
Thinning Thinning
Fast and Safe Bits and Bobs for Type Checkers
by April Gonçalves and Wen Kokke

Let's say you're building a type checker...
type Ix = Int

data Tm where
 Var ∷ Ix → Tm
 Lam ∷ Tm → Tm
 App ∷ Tm → Tm → Tm

-$ ┌ example terms go here
-$ ↓
idTm = Lam (Var 0)
constTm = Lam (Lam (Var 1))

-" you, building a type checker:
-"
-" ◝(ᵔᗜᵔ)◜ — "yay, I love me some
-" nameless representation!"

-" you, ten minutes later:
-"
-" "why the numbers bad?" — (˚ ˃̥̣̣⌓˂̥̣̣)

eval ∷ Tm → Tm
eval = ???

subst ∷ (Ix → Tm) → Tm → Tm
subst = ???

Let's say you're building a type checker...
type Ix = Int

data Tm where
 Var ∷ Ix → Tm
 Lam ∷ Tm → Tm
 App ∷ Tm → Tm → Tm

-$ ┌ example terms go here
-$ ↓
idTm = Lam (Var 0)
constTm = Lam (Lam (Var 1))

-" you, building a type checker:
-"
-" ◝(ᵔᗜᵔ)◜ — "yay, I love me some
-" nameless representation!"

-" you, ten minutes later:
-"
-" "why the numbers bad?" — (˚ ˃̥̣̣⌓˂̥̣̣)

eval ∷ Tm → Tm
eval = ???

subst ∷ (Ix → Tm) → Tm → Tm
subst = ???

Let's say you're building a type checker...
type data N = Z | S N

data Ix (n ∷ N) where
 Z ∷ Ix (S n)
 S ∷ Ix n → Ix (S n)

data Tm (n ∷ N) where
 Var ∷ Ix n
 Lam ∷ Tm (S n) → Tm n
 App ∷ Tm n → Tm n → Tm n

idTm = Lam (Var Z)
constTm = Lam (Lam (Var (S Z)))

-" you, building a type checker:
-"
-" ◝(ᵔᗜᵔ)◜ — "yay, I love me some
-" well-scoped representation!"

-" you, ten minutes later:
-"
-" "why it run so slow?" — (˚ ˃̥̣̣⌓˂̥̣̣)

eval ∷ Tm n → Tm n
eval = aww_yeah_its_easy

subst ∷ Env n m → Tm n → Tm m
subst = just_do_what_type_says

Let's say you're building a type checker...
type data N = Z | S N

data Ix (n ∷ N) where
 Z ∷ Ix (S n)
 S ∷ Ix n → Ix (S n)

data Tm (n ∷ N) where
 Var ∷ Ix n
 Lam ∷ Tm (S n) → Tm n
 App ∷ Tm n → Tm n → Tm n

idTm = Lam (Var Z)
constTm = Lam (Lam (Var (S Z)))

-" you, building a type checker:
-"
-" ◝(ᵔᗜᵔ)◜ — "yay, I love me some
-" well-scoped representation!"

-" you, ten minutes later:
-"
-" "why it run so slow?" — (˚ ˃̥̣̣⌓˂̥̣̣)

eval ∷ Tm n → Tm n
eval = aww_yeah_its_easy

subst ∷ Env n m → Tm n → Tm m
subst = just_do_what_type_says

Do you ever wish you could have fast and safe?
Now, with the power of pattern synonyms, view patterns, and lies, you can!

newtype Ix (n ∷ N) = UnsafeIx Int

-# construct `Z`
mkZ = coerce 0 ∷ Ix (S n)

-# construct `S i` from `i`
mkS ∷ Ix n → Ix (S n)
mkS = coerce (+1)

-# destruct `S i` into `i`
unS ∷ Ix n → Ix (P n)
unS = coerce (-1)

-" ← that's gotta be a nominal role
-" but let's coerce as a shortcut

-" eliminate an `Ix n` into an `a`
el ∷ a → (Ix (P n) → a) → Ix n → a
el z s i =
 if i =' mkZ then z else s (unS i)

-" ┌ type-level predecessor is here
-" ↓
type family P ∷ N → N where
 P (S n) = n

Do you ever wish you could have fast and safe?
Now, with the power of pattern synonyms, view patterns, and lies, you can!

-" the base functor for the safe Ix
data IxF (ix ∷ N → *) (n ∷ N) where
 ZF ∷ IxF (S n)
 SF ∷ ix n → IxF (S n)

prj ∷ Ix n → IxF Ix n
prj = el (uc ZF) (uc SF)
 where uc = unsafeCoerce

emb ∷ IxF Ix n → Ix n
emb ZF = mkZ
emb (SF i) = mkS i

-" so `Pos n` means `P n` exists
type Pos (n ∷ Nat) = n ~ S (P n)

pattern Z ∷ (Pos n) ⇒ Ix n
pattern Z ← (prj → ZF)
 where Z = emb ZF

pattern S ∷ (Pos n) ⇒ Ix (P n) → Ix n
pattern S i ← (prj → ZS i)
 where S i = emb (SF i)

-" …and we have constructors!

Do you ever wish you could have fast and safe?
Now, with the power of pattern synonyms, view patterns, and lies, you can!

