
The case for Impredicative
Universe Polymorphism

Stefan Monnier

monnier@iro.umontreal.ca

Université de Montréal

Stefan Monnier Resizing Prop 1/17

Introduction

Impredicativity 101

According to the O.E.D:

im- + predicative, adj. & n.: With a sneaky form of circularity

∼1389, Chaucer: Can’t trust this dude, he’s too impredicative!

The origin of the notion of types, from Russell:

Let S be the set of all sets that do not contain themselves:

Does S contain itself?

Fix: introduce a stratification to prevent such self-applications

Anti-fix: some forms of impredicativity seem consistent and useful

Stefan Monnier Resizing Prop 2/17

Introduction

Why do I care?

Working on Typer, an ML/Haskell with dependent types and macros

Typer: low-level λ-calculus intermediate language

Impredicativity used in:

• Encoding of modules into tuples

(containing level-polymorphic definitions)

• Closure conversion

• The desire to subsume System F

Existing forms of impredicativity don’t seem sufficient

Not fond of a special Prop universe (and didn’t know about PR)

Stefan Monnier Resizing Prop 3/17

Introduction

Forms of impredicativity

Impredicative universes: τ2 : Prop =⇒ (x :τ1) → τ2 : Prop

As present in System F, Coq, Lean, and many others.

Resizing axioms: τ : Typeu ∧ P (τ) =⇒ τ : Typeu′

Most famously, HoTT’s propositional resizing.

Unsound: Type : Type

Clearly not ideal, especially with erasure.

New, IUP:

The present suggestion

Γ, l :Level ⊢ τ : Typeu
Γ ⊢ (l :Level) → τ : Typeu[0/l]

Stefan Monnier Resizing Prop 4/17

Introduction

Plan

Voices in my head:

• Encoding inductive types as closures.

• Encoding closures as inductive types.

Bounds:

• Strong sums defeat stratification.

• Encode System F

Encouraging signs

• Girard’s Paradox did not bite (yet?).

Stefan Monnier Resizing Prop 5/17

Introduction

Encoding inductive types as closures

Church-style encoding of lists:

List τ = (t :Type) → t → (τ → t → t) → t

• No induction principle, hence no reasoning.

Solutions by Awodey et.al. [2018] and Firsov and Stump [2018].

• No strong elimination.

Limited solution by Jenkins et.al. [2021]

Strong elimination via universe polymorphism:

List τ = (l : Level) → (t :Typel) → t → (τ → t → t) → t

Stefan Monnier Resizing Prop 6/17

Introduction

Universe of encoded inductive types

(t :Typel) → t → (τ → t → t) → t : Typeu ⊔ S l

(l : Level) → (t :Typel) → t → (τ → t → t) → t : Type??

Predicative principles stipulate supl (u ⊔ S l):

(l : Level) → (t :Typel) → . . . : Typeω

Yet! The type is isomorphic to the inductive: List τ : Typeu

IUP uses infl (u ⊔ S l):

(l : Level) → (t :Typel) → . . . : Type(u ⊔ 1)

Stefan Monnier Resizing Prop 7/17

Introduction

Encoding closures as inductive types

Closure conversion turns (open) functions into pairs of:

captured environment × closed function

λn.n+ 1 : Int → Int λn.n+ length Float temps : Int → Int

=⇒ =⇒
((), λ(env, n).n+ 1) ((length, Float, temps),

λ(env, n).n+ env.1 env.2 env.3)

Hide the type of env to preserve types:

Int → Int =⇒ ∃t.(t× ((t× Int) → Int))

Works great in System F! (after erasing Float)

Stefan Monnier Resizing Prop 8/17

Introduction

Closure conversion with universes

With universes this turns into: ∃(t :Typeu).(t× ((t× Int) → Int))

And we need to hide u which depends on the captured environment:

∃(l :Level).∃(t :Typel).(t× ((t× Int) → Int))

Predicative principles stipulate supl ((S l) ⊔ 0):

∃(l : Level).∃(t :Typel). . . . : Typeω

Yet! The type is equivalent to the arrow type: Int → Int : Type0

IUP uses infl ((S l) ⊔ 0):

∃(l : Level).∃(t :Typel). . . . : Type1

Stefan Monnier Resizing Prop 9/17

Introduction

Strong sums

Let’s try IUP with strong sums:
Γ, l :Level ⊢ τ : Typeu
Γ ⊢ Σl.τ : Typeu[0/l]

We can define:

lower (l :Level) (t :Typel) (x : t) = ⟨l, ⟨t, x⟩⟩
raise (b :Σl.Σt :Typel.t) = b.2.2

This gives us:

lower u τ x : Σl.Σt :Typel.t : Type1

∀x :τ :Typeu. raise (lower u τ x) ; x

We can smuggle any value in a box that lives in Type1!

Suggests that IUP is incompatible with first-class universe levels.

Stefan Monnier Resizing Prop 10/17

Introduction

System F

IUP is as strong as System F:

J∀t.τK = (l :Level) → (t :Typel) → JτK

JΛt.eK = λ(l :Level).λ(t :Typel).JeK

Je[τ]K = JeK u JτK

We can just compute u from JτK

Stefan Monnier Resizing Prop 11/17

Introduction

Well ordering

Common example of inconsistency in impredicative systems:

Ordering : Type = Σ(set : Typeu).

Σ(less-than : set → set → Type).

...

The inconsistency appears when we define an ordering of orderings.

In a predicative setting this does not work because Ordering ends up in

a universe level higher than u.

If we want to try and reproduce the paradox using IUP, we need to

abstract over the universe level of set.

Stefan Monnier Resizing Prop 12/17

Introduction

Well ordering via existential quantification

First attempt:

Ordering1 : Type1 = ∃(l : Level).

Σ(set : Typel).

Σ(less-than : set → set → Type0).

...

We can now instantiate set to this type.

But the weak nature of the existential makes Ordering1 unusable:

We cannot eliminate to anything that depends on l, so ...

We cannot eliminate to anything that depends on set, so ...

Stefan Monnier Resizing Prop 13/17

Introduction

Well ordering via universal quantification

Second attempt:

Ordering2 : Type1 = (l : Level) →
Σ(set : Typel).

Σ(less-than : set → set → Type0).

...

Again, we can now instantiate set to this type (when l is 1).

¿Write a function which instantiates set to Ordering2 when l is 1 yet to

something in Type0 when l is 0?

Use set : TypeS l to avoid the Type0 case? Pushes Ordering2 to Type2!

Stefan Monnier Resizing Prop 14/17

Introduction

Conclusion

Church-encoding suggests: (l :Level) → τ : Typeu[0/l]

Closure conversion suggests: ∃(l :Level).τ : Typeu[0/l]

Better stop before Σ(l :Level).τ : Typeu[0/l]!

IUP is as strong as System F.

We have failed to encode known paradoxes so far.

We have used only (l :Level) → (t :Typel) → ... so far

¡Help!

Stefan Monnier Resizing Prop 15/17

