
Large Elimination and Indexed
Types in Refinement Types

Alessio Ferrarini and Niki Vazou

IMDEA Software Institute, Madrid, Spain
alessio.ferrarini@imdea.org

Refinement types and Liquid Haskell

{ v:Int | v % 2 = 0 }Int

Refinement type = Base type + predicate

In Liquid Haskell predicates are expressions (no quantifiers)

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 2 of 15

Programming and Proving in LH

data List a = Nil | Cons a (List a)

(++) :: List a -> List a -> List a
Nil ++ ys = ys
(Cons x xs) ++ ys = Cons x (xs ++ ys)

{-@ appendAssoc :: xs:List a -> ys:List a -> zs:List a
 -> { (xs ++ ys) ++ zs = xs ++ (ys ++ zs) } @-}
appendAssoc Nil ys zs = trivial
appendAssoc (Cons x xs) ys zs = appendAssoc xs ys zs

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 3 of 15

Programming and Proving in LH

data List a = Nil | Cons a (List a)

(++) :: List a -> List a -> List a
Nil ++ ys = ys
(Cons x xs) ++ ys = Cons x (xs ++ ys)

{-@ appendAssoc :: xs:List a -> ys:List a -> zs:List a
 -> { (xs ++ ys) ++ zs = xs ++ (ys ++ zs) } @-}
appendAssoc Nil ys zs = trivial
appendAssoc (Cons x xs) ys zs = appendAssoc xs ys zs

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 3 of 15

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 4 of 15

Ok! Now let’s do some proofs about the
lambda calculus!

Simply Typed Lambda Calculus

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 5 of 15

Simply Typed Lambda Calculus in LH

data Term where
 {-@ App :: σ:Ty -> τ:Ty -> γ:Ctx -> Prop (Term γ (TArrow σ τ))
 -> Prop (Term γ σ) -> Prop (Term γ τ) @-}
 {-@ Lam :: σ:Ty -> τ:Ty -> γ:Ctx -> Prop (Term (Cons σ γ) τ)
 -> Prop (Term γ (TArrow σ τ)) @-}
 {-@ Var :: σ:Ty -> γ:Ctx -> Prop (Ref σ γ) -> Prop (Term γ σ) @-}

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 6 of 15

Simply Typed Lambda Calculus in LH

data Term where
 {-@ App :: σ:Ty -> τ:Ty -> γ:Ctx -> Prop (Term γ (TArrow σ τ))
 -> Prop (Term γ σ) -> Prop (Term γ τ) @-}
 {-@ Lam :: σ:Ty -> τ:Ty -> γ:Ctx -> Prop (Term (Cons σ γ) τ)
 -> Prop (Term γ (TArrow σ τ)) @-}
 {-@ Var :: σ:Ty -> γ:Ctx -> Prop (Ref σ γ) -> Prop (Term γ σ) @-}

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 6 of 15

We are not adding indexes to the system

{-@ type Prop E = { v:_ | prop v = E } @-}

We represent index trough refinements

Representation of Values

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 7 of 15

 Encoding Values .

 TYPES 2025 - Large Elimination and Indexed Types in Refinement Types \ 8 of 15 .

 Data Type . Function .

The Path of Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 9 of 15

The Path of Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 9 of 15

We are producing a type

The Path of Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 9 of 15

We are producing a type, does it make sense in RT?

val :: Ty -> ??

The Path of Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 9 of 15

We are producing a type, does it make sense in RT?

val :: Ty -> ??
The difference between DT and RT lies in what is “dependent”

{-@ val :: τ:Ty -> { v:?? | … } @-}

The Path of Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 9 of 15

We are producing a type, does it make sense in RT?

val :: Ty -> ??
The difference between DT and RT lies in what is “dependent”

{-@ val :: τ:Ty -> { v:?? | … } @-} NOT POSSIBLE WITH REFINEMENT TYPES! .

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 10 of 15

Ok, let’s try with Data Types!

The Path of Data Types

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 11 of 15

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

The Path of Data Types

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 11 of 15

Negative occurrence! 🚨

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

The Path of Data Types

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 11 of 15

Negative occurrence! 🚨

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

Software Foundations Vol. 2 - Programming Language Foundations - Pierce et al

The Path of Data Types

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 11 of 15

Negative occurrence! 🚨

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

Software Foundations Vol. 2 - Programming Language Foundations - Pierce et al.