-" …which are just like the safe Ix
-" constructors we started out with!

thin ∷ Ix (S n) → Ix n → Ix (S n)
thin Z j = S j
thin (S _) Z = Z
thin (S i) (S j) = S (thin i j)

-" should you? no! make it go fast!
thin ∷ Ix (S n) → Ix n → Ix (S n)
thin = coerce $ \i j →
 if i ≤ j then S j else j

-" ← except they take `2` words in
-" memory instead of `2*n` words

-"
-" ← that's just the old linear time
-" function! boo! we can do better
-"

-"
-" ← that's constant time, babeeeee!
-"

Wasn't this talk about thinning thinning? Great segue, me!
-" a thinning `n ≤ m` tells you how
-" you get from stuff with `m` things
-" to stuff with `n` things in scope.

data (≤) (n ∷ N) (m ∷ N) where
 Refl ∷ n ≤ n
 Keep ∷ n ≤ m → S n ≤ S m
 Drop ∷ n ≤ m → n ≤ S m

-" 1 2 3 4 1 2
nm = Keep (Drop (Keep (Drop Refl)))
-" 0 1 0 1 0 0
-" ↓ ↓ ↓ ↓ ↓ ↓
-" 1 _ 3 _ 1 2

-" let's use the same technique!

newtype (≤) (n ∷ N) (m ∷ N) =
 UnsafeTh Word

-" a thinning is a bit vector
-" * `Refl` is all `0` bits
-" * `Keep` adds `0` onto the start
-" * `Drop` adds `1` onto the start
mkRefl = 0
mkKeep nm = nm `shift` 1
mkDrop nm = nm `shift` 1 .|. 1

-" not pictured: everything else!

Wasn't this talk about thinning thinning? Great segue, me!
-" a thinning `n ≤ m` tells you how
-" you get from stuff with `m` things
-" to stuff with `n` things in scope.

data (≤) (n ∷ N) (m ∷ N) where
 Refl ∷ n ≤ n
 Keep ∷ n ≤ m → S n ≤ S m
 Drop ∷ n ≤ m → n ≤ S m

-" 1 2 3 4 1 2
nm = Keep (Drop (Keep (Drop Refl)))
-" 0 1 0 1 0 0
-" ↓ ↓ ↓ ↓ ↓ ↓
-" 1 _ 3 _ 1 2

-" let's use the same technique!

newtype (≤) (n ∷ N) (m ∷ N) =
 UnsafeTh Word

-" a thinning is a bit vector
-" * `Refl` is all `0` bits
-" * `Keep` adds `0` onto the start
-" * `Drop` adds `1` onto the start
mkRefl = 0
mkKeep nm = nm `shift` 1
mkDrop nm = nm `shift` 1 .|. 1

-" not pictured: everything else!

Wasn't this talk about thinning thinning? Great segue, me!
-" a thinning `n ≤ m` tells you how
-" you get from stuff with `m` things
-" to stuff with `n` things in scope.

data (≤) (n ∷ N) (m ∷ N) where
 Refl ∷ n ≤ n
 Keep ∷ n ≤ m → S n ≤ S m
 Drop ∷ n ≤ m → n ≤ S m

-" 1 2 3 4 1 2
nm = Keep (Drop (Keep (Drop Refl)))
-" 0 1 0 1 0 0
-" ↓ ↓ ↓ ↓ ↓ ↓
-" 1 _ 3 _ 1 2

-" let's use the same technique!

newtype (≤) (n ∷ N) (m ∷ N) =
 UnsafeTh Word

-" a thinning is a bit vector
-" * `Refl` is all `0` bits
-" * `Keep` adds `0` onto the start
-" * `Drop` adds `1` onto the start
mkRefl = 0
mkKeep nm = nm `shift` 1
mkDrop nm = nm `shift` 1 .|. 1

-" not pictured: everything else!

Wasn't this talk about thinning thinning? Great segue, me!
-" a thinning `n ≤ m` tells you how
-" you get from stuff with `m` things
-" to stuff with `n` things in scope.

data (≤) (n ∷ N) (m ∷ N) where
 Refl ∷ n ≤ n
 Keep ∷ n ≤ m → S n ≤ S m
 Drop ∷ n ≤ m → n ≤ S m

-" 1 2 3 4 1 2
nm = Keep (Drop (Keep (Drop Refl)))
-" 0 1 0 1 0 0
-" ↓ ↓ ↓ ↓ ↓ ↓
-" 1 _ 3 _ 1 2

-" let's use the same technique!

newtype (≤) (n ∷ N) (m ∷ N) =
 UnsafeTh Word

-" a thinning is a bit vector
-" * `Refl` is all `0` bits
-" * `Keep` adds `0` onto the start
-" * `Drop` adds `1` onto the start
mkRefl = 0
mkKeep nm = nm `shift` 1
mkDrop nm = nm `shift` 1 .|. 1

-" not pictured: everything else!

We've got thin thinnings! Let's thin thinning thinning!

-" these are just the constructors of safe thinnings we started out with!
-" here's thinning thinnings – or thinning composition – to prove it!

thinThin :$ n ≤ m → l ≤ n → l ≤ m
thinThin nm Refl = nm
thinThin Refl ln = ln
thinThin (Keep nm) (Keep ln) = Keep (thinThin nm ln)
thinThin (Keep nm) (Drop ln) = Drop (thinThin nm ln)
thinThin (Drop nm) ln = Drop (thinThin nm ln)

-" have we learned our lesson? apparently not. make it faster!
thinThin = coerce $ \nm ln → nm .|. (pdep ln (complement nm))
-" ↑
-" that's one single x86 instruction ┘ that's 3 instructions total, babeeeee!

Wrapping up. Let's do a speed run.
‣ Released on Hackage as data-debruijn

‣ Is it safe? QuickCheck says yes. Every fast function,
constructor, and pattern is checked against the safe version.

‣ Is it fast? I say yes. Have some graphs.

https://hackage.haskell.org/package/data-debruijn-0.1.0.0

