\overline{\Pr(\overline{\varphi})})$

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

Pr(x): \mathbb{F} satisfies

- **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$
- the distributivity law if $S \vdash \Pr(\overline{\varphi} \to \overline{\psi}) \to \Pr(\overline{\varphi}) \to \Pr(\overline{\psi})$
- internal necessitation if $S \vdash \Pr(\overline{\varphi}) \rightarrow \Pr(\overline{\Pr(\overline{\varphi})})$

Diagonalisation Property (Carnap (1934))

^{&#}x27;Sufficiently strong' theories:

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

 $Pr(x) : \mathbb{F}$ satisfies

- **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$
- the distributivity law if $S \vdash \Pr(\overline{\varphi} \to \overline{\psi}) \to \Pr(\overline{\varphi}) \to \Pr(\overline{\psi})$
- internal necessitation if $S \vdash \Pr(\overline{\varphi}) \rightarrow \Pr(\overline{\Pr(\overline{\varphi})})$

Diagonalisation Property (Carnap (1934))

S has **diagonalisation property** if for all $\varphi(x)$ there is sentence G s.t.

$$S \vdash G \leftrightarrow \varphi(\overline{G}).$$

^{&#}x27;Sufficiently strong' theories:

'Sufficiently strong' provability predicates:

Hilbert-Bernays-Löb (HBL) Conditions (Hilbert-Bernays (1939), Löb (1955))

 $Pr(x) : \mathbb{F}$ satisfies

- **necessitation** if $S \vdash \varphi$ implies $S \vdash \Pr(\overline{\varphi})$
- the distributivity law if $S \vdash \Pr(\overline{\varphi} \to \overline{\psi}) \to \Pr(\overline{\varphi}) \to \Pr(\overline{\psi})$
- internal necessitation if $S \vdash \Pr(\overline{\varphi}) \rightarrow \Pr(\overline{\Pr(\overline{\varphi})})$

Diagonalisation Property (Carnap (1934))

S has **diagonalisation property** if for all $\varphi(x)$ there is sentence G s.t.

$$S \vdash G \leftrightarrow \varphi(\overline{G}).$$

 $HBL + Diagonalisation property = L\"{o}b$'s theorem (abstract argument)

^{&#}x27;Sufficiently strong' theories:

• CT: 'Every function is computable in a concrete model of computation.'1

¹Kreisel (1965) as well as Troelstra and van Dalen (1988).

- CT: 'Every function is computable in a concrete model of computation.' 1
- Results based on a variant of CT for arithmetic (CT_{PA} / CT_Q):²

¹Kreisel (1965) as well as Troelstra and van Dalen (1988).

 $^{^2 \}mbox{We}$ use \mbox{EPF}_{μ} (Richman (1983), Forster (2021)) which implies $\mbox{CT}_{\mbox{PA}}$ (Kirst and Peters '23).

- CT: 'Every function is computable in a concrete model of computation.' 1
- Results based on a variant of CT for arithmetic (CT_{PA} / CT_Q):²

Axiom (CT_{PA} , Hermes and Kirst (2022))

For all $f: \mathbb{N} \to \mathbb{N}$ there is $\varphi_f(x_1, x_2) : \mathbb{F}$ such that for all $n: \mathbb{N}$, $PA \vdash \forall y. \varphi_f(\overline{n}, y) \leftrightarrow y = \overline{f n}$.

¹Kreisel (1965) as well as Troelstra and van Dalen (1988).

 $^{^2 \}mbox{We}$ use \mbox{EPF}_{μ} (Richman (1983), Forster (2021)) which implies $\mbox{CT}_{\mbox{PA}}$ (Kirst and Peters '23).

- CT: 'Every function is computable in a concrete model of computation.' 1
- Results based on a variant of CT for arithmetic (CT_{PA} / CT_Q):²

Axiom (CT_{PA} , Hermes and Kirst (2022))

For all $f: \mathbb{N} \to \mathbb{N}$ there is $\varphi_f(x_1, x_2) : \mathbb{F}$ such that for all $n: \mathbb{N}$,

$$\mathsf{PA} \vdash \forall y.\, \varphi_f(\overline{n},y) \leftrightarrow y = \overline{f\,n}.$$

Consistent for CIC¹

¹Kreisel (1965) as well as Troelstra and van Dalen (1988).