 Dependently typed PL .

 Function .

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 12 of 15

Why are Negative Occurrences Bad?

data Bad where
 MkBad :: (Bad -> Void) -> Bad

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 12 of 15

Why are Negative Occurrences Bad?

data Bad where
 MkBad :: (Bad -> Void) -> Bad

We are not guaranteed that there exists an initial algebra

If there is no initial algebra, like in this case then, we can use Bad
to construct non terminating terms

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 12 of 15

Why are Negative Occurrences Bad?

data Bad where
 MkBad :: (Bad -> Void) -> Bad

We are not guaranteed that there exists an initial algebra

If there is no initial algebra, like in this case then, we can use Bad
to construct non terminating terms

The strict positivity condition implies that the initial algebra exists

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 13 of 15

An Unequal Treatment

Data Types Functions

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 13 of 15

An Unequal Treatment

Data Types Functions

“Well definedness” enforced
by the positivity checker

“Well definedness” enforced
by the termination checker

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 13 of 15

An Unequal Treatment

Data Types Functions

“Well definedness” enforced
by the positivity checker

“Well definedness” enforced
by the termination checker

Very restrictive Spot on

The positivity check almost feels like
disallowing recursive functions

“Smaller” Negativity is Ok

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 14 of 15

Not a single type, but an infinite family of types

If i < j then values at index j don’t influence values at i, the type is technically a
constant from the point of view of the current constructor

In this case we pick the partial order induced structurally on types

Independent of refinement typed (Should work also in DTT)

“Smaller” Negativity is Ok

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 14 of 15

Not a single type, but an infinite family of types

If i < j then values at index j don’t influence values at i, the type is technically a
constant from the point of view of the current constructor

In this case we pick the partial order induced structurally on types

Independent of refinement typed (Should work also in DTT)

“Smaller” Negativity is Ok

data Value where
 {-@ VInt :: Int -> Prop (Value TInt) @-}
 {-@ VFun :: σ:Ty -> τ:Ty -> (Prop (Value σ) -> Prop (Value τ))
 -> Prop (Value (TArrow σ τ)) @-}

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 14 of 15

Not a single type, but an infinite family of types

If i < j then values at index j don’t influence values at i, the type is technically a
constant from the point of view of the current constructor

In this case we pick the partial order induced structurally on types

Independent of refinement typed (May also work in DTT)

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types 15 of 15

Problem

Refinement types aren’t expressive enough for some proofs

Solution

Inductive data types with “smaller” negative occurrences

Challenges

Is the system consistent? Model?

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Problem

Refinement types aren’t expressive enough for some proofs

Solution

Inductive data types with “smaller” negative occurrences

Challenges

Is the system consistent? Model?

THANKS FOR YOUR ATTENTION!

alessio.ferrarini@imdea.org

Try Liquid Haskell online! https://liquidhaskell.goto.ucsd.edu/index.html

15 of 15

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Inductive families

ACKNOWLEDGMENTS

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Partially funded by the European Union (GA 101039196). Views and
opinions expressed are however those of the author(s) only and do

not necessarily reflect those of the European Union or the European
Research Council. Neither the European Union nor the European

Research Council can be held responsible for them.

Acknowledgments

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Inductive families

Extra slides

What are we missing out on?

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Issue down to the usual issue that we can’t manipulate types

We can’t reason about types generally we need to give a grammar to
construct them, ex. lambda calculus values

Extra slides

Arity polymorphism
data Env where
 {-@ Empty :: Prop (Env Nil) @-}
 Empty :: Env
 {-@ With :: σ:Ty -> γ:Ctx -> Prop (Value σ) -> Prop (Env γ)
 -> Prop (Env (Cons σ γ)) @-}
 With :: Ty -> Ctx -> Value -> Env -> Env

{-@ eval :: σ:Ty -> γ:Ctx -> t:Prop (Term γ σ) -> Prop (Env γ)
 -> Prop (Value σ) @-}
eval :: Ty -> Ctx -> Term -> Env -> Value

TYPES 2025 - Large Elimination and Indexed Types in Refinement Types

Arity polymorphism can be obtained through indexed lists

Is some sort of uncurried representation

Extra slides

