Irregular models of type theory

Andrew W Swan

FMF, Univerza v Ljubljani

June 9, 2025

Question (Escardó)

Are there models of type theory that do not have propositional truncation?

Alternatively: Is there a clever way to construct propositional truncation from other type constructors and univalence, or is this impossible?

Theorem (S)

There are locally cartesian closed categories with initial object, finite disjoint products, W-types and an infinite cumulative sequence of universes, that are not regular (i.e. do not have propositional truncation).

Theorem (S)

There are models of extensional and univalent type theory with a cumulative sequence of universes such that

- 1. The model has an empty type and disjoint products.
- 2. The model has W-types.
- 3. The model has a circle type \mathbb{S}^1 (probably!)
- 4. There is a type in the lowest universe U_0 that does not have a propositional truncation in any universe.

We will construct an example using *Lifschitz realizability*. Originally due to Lifschitz. This presentation is based on variants due to Lee and Van Oosten. See also later work of Rathjen and Swan, Koutsoulis.

- 1. Using realizability over \mathcal{K}_1 we get a model of HoTT and the axioms:
 - 1.1 Computable choice: Given a $\neg\neg$ -stable relation $R : \mathbb{N} \times \mathbb{N} \to h \operatorname{Prop}_{\neg\neg}$ with $\neg\neg$ -stable domain (i.e. for all $n, \neg\neg\exists m R(n,m) \to \exists m R(n,m)$), there is a partial computable function φ_e such that if R(n,m) for any m, then $R(n,\varphi_e(n))$.

- 1.2 Every $\neg \neg$ -well founded relation on every set X is well-founded.
- 2. We construct a sequence of reflective subuniverses $\mathcal{L}_2 \hookrightarrow \mathcal{L}_3 \hookrightarrow \ldots \hookrightarrow \mathcal{U}$ where
 - 2.1 Each inclusion preserves the empty type, coproducts and W-types.
 - 2.2 No inclusion preserves propositional truncation.

Definition

Write \mathbb{N}_{∞} to be the set of decreasing binary sequences of natural numbers. It has a bounded lattice structure \top, \bot, \lor, \land defined pointwise.

Definition

The axiom **LLPO**_n states that if $\alpha_1, \ldots, \alpha_n \in \mathbb{N}_{\infty}$ are such that $\alpha_i \lor \alpha_j = \top$ for all $i \neq j$, then $\alpha_i = \top$ for some *i*.

Definition

For each *n* we define \bigcirc_n to be the nullification modality of the propositions $\|\sum_i \alpha_i = \top\|$ where $\alpha_1, \ldots, \alpha_n \in \mathbb{N}_{\infty}$ are such that $\alpha_i \lor \alpha_j = \top$ for $i \neq j$ and \mathcal{L}_n the corresponding reflective subuniverse of \mathcal{U} .

By construction, a type A belongs to \mathcal{L}_n when it is null for the generating propositions:

Lemma

Each generator of \bigcirc_n is \bigcirc_{n+1} -modal.

Proof.

We have a map $\|\sum_{1 \le i \le n+1} \alpha_i = \top\| \to \|\sum_{1 \le j \le n} \beta_j = \top\|$. By computable choice, this gives us a map $f : \operatorname{Fin}_{n+1} \to \operatorname{Fin}_n$ such that if $\alpha_i = \top$ then $\beta_{f(i)} = \top$. By the pigeonhole principle we have $i \ne i'$ such that f(i) = f(i'). From $\alpha_i \lor \alpha_{i'} = \top$ we can deduce $\beta_{f(i)} = \top$.

Lemma

Each modality \bigcirc_n is non trivial.

Proof.

Assume the generators of \bigcirc_n are already contractible. Given $e \in \mathbb{N}$ and $1 \leq i \leq n$ define $\alpha_{e,i}(k)$ to be 0 if $\varphi_e(e)$ halts within k steps and $\varphi_e(e) \equiv i \mod n$, and otherwise 1. By the contractibility assumption and computable choice we can choose f(i) computably such that $\alpha_{e,f(e)} = \top$. We get a contradiction by diagonalisation. \Box

Theorem

Each \mathcal{L}_n is closed under coproducts and W-types.

Theorem

If we additionally assume that every proposition $\alpha = \top$ is projective in our base realizability model, then \mathbb{S}^1 belongs to \mathcal{L}_2 , and so to all \mathcal{L}_n .

(This holds in extensional realizability models such as assemblies and the effective topos, and Should Probably HoldTM in the new model of HoTT due to Sattler.)

We can use the lemmas to show the required results that inclusions $\mathcal{L}_n \hookrightarrow \mathcal{L}_{n+1}$ preserve "everything except truncation."

To get a non regular lcc with disjoint sums and W-types, we can simply take the colimit. Intuitively: the countable union $\bigcup_n \mathcal{L}_n$. We then take the slice category over all finite sequences $\alpha_1, \ldots, \alpha_n$ where $\alpha_i \vee \alpha_j = \top$ for $i \neq j$. Then the truncation $\|\sum_{1 \leq i \leq n} \alpha_i = \top\|$ belongs to \mathcal{L}_{n+1} , but not \mathcal{L}_n . Hence there is no one universe that contains all such truncations.

We can use the lemmas to show the required results that inclusions $\mathcal{L}_n \hookrightarrow \mathcal{L}_{n+1}$ preserve "everything except truncation."

To get a non regular lcc with disjoint sums and W-types, we can simply take the colimit. Intuitively: the countable union $\bigcup_n \mathcal{L}_n$. We then take the slice category over all finite sequences $\alpha_1, \ldots, \alpha_n$ where $\alpha_i \vee \alpha_j = \top$ for $i \neq j$. Then the truncation $\|\sum_{1 \leq i \leq n} \alpha_i = \top\|$ belongs to \mathcal{L}_{n+1} , but not \mathcal{L}_n . Hence there is no one universe that contains all such truncations.

There is a problem defining universes in this model: If we try to define a single universe as a countable union of all \mathcal{L}_n , it will not be closed under \sum -types. If we define the *n*th universe as \mathcal{L}_n we have another problem: it still satisfies a weak form of truncation. Every type $A : \mathcal{L}_n$ has a truncation ||A|| in the next universe \mathcal{L}_{n+1} and in \mathcal{L}_n it has a "local" truncation $\bigcirc_n ||A||$ that eliminates into propositions in \mathcal{L}_n .

Theorem (Shulman)

If \mathcal{E} is a model of univalent type theory, then so is $\mathcal{E}^{\rightarrow}$.

Given a pair of univalent universes \mathcal{U}, \mathcal{V}

$$\sum_{A:\mathcal{U}} \mathcal{V}^A \quad \longrightarrow \quad \mathcal{U}$$

If \mathcal{U} is a subuniverse of \mathcal{V} , we can instead view the inclusion $\mathcal{U} \hookrightarrow \mathcal{V}$ as an object of $\mathcal{E}^{\rightarrow}$ and then as a univalent universe. This is equivalent to restricting to the subtype of those pairs $A : \mathcal{U}, B : \mathcal{V}^A$ in the Shulman universe where $A : \mathcal{V}$ and each B(a) is contractible. If the inclusion does not preserve propositional truncation, then as a universe in $\mathcal{E}^{\rightarrow}$ it does not have truncation.

Still to do:

1. More direct interpretation for \mathbb{S}^1

- 2. Other HITs?
- 3. Other applications.

Thanks for you attention!