 $^{^2 \}mbox{We}$ use \mbox{EPF}_{μ} (Richman (1983), Forster (2021)) which implies \mbox{CT}_{PA} (Kirst and Peters '23).

³See also Pédrot (2024), Swan and Uemura (2019)

Exploiting Church's Thesis

Exploiting Church's Thesis

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Lemma (Diagonal Lemma, Carnap (1934))

For all $\varphi(x)$: \mathbb{F} there is $G : \mathbb{F}$ s.t. $PA \vdash G \leftrightarrow \varphi(\overline{G})$.

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Lemma (Diagonal Lemma, Carnap (1934))

For all $\varphi(x)$: \mathbb{F} there is $G : \mathbb{F}$ s.t. $PA \vdash G \leftrightarrow \varphi(\overline{G})$.

• Gödel's first incompleteness theorem (1931), with Rosser's strengthening¹

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Lemma (Diagonal Lemma, Carnap (1934))

For all $\varphi(x)$: \mathbb{F} there is $G : \mathbb{F}$ s.t. $PA \vdash G \leftrightarrow \varphi(\overline{G})$.

- Gödel's first incompleteness theorem (1931), with Rosser's strengthening¹
- Tarski's theorem (1935)

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Lemma (Diagonal Lemma, Carnap (1934))

For all $\varphi(x)$: \mathbb{F} there is $G : \mathbb{F}$ s.t. $PA \vdash G \leftrightarrow \varphi(\overline{G})$.

- Gödel's first incompleteness theorem (1931), with Rosser's strengthening¹
- Tarski's theorem (1935)
- Essential undecidability of PA

Corollary

There is $Pr_{CT}(x)$: \mathbb{F} such that $PA \vdash \varphi$ iff $PA \vdash Pr_{CT}(\overline{\varphi})$.

Lemma (Diagonal Lemma, Carnap (1934))

For all $\varphi(x)$: \mathbb{F} there is $G : \mathbb{F}$ s.t. $PA \vdash G \leftrightarrow \varphi(\overline{G})$.

- Gödel's first incompleteness theorem (1931), with Rosser's strengthening¹
- Tarski's theorem (1935)
- Essential undecidability of PA

Problem

 CT_PA not strong enough for Löb's theorem (internal vs external provability).

¹Needs variant of CT_{PA} which also follows from EPF_{μ} (Kirst and Peters (2023)).

- Proof '=' List of formulas
- ullet List and syntax functions not native to PA o tedious to define (Boolos (1993))

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

[] (nil)

 $x::\ell$ (cons)

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

```
[] (nil) |\ell| (length)
```

 $x :: \ell \text{ (cons)}$ $\ell[i] \text{ (indexed access)}$

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

[] (nil) $|\ell|$ (length) $\ell + \ell'$ (append)

 $x :: \ell \text{ (cons)}$ $\ell[i] \text{ (indexed access)}$ $x \rightsquigarrow y \text{ (implication)}$

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

[] (nil)
$$|\ell|$$
 (length) $\ell + \ell'$ (append) $x :: \ell$ (cons) $\ell[i]$ (indexed access) $x \leadsto y$ (implication)

Based on such a definition, we

- Proof '=' List of formulas
- ullet List and syntax functions not native to PA o tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

[] (nil)
$$|\ell|$$
 (length) $\ell + \ell'$ (append) $x :: \ell$ (cons) $\ell[i]$ (indexed access) $x \leadsto y$ (implication)

Based on such a definition, we

1. defined a candidate for an internal provability predicate

- Proof '=' List of formulas
- List and syntax functions not native to PA \rightarrow tedious to define (Boolos (1993))

Definition (Extended Signature of Peano Arithmetic, simplified)

EPA adds the following function symbols to PA:

[] (nil)
$$|\ell|$$
 (length) $\ell + \ell'$ (append) $x :: \ell$ (cons) $\ell[i]$ (indexed access) $x \leadsto y$ (implication)

Based on such a definition, we

- 1. defined a candidate for an internal provability predicate, and
- 2. mechanised necessitation as well as the distributivity law for it.

Is there a proof of Löb's theorem à la Kirst and Peters? No!

