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Introduction

Impredicativity 101

According to the O.E.D:

im- + predicative, adj. & n.: With a sneaky form of circularity

∼1389, Chaucer: Can’t trust this dude, he’s too impredicative!

The origin of the notion of types, from Russell:

Let S be the set of all sets that do not contain themselves:

Does S contain itself?

Fix: introduce a stratification to prevent such self-applications

Anti-fix: some forms of impredicativity seem consistent and useful
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Introduction

Why do I care?

Working on Typer, an ML/Haskell with dependent types and macros

Typer: low-level λ-calculus intermediate language

Impredicativity used in:

• Encoding of modules into tuples

(containing level-polymorphic definitions)

• Closure conversion

• The desire to subsume System F

Existing forms of impredicativity don’t seem sufficient

Not fond of a special Prop universe (and didn’t know about PR)
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Introduction

Forms of impredicativity

Impredicative universes: τ2 : Prop =⇒ (x :τ1) → τ2 : Prop

As present in System F, Coq, Lean, and many others.

Resizing axioms: τ : Typeu ∧ P (τ) =⇒ τ : Typeu′

Most famously, HoTT’s propositional resizing.

Unsound: Type : Type

Clearly not ideal, especially with erasure.

New, IUP:

The present suggestion

Γ, l :Level ⊢ τ : Typeu
Γ ⊢ (l :Level) → τ : Typeu[0/l]
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Introduction

Plan

Voices in my head:

• Encoding inductive types as closures.

• Encoding closures as inductive types.

Bounds:

• Strong sums defeat stratification.

• Encode System F

Encouraging signs

• Girard’s Paradox did not bite (yet?).
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Introduction

Encoding inductive types as closures

Church-style encoding of lists:

List τ = (t :Type) → t → (τ → t → t) → t

• No induction principle, hence no reasoning.

Solutions by Awodey et.al. [2018] and Firsov and Stump [2018].

• No strong elimination.

Limited solution by Jenkins et.al. [2021]

Strong elimination via universe polymorphism:

List τ = (l : Level) → (t :Typel) → t → (τ → t → t) → t

Stefan Monnier Resizing Prop 6/17



Introduction

Universe of encoded inductive types

(t :Typel) → t → (τ → t → t) → t : Typeu ⊔ S l

(l : Level) → (t :Typel) → t → (τ → t → t) → t : Type??

Predicative principles stipulate supl (u ⊔ S l):

(l : Level) → (t :Typel) → . . . : Typeω

Yet! The type is isomorphic to the inductive: List τ : Typeu

IUP uses infl (u ⊔ S l):

(l : Level) → (t :Typel) → . . . : Type(u ⊔ 1)
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Introduction

Encoding closures as inductive types

Closure conversion turns (open) functions into pairs of:

captured environment × closed function

λn.n+ 1 : Int → Int λn.n+ length Float temps : Int → Int

=⇒ =⇒
((), λ(env, n).n+ 1) ((length, Float, temps),

λ(env, n).n+ env.1 env.2 env.3)

Hide the type of env to preserve types:

Int → Int =⇒ ∃t.(t× ((t× Int) → Int))

Works great in System F! (after erasing Float)
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Introduction

Closure conversion with universes

With universes this turns into: ∃(t :Typeu).(t× ((t× Int) → Int))

And we need to hide u which depends on the captured environment:

∃(l :Level).∃(t :Typel).(t× ((t× Int) → Int))

Predicative principles stipulate supl ((S l) ⊔ 0):

∃(l : Level).∃(t :Typel). . . . : Typeω

Yet! The type is equivalent to the arrow type: Int → Int : Type0

IUP uses infl ((S l) ⊔ 0):

∃(l : Level).∃(t :Typel). . . . : Type1
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Introduction

Strong sums

Let’s try IUP with strong sums:
Γ, l :Level ⊢ τ : Typeu
Γ ⊢ Σl.τ : Typeu[0/l]

We can define:

lower (l :Level) (t :Typel) (x : t) = ⟨l, ⟨t, x⟩⟩
raise (b :Σl.Σt :Typel.t) = b.2.2

This gives us:

lower u τ x : Σl.Σt :Typel.t : Type1

∀x :τ :Typeu. raise (lower u τ x) ; x

We can smuggle any value in a box that lives in Type1!

Suggests that IUP is incompatible with first-class universe levels.
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Introduction

System F

IUP is as strong as System F:

J∀t.τK = (l :Level) → (t :Typel) → JτK

JΛt.eK = λ(l :Level).λ(t :Typel).JeK

Je[τ ]K = JeK u JτK

We can just compute u from JτK
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Introduction

Well ordering

Common example of inconsistency in impredicative systems:

Ordering : Type = Σ(set : Typeu).

Σ(less-than : set → set → Type).

...

The inconsistency appears when we define an ordering of orderings.

In a predicative setting this does not work because Ordering ends up in

a universe level higher than u.

If we want to try and reproduce the paradox using IUP, we need to

abstract over the universe level of set.
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Introduction

Well ordering via existential quantification

First attempt:

Ordering1 : Type1 = ∃(l : Level).

Σ(set : Typel).

Σ(less-than : set → set → Type0).

...

We can now instantiate set to this type.

But the weak nature of the existential makes Ordering1 unusable:

We cannot eliminate to anything that depends on l, so ...

We cannot eliminate to anything that depends on set, so ...
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Introduction

Well ordering via universal quantification

Second attempt:

Ordering2 : Type1 = (l : Level) →
Σ(set : Typel).

Σ(less-than : set → set → Type0).

...

Again, we can now instantiate set to this type (when l is 1).

¿Write a function which instantiates set to Ordering2 when l is 1 yet to

something in Type0 when l is 0?

Use set : TypeS l to avoid the Type0 case? Pushes Ordering2 to Type2!
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Introduction

Conclusion

Church-encoding suggests: (l :Level) → τ : Typeu[0/l]

Closure conversion suggests: ∃(l :Level).τ : Typeu[0/l]

Better stop before Σ(l :Level).τ : Typeu[0/l]!

IUP is as strong as System F.

We have failed to encode known paradoxes so far.

We have used only (l :Level) → (t :Typel) → ... so far

¡Help!
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