• Mechanised proof of Löb's theorem

- Mechanised proof of Löb's theorem
 - ➤ For first-order arithmetic in Rocq assuming HBL conditions and CT_{PA}
 - ➤ In Isabelle based on Paulson's development, axiom-free

- Mechanised proof of Löb's theorem
 - ➤ For first-order arithmetic in Rocq assuming HBL conditions and CT_{PA}
 - ➤ In Isabelle based on Paulson's development, axiom-free
- Mechanised diagonal lemma and key limitative theorems assuming CT_{PA}

- Mechanised proof of Löb's theorem
 - ➤ For first-order arithmetic in Rocq assuming HBL conditions and CT_{PA}
 - ➤ In Isabelle based on Paulson's development, axiom-free
- Mechanised diagonal lemma and key limitative theorems assuming CT_{PA}
- Analysed why CT_{PA} is too weak for Löb's theorem

- Mechanised proof of Löb's theorem
 - ➤ For first-order arithmetic in Rocq assuming HBL conditions and CT_{PA}
 - ➤ In Isabelle based on Paulson's development, axiom-free
- Mechanised diagonal lemma and key limitative theorems assuming CT_{PA}
- Analysed why CT_{PA} is too weak for Löb's theorem
- Mechanised extension of PA easing definition of internal provability predicates

- Mechanised proof of Löb's theorem
 - ➤ For first-order arithmetic in Rocq assuming HBL conditions and CT_{PA}
 - ➤ In Isabelle based on Paulson's development, axiom-free
- Mechanised diagonal lemma and key limitative theorems assuming CT_{PA}
- Analysed why CT_{PA} is too weak for Löb's theorem
- Mechanised extension of PA easing definition of internal provability predicates
- Gave candidate for internal provability predicate and parts of correctness proof

- Mechanise internal necessitation
- Decide whether to keep using extended PA

- Mechanise internal necessitation
- Decide whether to keep using extended PA
- Contribute Isabelle development to Archive of Formal Proofs¹

¹https://www.isa-afp.org/; Mechanisation has been submitted, decision is pending.

- Mechanise internal necessitation
- Decide whether to keep using extended PA
- Contribute Isabelle development to Archive of Formal Proofs¹
- Contribute Rocq development to Rocq Library of First-Order Logic [Kir+22]

¹https://www.isa-afp.org/; Mechanisation has been submitted, decision is pending.

- Mechanise internal necessitation
- Decide whether to keep using extended PA
- Contribute Isabelle development to Archive of Formal Proofs¹
- Contribute Rocq development to Rocq Library of First-Order Logic [Kir+22]
- Mechanise axiom-free proof of diagonal lemma and limitative theorems

¹https://www.isa-afp.org/; Mechanisation has been submitted, decision is pending.

- Mechanise internal necessitation
- Decide whether to keep using extended PA
- Contribute Isabelle development to Archive of Formal Proofs¹
- Contribute Rocq development to Rocq Library of First-Order Logic [Kir+22]
- Mechanise axiom-free proof of diagonal lemma and limitative theorems

Thank You!

References i

- [Bek10] Lev D Beklemishev. 'Gödel incompleteness theorems and the limits of their applicability. I'. In: Russian Mathematical Surveys 65.5 (2010), p. 857. DOI: 10.1070/RM2010v065n05ABEH004703.
- [Boo93] George S. Boolos. **The Logic of Provability.** 5th. Cambridge University Press, 1993.
- [Car34] Rudolf Carnap. Logische Syntax der Sprache. 1st. Schriften zur wissenschaftlichen Weltauffassung. Springer Berlin, Heidelberg, 1934.
- [DT88] Dirk van Dalen and Anne S. Troelstra. **Constructivism in Mathematics. An Introduction.** Elsevier Science Publishers B.V., 1988. ISBN: 0-444-70266-0.

References ii

- [For21] Yannick Forster. 'Church's Thesis and Related Axioms in Coq's Type Theory'. In: 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference). Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021, 21:1–21:19. DOI: 10.4230/LIPICS.CSL.2021.21.
- [GGF16] Jason Gross, Jack Gallagher and Benya Fallenstein. **Löb's theorem: A functional pearl of dependently typed quining.** Unpublished. 2016. URL: https://jasongross.github.io/papers/2016-lob-icfp-2016-draft.pdf.
- [Gö31] Kurt Gödel. 'Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I'. In: Monatshefte für Mathematik 38.1 (1931), pp. 173–198.

References iii

- [Har09] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009. DOI: 10.1017/CB09780511576430.
- [HB39] David Hilbert and Paul Bernays. **Grundlagen der Mathematik.** 1st. Vol. 2. Berlin: Springer, 1939.
- [Hen52] Leon Henkin. 'A problem concerning provability'. In: The Journal of Symbolic Logic 17.2 (1952), p. 160. ISSN: 00224812. URL: http://www.jstor.org/stable/2266288.

References iv

- [HK22] Marc Hermes and Dominik Kirst. 'An Analysis of Tennenbaum's Theorem in Constructive Type Theory'. In: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Ed. by Amy P. Felty. Vol. 228. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2022, 9:1–9:19. ISBN: 978-3-95977-233-4. DOI: 10.4230/LIPIcs.FSCD.2022.9.
- [HKK21] Johannes Hostert, Mark Koch and Dominik Kirst. **'A Toolbox for Mechanised First-Order Logic'.** In: **The Coq Workshop** (2021).
- [Kir+22] Dominik Kirst et al. **'A Coq Library for Mechanised First-Order Logic'.** In: **The Coq Workshop** (2022).
- [Kle52] Stephen C. Kleene. **Introduction to Metamathematics.** North Holland, 1952.

References v

- [Kle67] Stephen C. Kleene. **Mathematical Logic.** Dover Publications, 1967.
- [KP23] Dominik Kirst and Benjamin Peters. 'Gödel's Theorem Without Tears Essential Incompleteness in Synthetic Computability'. In: 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2023, 30:1–30:18. ISBN: 978-3-95977-264-8. DOI: 10.4230/LIPIcs.CSL.2023.30.
- [Kre65] Georg Kreisel. 'Mathematical logic'. In: Lectures on Modern Mathematics 3 (1965), pp. 95–195.
- [Lö55] Martin H. Löb. 'Solution of a Problem of Leon Henkin'. In: The Journal of Symbolic Logic 20.2 (1955), pp. 115–118. DOI: 10.2307/2266895.

References vi

- [O'C05] Russell O'Connor. 'Essential Incompleteness of Arithmetic Verified by Coq'. In: Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings. Ed. by Joe Hurd and Thomas F. Melham. Vol. 3603. Lecture Notes in Computer Science. Springer, 2005, pp. 245–260. DOI: 10.1007/11541868_16.
- [P24] Pierre-Marie Pédrot. "Upon This Quote I Will Build My Church Thesis". In: Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '24. Tallinn, Estonia: Association for Computing Machinery, 2024. ISBN: 9798400706608. DOI: 10.1145/3661814.3662070.

References vii

- [Pau15] Lawrence C. Paulson. **'A Mechanised Proof of Gödel's Incompleteness Theorems Using Nominal Isabelle'.** In: **Journal of Automated Reasoning** 55.1 (2015), pp. 1–37. DOI: 10.1007/S10817-015-9322-8.
- [PT21] Andrei Popescu and Dmitriy Traytel. 'Distilling the Requirements of Gödel's Incompleteness Theorems with a Proof Assistant'. In: Journal of Automated Reasoning 65.7 (2021), pp. 1027–1070. DOI: 10.1007/S10817-021-09599-8.
- [Ric83] Fred Richman. **'Church's Thesis Without Tears'.** In: **The Journal of Symbolic Logic** 48.3 (1983), pp. 797–803. DOI: 10.2307/2273473.
- [Ros36] J. Barkley Rosser. **'Extensions of Some Theorems of Gödel and Church'.** In: **The Journal of Symbolic Logic** 1.3 (1936), pp. 87–91. DOI: 10.2307/2269028.

References viii

- [Sha86] Natarajan Shankar. **'Proof-checking metamathematics'.** PhD thesis. University of Texas, 1986.
- [Sha94] Natarajan Shankar. **Metamathematics, Machines and Gödel's Proof.**Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994. DOI: 10.1017/CB09780511569883.
- [SU19] Andrew Swan and Taichi Uemura. **'On Church's Thesis in Cubical Assemblies'.** In: **CoRR** abs/1905.03014 (2019). arXiv: 1905.03014. URL: http://arxiv.org/abs/1905.03014.
- [Tar35] Alfred Tarski. 'Der Wahrheitsbegriff in den formalisierten Sprachen'.
 In: Studia Philosophica. Commentarii Societatis Philosophicae Polonorum 1
 (1935), pp. 261 –405. URL:
 https://www.sbc.org.pl/dlibra/publication/24411/edition/21615.

Mechanisation

Rocq

- 2600 lines of code (600 specification, 1900 proof, 100 comment)
- Most intricate proof: Distributivity law in EHA (about 400 lines of code)
- Koch's [HKK21] proof mode immensely helpful
- Lots of code dealing with substitutions

Isabelle

- 100 lines of code (60 for Löb proof, 40 for lemmas)
- Can still be shortened

Background: Used Hilbert System

Elements from Rautenberg, Troelstra and Schwichtenberg, as well as both.

Extended PA

Definition (Extended Signature of Peano Arithmetic (EPA), simplified)

In addition to the symbols of PA, EPA contains the following function symbols:

[] (nil)
$$|\ell|$$
 (length) $\ell + \ell'$ (append) $x :: \ell$ (cons) $\ell[i]$ (indexed access) $x \leadsto y$ (implication)

Further, EPA adds the unary predicate symbol ${\cal A}$ to PA.

- EPA $\vdash \overline{\varphi \to \psi} = \overline{\varphi} \leadsto \overline{\psi}$ (object level implication function)
- If $\varphi \in \mathcal{H}$, then EPA $\vdash \mathcal{A} (\forall x_1, \ldots, x_n, \varphi)$
- If $\varphi \in PA$, then $EPA \vdash A\varphi$

Formal proofs: Spelling out (some of) the Details

Definition (Formal proofs)

A proof of φ is a nonempty list $\ell = [\psi_1, \dots, \psi_n] : \mathcal{L}(\mathbb{F})$ with $\varphi = \psi_n$ s.t. for each i

- ullet ψ_i is an axiom of PA, a generalisation of a Hilbert axiom, or
- there are j, j' < i such that ψ_i follows from $\psi_j, \psi_{j'}$ by modus ponens.

Definition (Provability predicate)

$$\operatorname{Prf}(x,y) := (\exists z. \ |x| = S \ z \land x[z] = y) \land \forall i. \ i < |x| \rightarrow \operatorname{WellFormed}(x,i)$$

$$\operatorname{WellFormed}(x,i) := \mathcal{A}(x) \lor \exists j \ j'. \ j < i \land j' < i \land x[j] = x[j'] \rightsquigarrow x[i]$$

Technical Background: Gödel Numberings

Problem

Let $\varphi(x)$, $\psi : \mathbb{F}$.

We used $\varphi(\overline{\psi})$ for 'substituting some encoding of ψ for x in φ '.

 ψ is not a **number**, but a **formula**.

Typical issue. Gödel faced it himself.

Remark (Gödelisation)

There are functions $g\ddot{o}d : \mathbb{F} \to \mathbb{N}$, $g\ddot{o}d^{-1} : \mathbb{N} \to \mathbb{F}$ inverting each other.

$$\varphi(\overline{\psi}) \leadsto \varphi(\overline{\operatorname{g\"{o}d}(\psi)})$$

Technical Background: CT_{PA} is too Weak

Axiom (CT_{PA})

For every $f : \mathbb{N} \to \mathbb{N}$, there is a formula $\varphi(x_1, x_2)$ such that for all $n : \mathbb{N} \to \mathbb{N}$ $f = \mathbb{N}$

Example

Suppose the successor function $S: \mathbb{N} \to \mathbb{N}$ is represented by $\varphi_S(x, y)$.

Question: Can we derive, for all $n \in \mathbb{N}$, that PA $\vdash \varphi_{\mathbb{S}}(\overline{n}, \mathbb{S}\overline{n})$?

Yes!

- Use property of φ_{S} : PA \vdash S $\overline{n} = \overline{Sn}$
- By definition of numerals, PA \vdash S \overline{n} = S \overline{n} , easy to finish

Question: Can we derive PA $\vdash \forall x. \varphi_{S}(x, Sx)$?

No!

• Introduce x: PA $\vdash \varphi_{S}(x, Sx)$. No way to continue as x not a numeral